• Aucun résultat trouvé

A R K I V F O R M A T E M A T I K B a n d 5 n r 2 8 1 . 6 4 1 2 3 C o m m u n i c a t e d 1 4 O c t o b e r 1 9 6 4 b y ~ A R A L D C R A M I ~ R a n d L X N ~ C $ ~ R T C A R ~ E S O N

N/A
N/A
Protected

Academic year: 2022

Partager "A R K I V F O R M A T E M A T I K B a n d 5 n r 2 8 1 . 6 4 1 2 3 C o m m u n i c a t e d 1 4 O c t o b e r 1 9 6 4 b y ~ A R A L D C R A M I ~ R a n d L X N ~ C $ ~ R T C A R ~ E S O N"

Copied!
42
0
0

Texte intégral

(1)

ARKIV FOR MATEMATIK Band 5 nr 28

1.64 12 3 C o m m u n i c a t e d 14 O c t o b e r 1964 b y ~[ARALD CRAMI~R a n d LXN~C$~RT CAR~ESON

Limit t h e o r e m s for sampling f r o m finite populations

BY BENGT ROSI~N

Introduction and s,Tmmary

L e t ~ = {al, a s ... aN) be a finite population, i.e. a finite set of real numbers.

X 1, X2 . . . X~ is a sample f r o m ~ drawn with or without replacement. I n the first case we speak of independent observations from ~ a n d in the latter simply of a r a n d o m sample f r o m 0~. A m a j o r problem in sampling t h e o r y can be for- m u l a t e d thus: Compute, in t e r m s of x, the probability distribution of the r a n d o m variable o0(X 1, X 2 .. . . . X,), where ~ is a given function of n variables. I t is seldom t h a t a neat closed f o r m solution of the above p r o b l e m can be found.

However, one can often give an a p p r o x i m a t e solution b y considering a limit procedure.

For independent observations a n a t u r a l limit procedure is obtained b y letting the n u m b e r of observations tend to infinity. There is a wealth of limit results for different functions ~0.

F o r samples drawn w i t h o u t replacement the a b o v e limit procedure looses meaning as the population will be exhausted after a finite n u m b e r of drawings.

A fruitful limit procedure, t r e a t e d b y m a n y authors, is obtained b y considering a double sequence of r a n d o m variables:

Xll, )/12 . . . Xln, is a r a n d o m sample f r o m ~r 1 X~I, Xk~ . . . Xk~k is a r a n d o m sample from ~

: : :

One can now consider t h e limiting behavior of various sample functions

~0k(Xkl . . . . ,Xk,k), when k-->oo. The present p a p e r is devoted to a s t u d y of limit problems associated with the above scheme. The problems a n d the results are in m a n y respects analogous to those in the case of independent observations.

I n w h a t follows we give a brief s u m m a r y of the contents of the p a p e r a n d we describe the problems considered b y referring to analogue problems for in- dependent observations.

Chapter 1 contains definitions a n d some basic elementary results concerning sampling from finite populations.

Chapter 2 treats strong a n d weak laws of large numbers. There is given an analogue of the law of the iterated logarithm.

27:5 383

(2)

B. SOS~N, Limit theorems for sampling

C h a p t e r 3 is e x p o s i t o r y a n d in it we h a v e collected results a b o u t stochastic processes, t h a t will be used in t h e later chapters.

I n C h a p t e r 4 we consider central limit problems. Especially we give an ana- logue of t h e so-called invariance principle (cf. D o n s k e r [3]).

C h a p t e r 5 is concerned w i t h t h e b e h a v i o r of empirical distributions a n d em- pirical fractiles.

Chapter 1. Definitions and fundamentals about sampling from finite populations l. Definitions a n d s o m e elementary results

B y a d-dimensional /inite population zt we m e a n a finite set of d-tuples of real numbers.

~ ( a 1, a s . . . as}, a, = (a(~ ~) .. . . , a(~d)), where ,(o _, are real n u m b e r s

i = 1 , 2 . . . d, ~ = 1 , 2 . . . N.

