• Aucun résultat trouvé

´E m i l e B o r e l ( 1 8 7 1 – 1 9 5 6 )

N/A
N/A
Protected

Academic year: 2022

Partager "´E m i l e B o r e l ( 1 8 7 1 – 1 9 5 6 )"

Copied!
16
0
0

Texte intégral

(1)

Novemb er 3, 2009 Khon Ka en Univers it y.

Numb er Theo ry Da ys in KKU

http ://202.28.94.202/math/thai/

D iscrete math ematics and D iophantine Problems

Michel W alds chmidt

Institut de Math ´ematiques de Jussieu & CIMP A http ://www.math.jussieu.fr/ miw/

1/62

Abs tract

One of the first goa ls of Diophantine Analysis is to decide whether a given numb er is rational, algeb raic or else transcendental. Such a numb er ma y b e given by its bina ry or decimal expan sion, by its continued fraction expansion, or by other limit pro cess (sum of a series, infinite pro duct, integrals. ..). Language theo ry provides sometimes convenient to ols fo r the study of numb ers given by expansions. W e survey some of the main recent results on Diophantine problems related with the complexit y of w ords.

2/62

´Emile B orel (1871–1956)

!

Les probabilit ´es d´enomb rables et leurs appl ications arithm ´etiques, P alermo Rend. 27 , 247-271 (1909). Jahrbuch Databas e JFM 40.0283.01 http ://www.emis.de/MATH/JFM/JFM.html

!

Sur les chi ff res d´ecima ux de 2 et divers probl `emes de probabilit ´es en cha ˆınes , C. R. Acad. Sci., P aris 230 , 591-593 (1950). Zbl 0035.08302

´Emile B orel : 1950

Let g 2 b e an integer and x a real irrational algeb raic numb er. The expansion in base g of x should satisfy some of the la ws which are valid fo r almost all real numb ers (fo r Leb esgue’ s measure).

(2)

First decimals of 2 http://wims.unice.fr/wims/wims.cgi

1.41421356237309504880168872420969807856967187537694807317667973 799073247846210703885038753432764157273501384623091229702492483 605585073721264412149709993583141322266592750559275579995050115 278206057147010955997160597027453459686201472851741864088919860 955232923048430871432145083976260362799525140798968725339654633 180882964062061525835239505474575028775996172983557522033753185 701135437460340849884716038689997069900481503054402779031645424 782306849293691862158057846311159666871301301561856898723723528 850926486124949771542183342042856860601468247207714358548741556 570696776537202264854470158588016207584749226572260020855844665 214583988939443709265918003113882464681570826301005948587040031 864803421948972782906410450726368813137398552561173220402450912 277002269411275736272804957381089675040183698683684507257993647 290607629969413804756548237289971803268024744206292691248590521 810044598421505911202494413417285314781058036033710773091828693 1471017111168391658172688941975871658215212822951848847 .. .

5/62

First bina ry digits of 2 http://wims.unice.fr/wims/wims.cgi

1.011010100000100111100110011001111111001110111100110010010000 10001011001011111011000100110110011011101010100101010111110100 11111000111010110111101100000101110101000100100111011101010000 10011001110110100010111101011001000010110000011001100111001100 10001010101001010111111001000001100000100001110101011100010100 01011000011101010001011000111111110011011111101110010000011110 11011001110010000111101110100101010000101111001000011100111000 11110110100101001111000000001001000011100110110001111011111101 00010011101101000110100100010000000101110100001110100001010101 11100011111010011100101001100000101100111000110000000010001101 11100001100110111101111001010101100011011110010010001000101101 00010000100010110001010010001100000101010111100011100100010111 10111110001001110001100111100011011010101101010001010001110001 01110110111111010011101110011001011001010100110001101000011001 10001111100111100100001001101111101010010111100010010000011111 00000110110111001011000001011101110101010100100101000001000100 110010000010000001100101001001010100000010011100101001010 .. .

