• Aucun résultat trouvé

SISTEMA DI MISURAZIONE,

N/A
N/A
Protected

Academic year: 2022

Partager "SISTEMA DI MISURAZIONE,"

Copied!
33
0
0

Texte intégral

(1)

LA TOMOGRAFIA COMPUTERIZZATA:

MODALITA’ DI FORMAZIONE DELL’IMMAGINE

SISTEMA DI MISURAZIONE, SISTEMA DI RICOSTRUZIONE, SISTEMA DI VISUALIZZAZIONE

www.slidetube.it

(2)

SISTEMA DI MISURAZIONE:

ACQUISIZIONE DELL’IMMAGINE TC

Un’immagine è ottenuta misurando l’assorbimento differenziato alla radiazione X da parte di un elevato numero di voxel contigui in cui viene suddiviso lo strato in esame

e

traducendo la misurazione in una corrispondente mappa di punti di diverse tonalità di grigio

La ricostruzione dei coefficienti di attenuazione viene effettuata attraverso due passaggi:

• ottenimento di un numero sufficiente di profili di trasmissione di un sottile fascio di raggi X

• ricostruzione computerizzata della sezione dai dati di assorbimento dei profili

www.slidetube.it

(3)

SISTEMA DI MISURAZIONE:

ACQUISIZIONE DELL’IMMAGINE TC (2)

LEGGE DI ATTENUAZIONE DEL FASCIO

Se un fascio di raggi x di intensità I° incide su uno strato di materiale omogeneo di spessore d

l’intensità I del fascio attenuato sarà :

I = I0 e -μd

“legge di attenuazione”

www.slidetube.it

(4)

SISTEMA DI MISURAZIONE:

ACQUISIZIONE DELL’IMMAGINE TC (3)

LEGGE DI ATTENUAZIONE DEL FASCIO

La costante μ rappresenta il coefficiente di attenuazione del fascio

Se un raggio X attraversa materiali diversi aventi uguale spessore, l’attenuazione è più forte nel materiale con μ maggiore (cioè nel materiale più denso)

Se un raggio passa, come avviene generalmente, attraverso materiali con diversi coefficienti di attenuazione, i contributi individuali si sommano per raggiungere

l’attenuazione risultante

www.slidetube.it

(5)

SISTEMA DI MISURAZIONE:

ACQUISIZIONE DELL’IMMAGINE TC (5)

PROCEDIMENTO DI MISURA: SISTEMA DI DETEZIONE

Tipi di detettore:

• detettore a camera di ionizzazione a gas inerti

• detettore a cristallo di scintilazione

Entrambi i tipi di detettore sfruttano effetti fisici basati sull’interazione tra i fotoni ad alta energia e la materia

www.slidetube.it

(6)

SISTEMA DI MISURAZIONE:

ACQUISIZIONE DELL’IMMAGINE TC (6)

PROCEDIMENTO DI MISURA: SISTEMA DI DETEZIONE

Il processo di detezione è basato su una conversione di energia a 2 passaggi successivi:

1. Il quanto di radiazione X incidente interagisce con il cristallo o con gli atomi di Xenon, con la conseguente generazione di segnali elettrici di tensione direttamente

proporzionali all’intensità dei quanti X incidenti

1. Vengono raccolti i segnali elettrici generati, consentendo di ottenere da una singola scansione molteplici profili di attenuazione della radiazione X necessari per la

costruzione dell’immagine di uno strato

I segnali misurati vengono codificati in forma opportuna, convertiti in segnali numerici ed inviati al computer

www.slidetube.it

(7)

SISTEMA DI MISURAZIONE:

ACQUISIZIONE DELL’IMMAGINE TC (7)

PROCEDIMENTO DI MISURA

ll computer calcola quindi (a partire dall’insieme di questi dati di misura) quale immagine dello strato una distribuzione bidimensionale di valori di attenuazione

corrispondente allo strato dell’oggetto

• i distretti dell’oggetto che attenuano fortemente la radiazione vengono associati ad alti numeri di valori di assorbimento

• i distretti dell’oggetto che attenuano debolmente la radiazione vengono associati a bassi numeri di valori di assorbimento

Lo strato in esame deve essere immaginato suddiviso in volumi elementari per ciascuno dei quali il computer calcola l’assorbimento stesso

www.slidetube.it

(8)