W e will often o m i t t h e w o r d finite a n d s a y s i m p l y a p o p u l a t i o n ~t. T h e letter N will t h r o u g h o u t be used t o d e n o t e population size. T h e population mean vector /x. a n d population covariance matrix [ao] i, ~, = l, 2 ... d, are defined as follows

N

1 ~=la, a n d [ a o ] = - -

1 N

Z (a, --/x,)' (a, -- ~t=) N - 1 ~=1

('stands for m a t r i x transposition). F o r 1-dimensional populations we write a~

instead of q n for t h e ToTulation variance, a n d we also define t h e q u a n t i t y

N

D~ = Z ( a , - j u - ) S = ( N - 1)a]. (1.1) T h e population distribution is t h e p r o b a b i l i t y measure on R ~ (d-dim. E u c l i d e a n space) o b t a i n e d b y giving each element in ~t t h e mass N -t. W e denote t h e corresponding distribution function, which we assume to be r i g h t continuous, b y F . (x). T h e centered distribution [unction F~ (x) is defined as F= c (x) = F . (x-/x~).

N e x t we define a r a n d o m sample X1, X s . . . X , f r o m zt. L e t ~N be t h e set of all p e r m u t a t i o n s to = ( i l , i 2 . . . iN) of t h e n u m b e r s 1, 2 . . . . , N. T h e p r o b a b i l i t y P on ~ N is defined b y P ( ( 9 ) = ( N ! ) - 1 for all r L e t T . be t h e m a p p i n g

N d

T , :~N---> X~=I R, (X s t a n d s for Cartesian product) given b y : for to = (il, i s . . . iN) is T . (co) = (a~,, at . . . aiN).

This v e c t o r v a l u e d function T~ on ~N we call a random permutation (r.p.) of the elements in ~t a n d we d e n o t e its c o m p o n e n t s b y T n = (X v X 2 .. . . . XN). B y a random sample o/size n, (n <~ N), f r o m ~t we m e a n t h e r a n d o m v e c t o r (X1, Xg. .. . . . Xn).

I n t h e sequel we will denote t h e sample space s i m p l y b y ~ instead of ~N. F o r f u t u r e reference we list some simple properties of r a n d o m samples.

(3)

ARKIV FOR MATEMATIL B d 5 nr 2 8

Exchangeability: XI, X~ . . . XN are exchangeable, i.e. t h e i r j o i n t distribution is i n v a r i a n t u n d e r p e r m u t a t i o n of t h e X ' s .

Duality principle: W e define S o = 0 a n d S, = X x + Xg. § + X,, v = 1, 2 , . :., N . L e t ix, i2 . . . i , b e chosen a m o n g 1, 2 . . . N . I f p~ = 0 , t h e n t h e t w o r a n d o m v e c t o r s (St,, S, . . . S~,) a n d ( - SN-q, -- SN-i ... -- SN-~,) h a v e identical distribu- tions.

X 1, X21 .... XN are d e p e n d e n t a n d it will be essential for us to be able to h a n d l e t h e dependence. W h e n dealing w i t h conditioning concepts, we will follow L o 6 v e ' s n o t a t i o n s , [14] C h a p t e r V I I . T h e following result is i n t u i t i v e l y obvious a n d easily p r o v e d .

Conditioning principle: T h e m i x e d conditional d i s t r i b u t i o n of Xn+a, X = ~ . . . X=+m, n + m ~ N , g i v e n X:,X~ . . . Xn, ~s a t t h e p o i n t w identical w i t h t h e di- s t r i b u t i o n of a r a n d o m s a m p l e of size m f r o m t h e p o p u l a t i o n ~t'(~o) = ~t w i t h the ele- m e n t s X 1 (co) . . . X~ (co) r e m o v e d .

W e will use s t a n d a r d p r o b a b i l i t y notations, p a r t i c u l a r l y E X a n d a~(X) for r e s p e c t i v e l y e x p e c t a t i o n a n d v a r i a n c e of the r a n d o m v a r i a b l e X . W e will also use s t a n d a r d a b b r e v i a t i o n s as r.v. = r a n d o m variable, p r . = p r o b a b i l i t y , d.f. = distribution f u n c t i o n , c.f. = c h a r a c t e r i s t i c function, i.d. = i n distribution. Some additional a b b r e v i a t i o n s are i n t r o d u c e d in connection w i t h definitions. Concerning t h e n o t a t i o n s for well-known d i s t r i b u t i o n s such as n o r m a l , binomial, etc. we follow Witks [20]. Fina]ly, we will use [a] t o d e n o t e t h e integral p a r t of a, a n d A ' for t h e c o m p l e m e n t of t h e set A.