6/62

The fabulous des tiny of 2

Beno ˆıt Rittaud, ´Editions Le P ommier (2006).

http : //www.math.univ-paris13.fr/ rittaud/RacineDeDeux

7

Computation of decimals of 2

1 542 computed by hand by Ho race Uhler in 1951

14 000 decimals computed in 1967

1 000 000 decimals in 1971

137 · 10

9

decimals computed by Y asumas a Kanada and Daisuk e T ak ahashi in 1997 with Hitachi SR2201 in 7 hours and 31 minutes.

Motivation : computation of π .

8

(3)

Expansion in base g of a real numb er Let g b e an integer 2 . Any real numb er x has an expansion which is unic if x is irrational

x = a

−k

g

k

+ ·· · + a

1

g + a

0

+ a

1

g

1

+ a

2

g

2

+ ·· · where k is an integer 0 and where the a

i

fo r i ≥− k ( digits of x in the base g expansion of x ) b elong to the set { 0 , 1 ,. .. , g 1 } . W e write x = a

−k

·· · a

1

a

0

, a

1

a

2

·· ·

Examples : in base 10 ( decimal expans ion ): 2=1 , 41421356237309504880168872420 .. .

and in base 2 ( bina ry expansion ): 2 = 1 , 0110101000001001111001100110011111110 .. .

9/62

Complexit y of the g –a ry expansion of an irrational algeb raic real numb er

Let g 2 b e an integer. ´E. Bo rel (1909 and 1950) : the g –a ry expansion of an algeb raic irrational numb er should satisfy some of the la ws sha red by al mos t all numb ers (with resp ect to Leb esgue ’s measure). Rema rk : no numb er satisfies all the la ws which are sha red by all numb ers outside a set of measure zero, b ecause the intersection of all these sets of full measure is empt y ! !

x∈R

R \{ x } = .

Mo re precise statements by B. Adamczewski and Y. Bugeaud.

10/62

First conjecture of ´Emile B orel

Conjecture 1 ( ´E. Bo rel ). Let x b e an irra ti ona l algeb raic real numb er, g 3 a p ositive integer and a an integer in the range 0 a g 1 . Then the digit a o ccurs at leas t once in the g –a ry expansion of x . Co rolla ry . Each given sequence of digits should o ccur infinitely often in the g –a ry expansion of any real irrational algeb raic numb er . (consider p ow ers of g ). F or instance, Bo rel ’s Conjecture 1 with g =4 implies that each of the four sequences (0 , 0) , (0 , 1) , (1 , 0) , (1 , 1) should o ccur infinitely often in the bina ry expansion of each irrational algeb raic real numb er x .

The state of the art

There is no explicitly kno wn example of a triple ( g , a , x ) , where g 3 is an integer, a a digit in { 0 ,. .. , g 1 } and x an algeb raic irrational numb er, fo r which one can claim that the digit a o ccurs in finitely often in the g –a ry expansion of x .

(4)

Kurt Mahler

Kurt Mahler (1903 - 1988) F or any g 2 and any n 1 , there exist algeb rai c irrational numb ers x such that any blo ck of n digits o ccurs infinitely often in the g –a ry expansion of x .

13/62

Simply no rmal numb ers in bas e g

A real numb er x is called simply no rmal in base g if each digit o ccurs with frequency 1 / g in its g –a ry expansion. F or instance the decimal numb er

0 , 123456789012345678901234567890 .. .

is simply no rmal in base 10 . This numb er is rational :

= 1 234 567 890 9 999 999 999 = 137 174 210 1 111 111 111 ·

14/62

No rmal numb ers in bas e g

A real numb er x is call ed no rmal in base g or g –no rmal if it is simply no rmal in base g

m

fo r all m 1 .

Hence a real numb er x is no rmal in base g if and only if, fo r any m 1 , each sequence of m digits o ccurs with frequency 1 / g

m

in its g –a ry expansion.

15

No rmal numb ers

A real numb er is called no rmal if it is no rmal in any base g 2 . Hence a real numb er is no rmal if and only if it is simply no rmal in any base g 2 .

Conjecture 2 ( ´E. Bo rel ). Any irrational algeb raic real numb er is no rmal.

Almost all real numb ers (fo r Leb esgue ’s mea sure) are no rmal.