SISTEMA DI MISURAZIONE:

ACQUISIZIONE DELL’IMMAGINE TC (8)

PROCEDIMENTO DI MISURA

La matrice numerica viene trasformata in un’immagine in bianco e nero in cui ad ogni elemento di matrice (tipicamente 512x512 pixels) corrisponde un singolo punto di immagine (Pixel) ed ai diversi valori di assorbimento vengono associati i diversi valori

di grigio

Il coefficiente di attenuazione lineare di un materiale non può essere assunto come valore assoluto, poiché dipendente dall’energia di della radiazione X incidente

per la valutazione dei valori di assorbimento nella TC è stata adottata una scala arbitraria proposta da Hounsfield, in cui i valori unitari di assorbimento prendono il

nome di “Unità Hounsfield” (HU)

www.slidetube.it

(9)

SISTEMA DI MISURAZIONE:

ACQUISIZIONE DELL’IMMAGINE TC (9)

PROCEDIMENTO DI MISURA: SCALA HOUNSFIELD

Come materiale di riferimento è stata assunta l’acqua, cui è stato attribuito valore di assorbimento pari a 0

I valori della scala stabiliscono il relativo scostamento dei coefficienti di assorbimento delle rispettive sostanze dal coefficiente di assorbimento dell’acqua per mille,

secondo la relazione:

n° TC = (μ tessuto – μ H2O / μ H20) x 1000

L’aria assume valore -1000 mentre l’osso assume valore +1000

www.slidetube.it

(10)

SISTEMA DI MISURAZIONE:

ACQUISIZIONE DELL’IMMAGINE TC (10)

www.slidetube.it

(11)

RICOSTRUZIONE DELL’IMMAGINE (2)

I dati relativi all’attenuazione del fascio per ogni singolo voxel rappresentano la proiezione di un dato oggetto interposto tra la fonte ed il rivelatore dei raggi X

Per ricostruire l’immagine dell’oggetto si utilizza il metodo della retroproiezione:

per ogni punto di vista o proiezione, la relativa immagine proiettata viene

“retroproiettata”


Quello che viene riportato è il coefficiente di attenuazione: il computer retroproietta quello che rimane del raggio X dopo che questo ha attraversato il corpo

RETROPROIEZIONE

www.slidetube.it

(12)

RICOSTRUZIONE DELL’IMMAGINE (4)

www.slidetube.it

(13)

RICOSTRUZIONE DELL’IMMAGINE (5)

L’immagine ottenuta è sfumata, l’oggetto nella tomografia non è ben definito

Per ovviare a questo problema si applicano dei filtri di convoluzione ai profili

www.slidetube.it

(14)

RICOSTRUZIONE DELL’IMMAGINE (7)

RETROPROIEZIONE FILTRATA

Nelle immagini risultanti dai processi di retroproiezione gli oggetti presentano una sorta di coda lungo i profili dovuta alla parziale attenuazione del raggio

Questa parziale attenuazione è responsabile di una sfocatura lungo i profili

Per eliminare, o meglio, attenuare questo effetto, il segnale giunto al rivelatore viene preventivamente filtrato, mediante particolari algoritmi matematici (filtri

di convoluzione), prima di essere retroproiettato


Esistono differenti filtri che accentuano più o meno la “pulizia” dei profili (filtri per osso, per tessuti molli, ecc.)

www.slidetube.it

(15)

RICOSTRUZIONE DELL’IMMAGINE (8)

RETROPROIEZIONE FILTRATA

Il tipo di filtro di convoluzione è selezionabile in base al risultato desiderato, a seconda se si vuole privilegiare la risoluzione spaziale o il contrasto dei tessuti

molli

www.slidetube.it

(16)

RICOSTRUZIONE DELL’IMMAGINE (9)

www.slidetube.it

(17)

RICOSTRUZIONE DELL’IMMAGINE (10)

In questo modo si riesce ad ovviare allo “sparpagliamento” dei dati nell’immagine tomografica.

www.slidetube.it

(18)

RICOSTRUZIONE DELL’IMMAGINE (12)