T h e following result is well-known, see e.g. W i l k s [20] p. 222.

Theorem 1.1. X1, X 2 .. . . . XN is a r.p. o/ the elements in ~, which has covariance matrix [~j]. Sn = X : + . . . + Xn, n = 1, 2 .... , N. Then

E ( S . - rig,,)' ( & - rig,,) = n ( 1 - n / N )

[,~.].

(1.2) Particularly, when ~t is I-dimensional,

~ ( # . ) = n(1 - n / N ) ,,~,

(1.3)

W e shall m a i n l y be concerned w i t h 1-dimensional populations, a n d f r o m n o w on z s t a n d s for a 1-dimensional p o p u l a t i o n , unless otherwise s t a t e d .

2. Limit procedures for sampling flora finite populations

As s t a t e d in t h e introduction, we shall consider a limit p r o c e d u r e b a s e d on a sequence { ~}1 of popu]ations. W e a s s u m e once a n d for all t h a t a p o p u l a - tion sequence has t h e p r o p e r t y t h a t N~k--> oo w h e n k--> c~. W h e n we are dealing w i t h a sequence { k}x, we will u s u a l l y write /~k, ~ , Nk, Fk etc., i n s t e a d of /z~k, a~k' N ~ , F ~ etc.

Yf oo ~ o o

A sequence { k}l is said to be degenerate if it contains a subsequence { k,},:, for which F~, (x) converges i.d. to t h e d i s t r i b u t i o n w i t h pr. 1 in x = 0 .

L e t {~t~}~ be given. T h e n Xkl, X~2 . . . XkNk will t h r o u g h o u t t h e p a p e r s t a n d

(4)

u. ROS~N, Limit theorems for sampling

for a r.p. of t h e e l e m e n t s in ztk. L e t {qkn}, n = l , 2 , . . . , N k , k = l , 2 . . . . be a double sequence of r.v.'s, w h e r e qkn is a function of Xkl . . . Xkn, i . e . ~ k . = q~k,(X~l, Xk2 . . . . , X~n). W e s a y t h a t {~0k,} converges in pr. t o t h e c o n s t a n t c for t h e sample size sequence (sss.) {nk}~ if for e v e r y e > 0 it holds t h a t lim~ P([ ~0gnt - c [ ~> e) = 0, a n d we s a y t h a t {~0~n} converges strongly in pr. to c f o r t h e sss. {n~}~ r if for e v e r y e > 0 it holds t h a t limk P(maxnk<n<N k [ ~0zn -- c ] .>/e) = 0. Obviously, s t r o n g convergence in pr. for t h e sss. {nk}F implies convergence in pr. for t h e s a m e sss.

3. Relations between s a m p l i n g w i t h a n d w i t h o u t replacement

W e shall here consider t w o t y p e s of relations b e t w e e n s a m p l i n g with a n d w i t h o u t r e p l a c e m e n t , which c a n be r o u g h l y described as follows.

1. I f t h e p r o p o r t i o n s a m p l e d f r o m ~ is small, t h e n s a m p l i n g w i t h a n d w i t h o u t r e p l a c e m e n t are a l m o s t equivalent.

2. W h e n a s a m p l e is d r a w n w i t h o u t r e p l a c e m e n t t h e r e is a t e n d e n c y t h a t the s a m p l e s u m lies closer t o its m e a n t h a n it does w h e n t h e s a m p l e is d r a w n w i t h r e p l a c e m e n t .

W e shall give s o m e e x a c t f o r m u l a t i o n s of these heuristic s t a t e m e n t s .

L e m m a 3.1. {ztk}• is a population sequence /or which Fk--> F i.d. when k--> oo and X k l . . . XkN~ is a r.p. o/ the elements in gk. T h e n it holds /or every fixed m that the distribution o/ X k l . . . Xw~ converges i.d. when k--> oo to the distribu- tion o/ m independent r.v.'s each having d./. F .