Examples of computable no rmal numb ers have b een constructed ( W. Sierpinski 1917, H. Leb esgue 1917, V. Becher and S. Figueira 2002), but the kno wn algo rithms to compute such exampl es are fairly complicated ( “ridiculously exp onential” , acco rding to S. Figueira ).

16

(5)

Example of no rmal numb ers

An example of a 2 –no rmal numb er ( Champ erno wne 1933, Bailey and Crandall 2001) is the bina ry Champ erno wne numb er , obtained by the concatenation of the sequence of integers

0 . 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 .. .

= "

k≥1

k 2

−ck

with c

k

= k +

k

"

j=1

[log

2

j ] .

S. S. Pillai (1940), Collected pap ers edited by R. Balas ub ramanian and R. Thangadurai , (2009 or 2010).

17/62

F urther examples of no rmal numb ers

(Stoneham Numb ers .. .) : if a and g are cop rime integers > 1 , then "

n≥0

a

−n

g

−an

is no rmal in base g . Reference : R. Stoneham (1973), D.H. Bailey , J.M. Bo rw ein , R.E. Crandall and C. P omerance (2004).

18/62

Cop eland – Erd˝ os

0 . 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 .. .

P aul Erd¨ os (1913 - 1996) A.H. Cop el and and P . Erd˝ os (1946) : a no rmal numb er in base 10 is obtained by concatenation of the sequence of prime numb ers

Infinite w ords

Let A b e a finite al phab et with g elements.

W e shall consider infinite w ords w = a

1

.. . a

n

.. . A facto r of length m of w is a w ord of the fo rm a

k

a

k+1

.. . a

k+m−1

fo r some k 1 .

The complexit y p = p

w

of w is the function which counts, fo r each m 1 , the numb er p ( m ) of distinct facto rs of w of length m .

Hence 1 p ( m ) g

m

and the function m '→ p ( m ) is non–decreasing.

Acco rding to Bo rel ’s Conjecture 1, the complexit y of the sequence of digits in base g of an irrational algeb raic numb er should b e p ( m )= g

m

.

(6)

Sturmian w ords

Assume g =2 , sa y A = { 0 , 1 } .

A w ord is p erio dic if and only if its complexit y is b ounded.

If the complexit y p ( m ) a w ord w satisfies p ( m )= p ( m + 1) fo r one va lue of m , then p ( m + k )= p ( m ) fo r all k 0 , hence the w ord is p erio dic. It follo ws that a non–p erio dic w has a complexit y p ( m ) m +1 .

An infinite w ord of minimal complexit y p ( m )= m +1 is called Sturmian ( Mo rse and Hedlund , 1938).

Examples of Sturmian w ords are given by 2 –dimensional billia rds.

21/62

Sturm and Mo rse

Jacques Cha rles F ran¸ cois Sturm (1803 - 1855) Ha rold Calvin Ma rs ton Mo rse (1892 - 1977)

22/62

The Fib onacci w ord Define f

1

=1 , f

2

=0 and, fo r n 3 (concatenation) : f

n

= f

n−1

f

n−2

.

Leona rdo Pisano Fib onacci (1170 - 1250) f

3

= 01 , f

4

= 010 , f

5

= 01001 , f

6

= 01001010 ,. ..

The Fib onacci w ord

w = 0100101001001010010100100101001001 .. .

is Sturmian .

F or each m 1 , there is exactly one facto r v of w of length m such that b oth v 0 and v 1 are facto rs of w of length m +1 .

23

The Fib onacci w ord 0100101001001010010100100101001001 .. . is Sturmian

00100 ) 0 00 001 0010 00101 * 01 010 0100 01001 * 0101 01010 1 10 100 1001 10010 * 101 1010 10100

24

(7)

T rans cendence and Sturmian w ords

S. F erenczi, C. Mauduit , 1997 : A numb er whose sequence of digits is Sturmian is transcendental. Combinato rial criterion : the complexit y of the g –a ry expansion of every irrational algeb raic numb er satisfies

lim inf

m→∞

( p ( m ) m ) = + .