TC SPIRALE MULTISTRATO

Per correggere l’effetto del movimento continuo di avanzamento del Paziente durante la scansione è necessario in primo luogo calcolare a partire dal set di dati di volume, per ciascuna immagine da ricostruire, un set di dati planare uguale a quello che si sarebbe

acquisito con TC convenzionale nella scansione di una sezione singola situata nella stessa posizione

l’approccio più semplice per ottenere tale risultato è rappresentato dall’ interpolazione lineare

www.slidetube.it

(19)

RICOSTRUZIONE DELL’IMMAGINE (14)

TC SPIRALE MULTISTRATO

Utilizza punti di dati a distanza angolare di 360° e quindi a distanza lineare uguale all’avanzamento che il Paziente ha subito durante un giro di rotazione del fuoco

Algoritmo di interpolazione lineare (360°)

Tale algoritmo riduce, rispetto all’immagine TC convenzionale, il rumore del pixel, ma allarga notevolmente il profilo di sensibilità della sezione, peggiorando quindi la

risoluzione in profondità

Pertanto è stata sviluppata una diversa classe di algoritmi, che utilizzano punti di dati di interpolazione che distano soltanto 180°

www.slidetube.it

(20)

Algoritmo di interpolazione lineare (360°)

RICOSTRUZIONE DELL’IMMAGINE (16)

TC SPIRALE MULTISTRATO

www.slidetube.it

(21)

Algoritmo di interpolazione lineare (180°)

RICOSTRUZIONE DELL’IMMAGINE (17)

TC SPIRALE MULTISTRATO

Questi algoritmi utilizzano punti di dati di interpolazione che distano 180°

Sfruttano il fatto che in una rotazione di 360° tutti i dettagli vengono osservati due volte da opposti diversi

ciò produce una ridondanza di dati che viene usata per calcolare una seconda spirale, sfasata di 180° rispetto alla spirale misurata

www.slidetube.it

(22)

Algoritmo di interpolazione lineare (180°)

RICOSTRUZIONE DELL’IMMAGINE (18)

TC SPIRALE MULTISTRATO

Si può quindi effettuare l’interpolazione lineare tra due punti di dati a distanza di 180°, con il vantaggio di ottenere migliori profili di sensibilità della slice e quindi di garantire

una superiore risoluzione in direzione longitudinale

L’utilizzo di questo step di calcolo intermedio (che deve sempre precedere la retroproiezione) offre significativi vantaggi nella ricostruzione volumetrica

Il Pitch deve essere sempre ≠ 1

per evitare che i dati si sovrappongano senza ottenere la ridondanza di dati necessari

www.slidetube.it

(23)

Algoritmo di interpolazione lineare (180°)

RICOSTRUZIONE DELL’IMMAGINE (20)

TC SPIRALE MULTISTRATO

www.slidetube.it

(24)

VISUALIZZAZIONE DELL’IMMAGINE TC

Sulla base del relativo profilo di attenuazione, ad ogni voxel viene assegnato un numero di Hounsfield: tale numero rappresenta l’attenuazione media del

corrispondente volume di tessuto esaminato


Successivamente, ogni voxel, con il relativo numero in UH, viene assegnato alla matrice dell’immagine (solitamente formata da 512 x 512 pixel)

Quindi, alla fine del processo, ad ogni pixel della matrice corrisponde un numero di Hounsfield

La profondità cromatica è in genere di 8 bit (256 livelli di grigio) e la scala dei grigi è simile a quella radiografica (maggiore attenuazione = bianco; minore attenuazione = nero)

www.slidetube.it

(25)

VISUALIZZAZIONE DELL’IMMAGINE TC (2)

www.slidetube.it

(26)

VISUALIZZAZIONE DELL’IMMAGINE TC (3)

Alla base delle variazioni cromatiche di una immagine TC, ci sono quindi dei numeri che possono essere letti in un qualsiasi momento e che possono dare delle

informazioni quantitative oggettive sulla densità del tessuto considerato

sulle immagini TC sono possibili una serie di operazioni, dopo l’acquisizione dei dati, definite di post-processing (variazioni dei grigi rappresentati, misurazioni

lineari, angolari, di densità, ricostruzioni planari, 3D, ecc.)