Proo/. L e t x 1 ~ x 2 <-~ . . , <<. x m, Then P ( X k l <<. x , . . . Xkm <~ xm) 9 Nk ~k (Xl). ~ k Fk (x2) -- 1 N~ Fk (xm) --

= ( m - 1)__>F(xl)F(x2 ) ... F(xm) i.d. (3.1)

Nk N e - 1 "'" N k - - ( m - - 1)

as according to o u r general a s s u m p t i o n hmk Nk = oo. B e c a u s e of t h e exchange- ability of t h e X ' s (3.1) holds w i t h o u t t h e a b o v e restriction on t h e x~'s, a n d t h e l e m m a is p r o v e d .

T h e following t h e o r e m due t o H o e f f d i n g [12] is a precise f o r m u l a t i o n of 2.

Theorem 3.1. Xl, X 2 .. . . . Xn a n d X~, X~ . . . X'n are samples /rom xe, drawn re- spectively without and with replacement, Sn = X 1 + . . . + X n and S'~ = X~ + . . . + X'~.

I / ~ is continuous and convex it holds that Ev2(S~)<.E~v(S'~).

As p o i n t e d o u t b y Hoeffding, t h e t h e o r e m can be used to get inequalities for probabilities concerning s u m s of samples f r o m finite p o p u l a t i o n s f r o m inequalities concerning s u m s of i n d e p e n d e n t r.v.'s.

L e m m a 3.2. Let v2(x ) be positive, nondecreasing and c o n v e x / o r x > O. Sn and S'~ are de/ined in Theorem 3.1. T h e n it holds /or ~ > 0 that

(5)

The l e m m a is Theorem 3.1.

ARKIV FOR MATEMATIK. B d 5 nr 28 E ' E '

P ( I S ~ - E S ~ I > ~ a ) < < . [ ~ ( ~ ) ] -1 ~ ( ] S , - S , I ) .

an immediate consequence of T e h e b y c h e v ' s inequality a n d

Chapter 2. On laws o f large n-tubers

4. I n e q u a l i t i e s concerning s a m p l e s u m s

L e t X1, X 2 .. . . . X N be a r.p. of the elements in the population ~ , S 0 = 0 a n d S , = X I + . . . + X , , n = I , 2 . . . N . We denote sample m e a n S , / n b y - ~ . Our a i m is to prove analogues of the strong a n d weak law of large numbers. We s t a r t b y deriving two estimates of P(max~>~ [ b~ S~ ] >/~) where b0, b 1 .. . . . bN are real numbers. The m e t h o d used to obtain these estimates is similar to t h a t used b y H s and R~nyi in [10].

Lemma 4.1. ~ is a p o p u l a t i o n with m e a n 0 and variance a ~, and (bv}~ a se- quence o/ real numbers. Then, it holds /or every e > 0 and /or n = 1, 2 . . . /V

P ( m a x i b v s v i ~ > e ) - - 1 - ~ b~+ X

v>~n ~ E 2 ~=n v = n + l

+ ]

where a + = m a x (0, a).

Proo/. ~ W e consider instead P(max~<~ I c~ S~ [ ~ e) for c~ = b N - v . L e t s > 0 be given. We define the following r.v.'s. F o r v = 0 , 1,2 . . . N, Iv is the indicator function of the event (max~,<vc~ St < e ) and Hv = 1 - L. L is the first (if any) ~ 2 2 index v for which c 2 S 2 ~> e z. T h e n

n - 1

e 2 H ~ < ~ L (c~+1 Sv+l - c y S t ) . 2 2 ~ 2 (4.1)

v=0

To prove (4.1) we first assume t h a t max,,<. c 2 S~ < e 2. Then the left-hand side of (4.1) is 0, while the right-hand side is c2S2>~0, a n d (4.1) holds. I f max,,<~

2 2

cv S~ >/e 2, the left-hand side is e 2 a n d the right-hand side equals 2 2 CL SL ~ e~ and (4.1) is proved. B y integrating (4.1) over ~ we obtain

e 2 P ( m a x 2 2 ~> e2) c; S~ = e 2 E H ~ ~ ~ (c~+i S~+1 - cv 2 2 2 S~) P (do)).

v~<n v=O I v : l )

(4.2) L e t for v = 0, 1, 2 , .... N B~ be the algebra of subsets of ~ induced b y S 0, S 1 .. . . . Sv.