T o ol : a p –adic version of the Thue–Siegel–Roth-Schmidt Theo rem due to Ridout (1957). Reference : Y uri Bilu ’s Lecture in the Bourbaki Semina r, Novemb er 2006 : The many faces of the Subspace Theo rem [after Adamczewski, Bugeaud, Co rvaja, Zannier. ..] http : //www.math.u-bordeaux.fr/ yuri/publ/subspace.pdf

25/62

Complexit y of the g -a ry expans ion of an algeb raic numb er

Theo rem ( B. Adamczewski, Y. Bugeaud, F. Luca 2004). The bina ry compl exi ty p of a real irrational algeb raic numb er x satisfies lim inf

m→∞

p ( m ) m =+ .

Co rolla ry (Conjecture of A. Cobham , 1968). If the sequence of digits of an irrational real numb er x is automatic , then x is transcendental.

26/62

Automata

A finite automaton consists of the input alpha b et A , usually the set of digits { 0 , 1 , 2 , .. ., g 1 } ; the set Q of states, a finite set of 2 or mo re elements, with one element called the initial state i singled out ; the transition map Q × A Q , which asso ciates to every state a new state dep ending on the current input ; the output alphab et B , together with the output map f : Q B .

Automata : reference

Jean-P aul Allouche and Je ff rey Shallit Automatic Sequences : Theo ry , Applications, Generalizations, Camb ridge Universit y Press (2003).

http ://www.cs.uwaterloo.ca/ shallit/asas.html

(8)

Example : p ow ers of 2

The sequence of bina ry digits of the numb er "

n≥0

2

2n

=0 . 1101000100000001000 ·· · =0 . a

1

a

2

a

3

.. .

with

a

n

= # 1 if n is a p ow er of 2 , 0 otherwise

is automa tic : A = B = { 0 , 1 } , Q = { i , a , b } , f ( i )=0 , f ( a ) = 1 , f ( b )=0 ,

!

0

!

0

!

0

i

1

−− −− a

1

−− −− b !

1

29/62

Automatic sequences

Let g 2 b e an integer. An infinite sequ ence ( a

n

)

n≥0

is said to b e g –automatic if a

n

is a finite-state function of the base g rep resentation of n : this means that there exists a finite automaton sta rting with the g –a ry expansion of n as input and pro ducing the term a

n

as output.

A. Cobham , 1972 : Automatic sequences have a complexit y p ( m )= O ( m ) .

Automatic sequences are b et w een p erio dicit y and chaos. They o ccur in connection with ha rmonic analysis, ergo dic theo ry , fractals, F eigenbaum cascades, quasi–crystals.

30/62

Automatic sequences and theo retical physics

J.P . Allouche and M. Mendes-F rance : computation of physical constants of an Ising mo del in one dimension involvi ng an automatic dis tribution. Reference : J-P . Allouche and M. Mignotte , Arithm ´etique et Automates , Images des Math ´ematiques 1988, Courrier du CNRS Suppl ´ement au N

69, 5–9.

Ising mo del : to study phase transition in sta tistical mechanics : Reference : Rapha ¨el Cerf , Le mo d`ele d’Ising et la co existence des pha ses , Images des Math ´ematiques (2004), 47–51. http ://www.spm.cnrs-dir.fr/actions/publications/IdM.htm

31

P ow ers of 2 (continued)

The complexit y p ( m ) of the automatic sequen ce of bina ry digits of the numb er "

n≥0

2

2n

=0 . 1101000100000001000 ·· ·

is at most 2 m :

m = 1 2 3 4 5 6 ·· · p ( m ) = 2 4 6 7 9 11 ·· ·

32

(9)

Prouhet–Thue–Mo rse sequence

The automaton !

01

−− −− !

0

i a −− −−

1

avec f ( i ) = 0 , f ( a ) = 1 pro duces the sequence a

0

a

1

a

2

.. . where, fo r insta nce, a

9

is f ( i )=0 , since 1001[ i ] = 100[ a ] = 10[ a ] = 1[ a ]= i . This is the Prouhet–Thue–Mo rse sequence , where the n +1 -`eme term a

n

is 1 if the numb er of 1 in the bina ry expansion of n is o dd, 0 if it is even. The Prouhet–Thue–Mo rse numb er is $

n≥0

a

n

2

−n

.