La modalità di visualizzazione delle immagini TC può essere variata ed aggiustata in maniera tale da esaltare o sopprimere informazioni presenti nelle immagini stesse


È così possibile discriminare anche piccole differenze di densità (fino a 0,5%) e rappresentarle con livelli di grigi differenti  maggiore risoluzione di contrasto

www.slidetube.it

(27)

VISUALIZZAZIONE DELL’IMMAGINE TC (4)

Nella visualizzazione su monitor dell’immagine TC è possibile selezionare un campo ristretto di interesse (finestra) della completa scala dei valori di assorbimento per la riproduzione dell’immagine, rappresentandolo con tutta la tonalità di grigi del monitor

In tal modo l’occhio umano è in grado di sfruttare meglio la sensibilità contrastografica della TC

www.slidetube.it

(28)

VISUALIZZAZIONE DELL’IMMAGINE TC (5)

www.slidetube.it

(29)

VISUALIZZAZIONE DELL’IMMAGINE TC (6)

Il range di rappresentazione dei grigi viene definito ampiezza della finestra (Window Width)

I livelli al di sopra ed al di sotto dei limiti della finestra sono rappresentati come bianco e nero

I livelli di grigio intermedi vengono distribuiti in maniera lineare all’interno della finestra:

• se la finestra è ampia, molti livelli di grigio sono rappresentati

• se la finestra è stretta, tra il bianco ed il nero ci saranno pochi livelli di grigio per cui saranno visibili anche lievi differenze di densità

AMPIEZZA DELLA FINESTRA

www.slidetube.it

(30)

VISUALIZZAZIONE DELL’IMMAGINE TC (7)

AMPIEZZA DELLA FINESTRA

www.slidetube.it

(31)

VISUALIZZAZIONE DELL’IMMAGINE TC (8)

E’ inoltre possibile spostare il livello della finestra (Window Level), cioè il punto in cui, arbitrariamente, fissiamo il nostro centro al di sopra del quale stanno i tessuti più densi e

al di sotto i tessuti meno densi della struttura che vogliamo studiare


Una finestra ampia (>1500) con centro su valori elevati (400; 800) viene utilizzata per la visualizzazione dei tessuti duri; con centro spostato su valori molto negativi (-500;-

700) viene usata per i tessuti aerati

Una finestra stretta (<500), con livelli compresi tra lo 0 dell’acqua e 70-80 UH, viene usata per i tessuti molli

LIVELLI DELLA FINESTRA

www.slidetube.it

(32)

VISUALIZZAZIONE DELL’IMMAGINE TC (9)

L’esame TC fornisce immagini tomografiche assiali, cioè che tagliano perpendicolarmente l’asse sagittale mediano, ed eliminano il problema della

sovrapposizione tra le varie strutture anatomiche considerate


La valutazione in sequenza delle immagini assiali di uno studio permette di avere un quadro complessivo del distretto anatomico indagato


La serie delle immagini assiali può essere ricostruita in maniera da ottenere delle immagini lungo piani anatomici diversi (sagittale, dorsale, obliqui o anche curvi)

(MPR = Multi Planar Reformation)

Oltre alle ricostruzioni planari, molti software di post-processing permettono di ottenere delle ricostruzioni 3D attraverso diversi protocolli di ricostruzione, in partiolare il Maximum Intensity Projection (MIP), il Volume Rendering (VR) ed il Surface Rendering

(SR)

www.slidetube.it

(33)

www.slidetube.it

Références

Documents relatifs

esiste, appartenente alla regione superiore (inferiore) di ogni altra eventuale relativa allo stesso punto iniziale... Analogamerite si definisce la regione inferiore

L’accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » ( http://rendiconti.math.unipd.it/ ) implique l’accord avec les

L’accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » ( http://rendiconti.math.unipd.it/ ) implique l’accord avec les

καὶ ὃς ὑποτιμᾶται χρημάτων τὸ πρῶτον, ὥσπερ οἱ ἁλόντες τοῖς δικαστηρίοις, ὅσα φησὶν ἀποτῖσαι δύνασθαι ἀντὶ τῆς ὕβρεως· εἶτα τά τε ἄλλα καὶ

Radici culturali del senso di giustizia oggi, con particolare riferimento alla tradizione cristiana..

La transmission est de type série : chaque unité d'information est composée de plusieurs bits qui sont transmis les uns après les autres dans un ordre défini..

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » ( http://www.sns.it/it/edizioni/riviste/annaliscienze/ ) implique l’accord

- Ora che siamo arrivati alle equazioni del moto in forma canonica per sistemi anolonomi, possiamo applicare a tali equazioni tutti i risultati della teoria delle