F r o m the conditioning principle (p. 385) it readily follows t h a t E By X~+I = - S , / ( N - v ) . Using this result, a n d some well-known computational rules for con- ditioning (see e.g. Lo~ve [14]) we get

E I~v $ 2 + 1 = E By S 2 + 2 E ~v ~*~v X~+I + ]~Bv v 2

= ~ + 2 s v ( - s J ( ~ v - v)) ~- ~ . . . Y ~ +1 - & ( 1 - - ~ 2 / ( N - v)) + ' ~ ~,2 ( 4 . 3 )

387

(6)

e. aOS~.N, Limit theorems for sampling

F r o m (4.2), (4.3) and the obvious inclusion (A = 1)6 B~ we get e 2 P (max 2 ~ >~ e2) e , 8 ~ < ~ J E ~ 2 ( C , + I $7,+1 2 - c; ,S,) P (do)) 9 2

v<~ n v = O ( l v = l )

= ~ S~

c~+1

1 - - - c ~ P ( d e o ) + ~ C~+ 1 2 E ~ X r + 1 . ~ 2

I, ffio g ( h , = l ) ~ s,~O h , = l )

The above inequality is o n l y unsharpened if we first change q, = (c,+, (1 - 2 2 / ( N - ~)) - c~) into ~+

and t h e n enlarge the domain of integration to ~ in the integrals in b o t h sums.

This observation together with L e m m a 1.1 yields

._1 ( ( § )+._,

2 2 ~2 2 2 2 2

c,,+1 EX~+I e 2 P ( m a x c , S ~ > ~ e ~)< ~. EM, c,+1 1 - - - c , +

I,~<n I,=0 7,=0

= ~ 1 - ~ d + 2 ~ 1 - ~L, 1 - y _ _ ~ - ~ , .

~,=I v = l

(4.4)

The inequality in L e m m a 2.1 now follows from (4.4) a n d the formula P ( m a x

Ib~&l

> ~ e ) = P ( m a x

Ib~--,,s,,l~>e),

l,>~n v < ~ N - - n

(4.5)

which is an immediate consequence of the duality principle. Thus the l e m m a is completely proved. The following result is a special case.

Lemma 4.2. ~r is a population with mean 0 and variance a 2. Then it holds/or every e > 0 and /or n = 1, 2, ..., N.

P(max,>~n ILl~>e)~<--e2 1 - , , = n ~ = ~ - C ( n , N ) where C(n, N) <. 1 + n -1.

Proo[. The inequality follows readily from L e m m a 4.1 b y p u t t i n g b , = v -1 I t is easily checked t h a t (b~-i ( 1 - 2u -1)-bY) + = 0 for b,=7, -1. The upper bound for C ( n , N ) can be derived thus. When n = N we can p u t C ( n , N ) = O . F o r n - - l , 2 . . . N - 1 we h a v e

N - I

C(n, N) = n ( N - l) ( N - n) -1 ~ v-2. (4.6)

N o w

N - I N - - 2

2 "-2 < I/n' + ~. I/v (, + I) = I/n z + I / n - I / ( N - I).

y = n ~ = n

(7)

ARKIV F6R MATEMATIK. Bd 5 nr 28 We insert the last estimate into ( 4 . 6 ) a n d get C(n, N ) <~ ( N - n - 1 ) / ( N - n) + ( N - 1 ) / n ( N - n ) < , l + n -1 a n d L e m m a 4.2 is proved.

N e x t we give an estimate of P(max~>~n [b~ S~[/> ~) in terms of E[Sn[.

Lemma 4.3. zr is a population with mean 0 and {b,}g is a sequence o/ non- negative numbers such that {ub~}~ -1 is non-increasing. T h e n it holds /or every e > 0 a n d /or n = l , 2 . . . N

P ( m a x [ b , , S v [ > l e ) < . t - l b n E [ S n [ . (4.7)

v~r/.