33/62

The Baum–Sw eet sequence

The Baum–Sw eet sequen ce . F or n 0 define a

n

=1 if the bina ry expansion of n contains no blo ck of consecutive 0 ’s of o dd length, a

n

=0 otherwis e : the sequence ( a

n

)

n≥0

sta rts with

1 1 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 0 1 0 .. .

This sequ ence is automatic, asso ciated with the automaton

!

10

−− −− !

0

i a

1

−− −− b −− −−

0

!

1

with f ( i )=1 , f ( a ) = 0 , f ( b )=0 .

34/62

The Rudin–Shapiro sequence

The Rudin–Shapiro w ord aaabaabaaaabbbab .. . . F or n 0 define r

n

{ a , b } as b eing equal to a (resp ectively b ) if the numb er of o ccurrences of the pattern 11 in the bina ry rep resentation of n is even (resp ectively o dd).

Let σ b e the mo rphism defined from the monoid B

on the alphab et B = { 1 , 2 , 3 , 4 } into B

by : σ (1) = 12 , σ (2) = 13 , σ (3) = 42 and σ (4) = 43 . Let

u = 121312421213 .. .

b e the fixed p oint of σ b egining with 1 and let ϕ b e the mo rphism defined from B

to { a , b }

by : ϕ (1) = aa , ϕ (2) = ab and ϕ (3) = ba , ϕ (4) = bb . Then the Rudin-Shapiro w ord is ϕ ( u ) .

P ap er folding sequence If you fold a long piece of pap er, alw ays in the same direction, and then you unfold it, you get tw o kind of edges, which you enco de with 0 or 1 . This gives rise to a sequence

1101100111001001 .. .

which sa tisfies

u

4n

=1 , u

4n+2

=0 , u

2n+1

= u

n

and which is pro duced by the automaton !

0

!

10

−− −− b !

1

i

0

−− −− a !

0

−− −−

1

c !

1

with f ( i )= f ( a )= f ( b ) = 1 , f ( c ) = 0 .

(10)

The Fib onacci numb er is not automatic

Cobham (1972) : the frequency of each letter in an automatic w ord is a rational numb er.

Consequence : the Fib onacci w ord

010010100100101001010 .. .

is not automatic.

The frequency of the letter 0 (resp. of the letter 1 ) is 1 / Φ (resp. 1 / Φ

2

), where Φ = (1 + 5) / 2 is the Golden Ra tio an irrational numb er.

37/62

Complexit y of the expansion in bas e g of a real irrational algeb raic numb er

Theo rem ( B. Adamczewski, Y. Bugeaud, F. Luca 2004 ). The bina ry complexit y p of a real algeb raic irrational numb er x satisfies lim inf

m→∞

p ( m ) m =+ .

Co rolla ry (conjecture of A. Cobham (1968)) : If the sequence of bina ry digits of a real irrational numb er x is automatic, then x is a transcendental numb er.

38/62

T rans cendence of automatic numb ers

In other terms Theo rem ( B. Adamczewski, Y. Bugeaud, F. Luca , 2004 – conjecture of A. Cobham , 1968) : The sequence of digits of a real algeb raic irrational numb er is not automatic. T o ol : W.M. Schmidt Subspace Theo rem.

39

Liouville numb ers and exp onent of irrationalit y

An exp onent of irrationalit y fo r ξ R is a numb er κ 2 such that there exists C > 0 with % % % % ξ p q % % % % C q

κ

fo r all p q Q .

A Liouville numb er is a real numb er with no finite exp onent of irrationalit y. Liouville’s Theo rem. Any Liouville numb er is transcendental. In the theo ry of dynamical systems ,a Diophantine numb er (o r a numb er satisfying a Diophantine condition ) is a real numb er which is not Liouville . References : M. Herman, J.C. Y o ccoz.

40

(11)

Irrationalit y measures fo r automatic numb ers

B. Adamczewski and J. Cassaigne (2006) – Solution to a Conjecture of J. Shallit (1999) : A Liouville numb er cannot b e generated by a finite automaton .

