• Aucun résultat trouvé

Propagating uncertainty using FE advanced Monte-Carlo methods: application to non- linear hyperelastic models

N/A
N/A
Protected

Academic year: 2021

Partager "Propagating uncertainty using FE advanced Monte-Carlo methods: application to non- linear hyperelastic models"

Copied!
10
0
0

Texte intégral

(1)

Propagating uncertainty using FE advanced

Monte-Carlo methods: application to non-

linear hyperelastic models

05/09/2016

Paul Hauseux, Jack S. Hale and Stéphane P. A. Bordas

(2)

Context: Soft-tissue biomechanics simulations with uncertainty

Non-linear hyperelastic model as a stochastic PDE with random coefficients

Partially-intrusive Monte-Carlo methods to propagate uncertainty

Deformation of the beam: mean +/- standard deviation

Implementation: DOLFIN [Logg et al. 2012] and chaospy [Feinberg and Langtangen 2015]

Ipyparallel and mpi4py to massively parallelise individual forward model runs across a

(3)

1) Monte-Carlo method

F (u, !) = 0

A non-linear stochastic system to solve can be written as:

Expected value of a quantity of interest [Caflisch 1998]:

The classical Monte-Carlo approach:

E( (u(x, !))) =

Z

(u(x, !)) dP (!) = 1

Z

X

Z z=1

(u(x, !

z

)) + o

✓ || ||

p Z

E( (u(x, !)))

M C

⇡ 1

Z

X

Z z=1

(u(x, !

z

))

(⌦, F, P )

Probability space:

! = (!

1

, !

2

, . . . , !

M

)

Random parameters:

(4)

2) MC method with use of sensitivity information

E( (u(x, !)))

SD M C

⇡ 1

Z

X

Z z=1

(u(x, !

z

))

X

M i=1

d

d!

i

( ¯ !) ⇥ (!

i

! ¯

i

)

!

@F (u, !)

| @u {z }

U⇥U

du

|{z} d!

U⇥M

= @F (u, !)

| @! {z }

U⇥M

Expected value of a quantity of interest [Cao et al. 2004]:

Tangent linear model to evaluate the sensitivity derivatives [Farrell et al. 2013]:

U: size of the deterministic problem M: number of random parameters

¯

u ⇡ 1

Z

X

Z z=1

u(x, !

z

)

X

M i=1

du

d!

i

( ¯ !) ⇥ (!

i

! ¯

i

)

!

1 X

Z

X

M

du !

First and Second moments of the displacement:

(5)

3) Multi-level MC method with use of PCE

Polynomial chaos expansion (PCE) [Wiener 1936]:

u

k

(x, !) = X

2Jm,p

u

k

(x)H

(!)

ML-MC method [Matthies 2008, Giles 2015]:

(6)

4) 3D Numerical simulations

The stored strain energy density function for a compressible Mooney–Rivlin material:

W = C

1

(I

1

3) + C

2

(I

2

3) + D

1

(det F 1)

2

120000 d.o.f

⇢(!

1

) = ⇢

0

(1 + !

1

/2)

⇧ = W dx ⇢gdx, g = g~y, g = 9.81 m.s

2

The total potential energy:

2 RV with beta(2,2) distribution:

D

1

(!

2

) = D

10

(1 + !

2

)

8>

><

>>

:

D10 = 2 · 105 Pa C2 = 2 · 105 Pa C1 = 104 Pa

0 = 600 kg/m3

Fig: Mesh, initial configuration and deformed configuration.

(7)

4) 3D Numerical simulations

10 100 1000 10000 1e+05

Z

-0.13

-0.125

-0.12

-0.115

-0.11

u

ymax

(m)

MC MC-SD ML-MC

Mean

(8)

4) 3D Numerical simulations

10 100 1000 10000 1e+05

Z

0

0.005

0.01

0.015

0.02

u

ymax

(m)

MC MC-SD ML-MC

(9)

4) 3D Numerical simulations

|u

maxy

|(mm)

MC-simulations

(10)

Conclusion

By using sensitivity information and multi-level methods with polynomial chaos expansion we demonstrate that computational workload can be reduced by one order of magnitude over commonly used schemes

Implementation: DOLFIN [Logg et al. 2012] and chaospy [Feinberg and Langtangen 2015]

Ipyparallel and mpi4py to massively parallelise individual forward model runs across a cluster

Partially-intrusive Monte-Carlo methods to propagate uncertainty

Références

Documents relatifs

To tackle large dimensions, other methods have been devised that are based on a non-independent sampling: Markov chain Monte Carlo methods (MCMC).. The prototype of MCMC methods is

‣ By using sensitivity information (tangent linear approach/adjoint approach) and multi-level Monte Carlo methods we demonstrate that computational workload can be reduced by at

In a first time, we develop a sparse linear algebra framework which aims to provide task based parallel implementation of iterative methods used to solve sparse linear systems..

Partially-intrusive Monte-Carlo methods to propagate uncertainty: ‣ By using sensitivity information and multi-level methods with polynomial chaos. expansion we demonstrate

‣ By using sensitivity information and multi-level methods with polynomial chaos expansion we demonstrate that computational workload can be reduced by one order of magnitude

These methods only use the output of the forward model and sensitivity information (tangent linear models derived from UFL expressions) [1] and polynomial chaos expansion

When no bias was applied the films solely displayed the diffraction pattern of a spinel phase even if islands of Zn 1− y Fe y O monoxide were observed by electron

Une étude in-vivo a montré que l’extrait BuOH des feuilles et des tiges d’O acanthium et S junceum respectivement, possède une activité analgésique, avec un pouvoir de