Proo[. The proof will r u n almost parallel to t h a t of L e m m a 4.1 a n d again we first prove the dual result. L e t c, = bN_~, Thus cv ( N - ~ ) is non-decreasing for ~ = 1, 2 . . . N - 1 . F o r fixed e > 0 we define the following r.v.'s. F o r ~ = 0 , 1 . . . N, /~ is the indicator of the event (maxt<~ c t Sr < e) a n d H~ = 1 - / ~ . L is the first (if any) index ~ for which c~S~>~e. Then the following inequality, where a - = min (0, a), holds

n - 1

e l l , < - c . S Z + ~

/~(C~+lSv+l--CvSv).

(4.8)

v=0

I f max,<n c~ S, < s the left-hand side in (4.8) is 0, while the right-hand side is

- c, S ; + c, S~ >10. I f m a x , < . c~ Sv ~> ~ the left-hand side is e a n d the right-hand side - cn S~ + CL SL >~ e. Thus (4.8) is proved. Let, as before, •, be the algebra of events which are determined b y conditions on So, S 1 .. . . . S~. Then ( L = 1)cig~.

B y integrating (4.8) over ~ we get

Tf

e P ( m a x c~ S,/> e) = eEHn <~ - cn E S ; + (C~+l S~+I - c~ S,) P (deo)

~<n v=0 d (Iv=l)

= - cn E S ~ + ~ (c~+1E~'S~+I - c~ S,) P (do)) 9 ffi0 Iv~l)

= - cn E S ~ + ~ C~+l c, S~P(do)). (4.9)

~=o N -- y Z,=l)

I n the last step we used the formula E s v S ~ + I = [ ( N - (~,+ 1 ) ) / ( N - ~ ) ] . S v , which follows from the conditioning principle. F r o m the assumption t h a t c~ ( N - r ) is non-decreasing, it follows t h a t c~+1 [(N - (v + 1))/(N - u)] - c~ >~ 0. I f we show t h a t t h e integrals in t h e last sum in (4.9) are non-positive we can cancel the sum a n d end up with the inequality

P (max,<n e~ S~ >i e) ~ ~ - 1 Cn E S n = (2 E) - 1 c n E [ S n I. (4.m) T h e equality in (4.10) is a consequence of the assumption t h a t g has m e a n 0.

For fixed e > 0 we define for t = 0 , 1 , 2 . . . N the events A t as follows: A t = (St>~e a n d S r < s for r < t ) . Then it holds t h a t At E Bt a n d further

(8)

n. nOS]~N,

Limit theorems for sampling

(Iv = 0 ) = 5 At where At and As are disjoint for

t # s

(4.11)

t = 0

R e m e m b e r i n g t h a t zr is assumed to h a v e m e a n 0, we get from (4.11)

t:o

~ P(d~)

=.t~o - ~ - - t L StP(dto)>~ s

and (4.10) is completely proved. B y considering

- S o , - S 1, ...,

from (4.10)

P ( m i n

c~S,<~ - t ) < ( 2 s ) - l c~E[Sn[.

--SN,

we obtain (4.12) Addition of (4.10) a n d (4.12) yields

y~n

(4.13)

B y use of the duality principle we get from (4.13) P ( m a x

Ib, )=P(max Ib, S~_~]>~ ~)

t,>/n v<~n

~<~N- n

a n d the proof of L e m m a 4.3 is concluded. W h e n applying the l e m m a we will need an estimate of

E ISn [.

The n e x t l e m m a gives such a n estimate.

Lemma 4.4.

2(x) is an even /unction such that /or x >~ 0 is 2(x)/x positive and non-decreasing, while 2(x)/x 2 is non-increasing. For a population with mean 0 it then holds that

N - n 89

E ]~n] ~ - l (n) [(~-~-~ E~(X1)-~ (E~(X1)) 2) +E~(X1)] ,

where 2-1(y) is the inverse o/ 2(x) /or x>~O.

Proo/.

We fix n a n d define for v = l , 2 . . .