F or instance fo r the Prouhet–Thue–Mo rse–Mah ler numb ers

ξ

g

= "

n≥0

a

n

g

n

(where a

n

=0 if the sum of the bina ry digits in the expansion of n is even, a

n

=1 if this sum is o dd) the exp onent of irrationalit y is 5 .

41/62

Indep endence of expans ions of algeb raic numb ers

F ollo wing Bo rel , the sequ ences of bina ry digits of tw o numb ers lik e 2 and 3 should lo ok lik e ra ndom sequences. One ma y ask whether these sequences of digits b ehave lik e indep endent random sequences. B. Adamczewski and Y. Bugeaud rema rk that this is true fo r almost all pairs of real numb ers (using the Bo rel-Cantelli Lemma), they suggest that this prop ert y should hol d fo r any base g and pa ir of irrational numb ers, unless they have ultimately the same sequences of digits.

42/62

F urther trans cendence results on g –a ry expansions of real numb ers

J-P . Allouche and L.Q. Zamb oni (1998).

R.N. Risley and L.Q. Zamb oni (2000).

B. Adamczewski and J. Cassaigne (2003).

Christol, K amae, Mendes -F rance, Rauzy The result of B. Ada mczewski, Y. Bugeaud and F. Luca implies the follo wing statement related to the w ork of G. Christol, T. Kamae, M. Mend `es-F rance and G. Rauzy (1980) : Co rolla ry . Let g 2 b e an integer, p b e a prime numb er and ( u

k

)

k≥1

a sequence of integers in the range { 0 ,. .. , p 1 } . The fo rmal p ow er series "

k≥1

u

k

X

k

and the real numb er "

k≥1

u

k

g

−k

are b oth algeb raic (over F

p

( X ) and over Q , resp ecti vely) if and only if they are rational.

(12)

The Prouhet–Thue–Mo rs e sequence

Let ( a

n

)

n≥0

b e the Prouhet–Thue–Mo rse sequence. The series

F ( X )= "

n≥0

a

n

X

n

is algeb raic over the field F

2

( X ) :

(1 + X )

3

F

2

+ (1 + X )

2

F + X =0 .

This pro duces a new pro of of Mahler’s result on the transcendence of the numb er "

n≥0

a

n

g

−n

.

45/62

F urther trans cendence results

Consequences of Nesterenk o 1996 result on the transcendence of values of theta series at rational p oints.

The numb er "

n≥0

2

−n2

is transcendental ( D. Bertrand 1997 ;

D. Duverney , K. Nis hiok a, K. Nishiok a and I. Shiok aw a 1998)

F or the w ord

u = 01212212221222212222212222221222 .. .

generated by 0 '→ 012 , 1 '→ 12 , 2 '→ 2 , the numb er η = "

k≥1

u

k

3

−k

is transcendental.

46/62

Complexit y of the continued fraction expansion of an algeb raic numb er

Simila r questions ari se by considering the continued fraction expansion of a real numb er instead of its g –a ry expansion.

Aleksandr Y ak ovlevich Khinchin (1894 - 1959) Op en question – A.Y a. Khintchin (1949) : are the pa rtial quotients of the continued fraction expansion of a non–quadratic irrational algeb raic real numb er b ounded ?

47

T rans cendence of continued fractions

J. Liouville , 1844

´E. Mail let , 1906, O. P erron , 1929

H. Davenp ort and K.F. Roth , 1955

A. Bak er , 1962

J.L. Davison , 1989

48

(13)

T rans cendence of continued fractions (continued)

M. Que ff ´elec, 1998 : transcendence of the Prouhet–Thue–Mo rse continued fraction .

P . Lia rdet and P . Stambul , 2000.

J-P . Allouche, J.L. Davis on, M Que ff ´elec and L.Q. Zamb oni , 2001 : transcendence of Sturmian or mo rphic continued fractions .

B. Adamczewski, Y. Bugeaud, J.L. Davison , 2005 : transcendence of the Rudin–Shapiro and of the Baum–Sw eet continued fractions.

49/62

Op en Problems

Give an example of a real automatic numb er x > 0 such that 1 / x is not automatic.

Sho w that log 2 = "

n≥1

1 n 2

−n

is not 2 -automatic.