N , X : = X ~

if

IX~l<~2-1(n)

a n d X: = 0 otherwise, Y~ = X, - X~ a n d S: = X~ + . . . + X:. E v i d e n t l y X~, X~ . . . X~ is a r.p. of the elements in the population ~', which is obtained from ~r b y re- placing all elements in ~r with absolute value > ~-1 (n) b y zeros. F r o m Sehwarz's inequality we get

E]SnI<~E[S;]+E] ~ Y,]<~ Ev~E~ +nEIY1].

(4.14)

(9)

ARKIV FOR MATEMATIK. B d 5 nr 28 N o w

E S ~ = a s (S'~) + (ES~) ~= n(1 - n / N ) (1 + 1 / / ( N - 1)) ( E X 1 2 - (EX~) 2)

q- n ~ ( E X 1 ) ~ = n(/V - n) (z~ - 1) -1 E X 1 2 q- n l V ( n - 1) (N - 1) -1 ( E X 1 ) 2. (4.15) As 2(x)/x ~ is non-increasing for x>~0 we h a v e

f [ X2 j~- 1 (n)2

EX'~* = ~(x~)" 2(x) dF. (x) <. E2(X1).

z l <.).-~ (n) n

(4.16) F r o m g . = O a n d the assumption t h a t 2(x)/x is non-decreasing for x~>0 it follows t h a t

I f x 2(x)dF.(x) <~ "~-l(n) E2(X1). (4.17)

IEX'xl = ] E Y l l = ~(x)" n

We now obtain the desired, inequality b y inserting the estimates ( 4 . 1 6 ) a n d (4.17) into (4.15) and (4.14). Thus the l e m m a is proved.

5. Convergence of sample means

Thus prepared we shall prove some results a b o u t convergence of sample means.

7/: r162

We shall consider population sequences { k}k=l. As usual we denote a r.p. of the elements in gk b y Xkl, Xk2 . . . Xk~. Furthermore, we will use the nota- tions S~ ) = Xkl + . . . + Xkn, n = 1, 2 . . . Nk, S(0 ~) = 0 a n d X ~ ) = S~)/n.

Theorem 5.1. { k}l is a sequence o/ populations. A su//ieient condition /or X(n k) -la~ to converge strongly to 0 in pr. /or the ass. {nk}~' is that

I / {~t~}~ satis/ies

lim o~k (n~l--_hr~ 1) = 0 . (5.1)

k - - ~ oo

[,

lim sup | x ~ dF~ (x) = O, (5.2)

A - - ~ k J I z I > A

then condition (5.1) is necessary already /or ~(nk)-la ~ to converge in pr. to O /or the sss. {nk}F.

Proo[. I t is no loss of generality to assume t h a t /t~ = O for all k a n d we will do so. The sufficiency p a r t of the theorem is an immediate consequence of L e m m a 4.2. I n the proof of the necessity p a r t we will use the following simple lemma.

LemmA 5.1. I / /or some integer 1 it holds that S~)--> 0 in pr. when k-->oo then X k l --> O in pr. when k --> cr

Proo/. Assume the l e m m a to be false, i.e. there are positive numbers e and and a subsequence {k~}~l such t h a t

P(IXk~ll

~>e)~>2~), while

391

(10)

B. ROS~r~, Limit theorems for sampling

P(I S}~) I >~ e) - * 0 w h e n u -~ oo. (5.3) T h e n a t least one of t h e inequalities P(X~I >~ e)>i Q a n d P(X~I <~- e)>~ Q holds for a n irdinity of ~'s. W e assume t h e first inequality. I n o t h e r words, there

7~ oo

is a sequence { k~}~=l so t h a t a p o r t i o n ~>~ of t h e elements in 7tk~ are >~e.

Thus,

P(S~ ~) >/I e) ~> ~ ~ --~ 0 ~ > 0 w h e n ~ --~ oo. (5.4) N o w (5.3) a n d (5.4) c o n t r a d i c t each o t h e r a n d t h e l e m m a is proved.

We also p r o v e t h e necessity p a r t of T h e o r e m 5.1 b y contradiction. W e assume its n e g a t i o n t o hold, i.e.

X ~ ) ~ 0 in pr. w h e n k--*oo (5.5)

a~(n;l-NT~l)>~>O, k = l , 2 . . .