Sho w that

π = "

n≥0

& 4 8 n +1 2 8 n +4 1 8 n +5 1 8 n +6 ' 2

4n

is not 2 -automatic.

50/62

Problems dealing with no rmal numb ers ( T. Rivoal

Give an explicit example of an irrational real numb er which is simply no rmal in base g and such that 1 / x is not simply no rmal in base g .

Give an explicit exa mple of an irrational real numb er which is no rmal in base g and such that 1 / x is not no rmal in base g .

Give an explicit example of an irrational real numb er which is no rmal and such tha t 1 / x is not simply no rmal.

51

Other op en problem

Let ( e

n

)

n≥1

b e an infinite sequence on { 0 , 1 } which is not ultimately p erio dic. Is–it true that one at least of the tw o numb ers "

n≥1

e

n

2

−n

, "

n≥1

e

n

3

−n

is trans cendental ?

Acco rding to Bo rel , th e second numb er should b e transcendental, since it is irrational and has no digit 2 in its base 3 expansion.

52

(14)

Liouville numb ers

Liouville’s Theo rem. fo r any rea l algeb raic numb er α there exists a constant c > 0 such that the set of p / q Q with | α p / q | < q

−c

is fini te.

Liouville ’s T heo rem yields the transcendence of the value of a series lik e $

n≥0

2

−un

, provided tha t the sequence ( u

n

)

n≥0

is increasing and satisfies lim sup

n→∞

u

n+1

u

n

=+ .

F or instance u

n

= n ! sa ti sfies this condition : hence the numb er $

n≥0

2

−n!

is transcendental.

53/62

Thue–Siegel–Roth Theo rem

Axel Thue (1863 - 1922) Ca rl Ludwig Siegel Klaus F riedrich Roth (1925 – ) F or any real algeb raic numb er α , fo r any ( > 0 , the set of p / q Q with | α p / q | < q

2−"

is fi nite.

54/62

Consequences of Roth’s Theo rem

Roth ’s Theo rem yields the transcendence of $

n≥0

2

−un

under the w eak er hyp othesis lim sup

n→∞

u

n+1

u

n

> 2 .

The sequence u

n

= [2

θn

] satis fies this condition as so on as θ > 2 . F or example the numb er "

n≥0

2

3n

is trans cendental .

55

T rans cendence of $ n 0 2 2 n

A stronger result follo ws from Ri dout ’s Theo rem, using the fact that the denominato rs 2

un

are p ow ers of 2 : the condition

lim sup

n→∞

u

n+1

u

n

> 1

su ffi ces to imply the transcendence of the sum of the series $

n≥0

2

−un

.

Since u

n

=2

n

satisfies this condition, the transcendence of $

n≥0

2

2n

follo ws (Kempner 1916).

Ridout ’s Theo rem. fo r any real algeb raic numb er α , fo r any ( > 0 , the set of p / q Q with q =2

k

and | α p / q | < q

1−"

is finite.

56

(15)

Consequence of Ridout’s Theo rem

Let x =0 . a

1

a

2

.. . b e the bina ry expansion of a real algeb raic irrational numb er x (0 , 1) . F or n 0 set

* ( n ) = min { * 0; a

n+$

/ =0 } .

Then * ( n )= o ( n )

F or the numb er $

n≥0

2

2n

the sequence of digits ha s * (2

n

)=2

n

.

Main to ol of Adamczewski and Bugeaud : Schmidt ’s subspace Theo rem.

57/62

Schmidt’s subspace Theo rem (s implest version)

For x =( x

0

,. .. , x

m−1

) Z

m

, define | x | = max {| x

0

| ,. .. , | x

m−1

|} .

W.M. Schmidt (1970) : For m 2 let L

0

,. .. , L

m−1

be m indep endent linea r fo rms in m va riables with complex algeb raic co e ffi cients. Let ( > 0 . Then the set { x =( x

0

,. .. , x

m−1

) Z

m

; | L

0

( x ) ·· · L

m−1

( x ) | | x |

−"

} is contained in the union of finitely many prop er subspaces of Q

m

.

Example : m =2 , L

0

( x

0

, x

1

)= x

0

, L

1

( x

0

, x

1

)= α x

0

x

1

. Roth ’s Theo rem. fo r any real algeb raic numb er α , fo r any ( > 0 , the set of p / q Q with | α p / q | < q

2−"

is finite.

58/62

Schmidt’s subspace Theo rem – Several places

For x =( x

0

,. .. , x

m−1

) Z

m

, define | x | = max {| x

0

| ,. .. , | x

m−1

|} . W.M. Schmidt (1970) : Let m 2 b e a p ositive integer, S a finite set of places of Q containing the infinite place. F or each v S let L

0,v

,. .. , L

m−1,v

be m indep endent linea r fo rms in m va riables with algeb raic co e ffi cients in the completion of Q at v . L et ( > 0 . Then the set of x =( x

0

,. .. , x

m−1

) Z

m

such that (

v∈S

| L

0,v

( x ) ·· · L

m−1,v

( x ) |

v

| x |

−"

is contained in the union of finitely many prop er subspaces of Q

m

.

Consequence : Ridout’s Theo rem

Ridout ’s Theo rem. F or any real algeb raic numb er α , fo r any ( > 0 , the set of p / q Q with q =2

k

and | α p / q | < q

1−"

is finite.

In Schmidt ’s Theo rem tak e m =2 , S = { , 2 } , L

0,∞

( x

0

, x

1

)= L

0,2

( x

0

, x

1

)= x

0

, L

1,∞

( x

0

, x

1

)= α x

0

x

1

, L

1,2

( x

0

, x

1

)= x

1

.

For ( x

0

, x

1

)=( q , p ) with q =2

k

, w e have | L

0,∞

( x

0

, x

1

) |

= q , | L

1,∞

( x

0

, x

1

) |

= | q α p | , | L

0,2

( x

0

, x

1

) |

2

= q

1

, | L

1,2

( x

0

, x

1

) |

2

= | p |

2

1 .

(16)

Mahler’s metho d fo r the transcendence of $ n 0 2 2 n

Mahler (1930, 1969) : the function f ( z )= "

n≥0

z

2n

satisfies f ( z

2

)+ z = f ( z ) fo r | z | < 1 .

J.H. Lo xton and A.J . van der P o orten (1982–1988).

P .G. Beck er (1994) : fo r any gi ven non–eventually p erio dic automatic sequence u =( u

1

, u

2

,. .. ) , the real numb er "

k≥1

u

k

g

−k

is transcendental, provided that the integer g is su ffi ciently la rge (in terms of u ).

61/62

Mo re on Mahler’s metho d

K. Nishiok a (1991) : algeb raic indep endence measures fo r the values of Mahler’s functions.

F or any integer d 2 , "

n≥0

2

−dn

is a S –numb er in the classification of transcendental numb ers due to. .. Mahler .

Reference : K. Nishiok a , Mahler functions and transcendence, Lecture Notes in Math. 1631 , Sp ringer V erlag, 1996.

Conjecture – P .G. Beck er, J. Shallitt : mo re generally any automatic irrational real numb er is a S –numb er.

62/62

Références

Documents relatifs

Mme BERNON commente le bilan de l'exercice incendie qui s'est déroulé le 12 septembre 2016 : un bon déroulement a été constaté.. L'évacuation s'est faite normalement et dans

Si les conditions du th6orbme sont remplies, les xq, coefficients de % nous donnent une solution du syst6me... ARKIV FOR

We next observe two interesting facts about Baire sets that hold for some impor- tant, but special, spaces.. Example 3.4 shows that both conclusions may fail in a

Here, where a sample function is (in part) a derivative, it becomes a right derivative after imposition of right continuity. An exchange of correspondence with

Some further general remarks on algebras with a Hilbert space structure are given in this paper (sec.. The verifications are left to the reader.. ARKIV FOR

Our smooth- ness condition precludes the possibility of an equation with double characteristics having non-singular characteristics or of a surface being strongly

The following criterion, usually referred to as Dynkin's criterion, will satisfy in the cases we shall consider... ARKIV FfR

« Cela nous a permis de créer une écriture architectu- rale propre à chaque entité qui présente des façades particulières, des variations dans les rapports entre les pleins et