(5.6)

To g u a r a n t e e (5.6) we m a y h a v e t o restrict t o a subsequence of {n~}~o. However, t o simplify writing we use t h e s a m e indices. F r o m (5.2) it follows t h a t a~ ~ C <

a n d t h u s f r o m (5.6) t h a t s u p ~ n k < c~. T h u s there is a subsequence {k~}~l such t h a t n~, = l . F r o m (5.5) a n d L e m m a 5.1 we conclude t h a t Xk, l--~0 in p r o b a b i l i t y w h e n v--~ c~. This is, however, incompatible w i t h (5.6) w h e n (5.2) holds, because

P(I x ~ l I >/=) >I P(=

< Ixk,11 <~ A) >1 A -~

f~<i~i<Ax2dFk,

(x)

(5.7)

B y choosing A so large t h a t

J'I~I>A x~

dFk, (x) < ~/6 a n d e ~ < 9 / 6 we g e t f r o m (5.6) a n d (5.7) as soon as N~, ~> 2

P(I

>/A -2 (Q/2 -- Q/6 -- ~o/6) > 0

a n d we h a v e o b t a i n e d a contradiction. T h u s T h e o r e m 5.1 is c o m p l e t e l y proved.

Corollary. {~k}F is a p o p u l a t i o n sequence which is n o n - d e g e n e r a t e a n d satisfies condition (5.2). T h e n a n e c e s s a r y a n d sufficient condition for X(~ ) - / z k to con- verge s t r o n g l y in pr. t o 0 f o r t h e sss. {nk}~ is t h a t

lim nk = + o o . ( 5 . 8 )

k

ak ~< C < oo. F r o m t h e non-degenerateness Proo/. F r o m (5.2) we conclude t h a t 2

of {~k}~ there follows t h e existence of ~ > 0, e > 0 a n d a /r o so t h a t P(IXkl

] ~

e) ak >~ ~e s for k >/]c o a n d t h e corollary is n o w a n i m m e d i a t e

> 0 for k > / k 0. T h e n 2 consequence of c o n d i t i o n (5.1).

(11)

XRKXV rOn MATEMATIK. B d 5 nr 28 W e shall consider t h e following proposition, which we d e n o t e (A).

(A) :X'~ ) - / z k converges s t r o n g l y in pr. to 0 for e v e r y sss. {nk}~ 0, which sa- tisfies nk--* co w h e n k --> oo.

T h e a b o v e corollary says t h a t (5.2) is a sufficient condition for (A) to hold.

I n t h e n e x t t h e o r e m we w e a k e n this condition.

T h e o r e m 5.2.

Necessary and su]]icien$ /or (A) to hold is that

{~k}~ ~

satisfies

lim s u p ( ] x ] dF~ (x) = 0. (5.9)

A.-*oo k J lxl>A

Proo[.

W i t h o u t loss of g e n e r a l i t y we a s s u m e t h a t #~ = 0 for all k. F i r s t we p r o v e t h e sufficiency p a r t . L e m m a t a 4.3 a n d 4.4 yield

P (max ] X(~k) [ >~ e) < e-l.;t-a (nk) [ ( Nk-nk I,>>-nk "lgk -~'~_ I B~(Xkl)"I'- (E~ (Xkl)) $ )89

+E~t(Xkl) . (5.10)

]

T h e sufficiency of condition (5.9) n o w follows f r o m (5.10) if we show t h a t (5.9) g u a r a n t e e s t h e existence of a f u n c t i o n 2(x) which fulfils t h e conditions of L e m m a 4.4 a n d in a d d i t i o n

~-l(x)/x -->0

w h e n x - + co (5.11)

sup

E~(Xkl)

< co. (5.12)

k

F r o m (5.9) it readily follows t h a t supk E [ X k t [ < co a n d t h a t t h e r e exists a se- A oo

quence { t} t=l, At Z o o such t h a t

sup

fj

]xldF~(x)<3 -t sup

EIXkx],

t = l , 2 . . .

k x]>At k

oo CO

L e t { t}t=l satisfy 1) T t S w h e n t-->co. 2)vt,.<2t, t = l , 2 . . . 3) ( ~ t + l - T t ) /

(At+l-At)<vtAi -1,

t = l , 2 . . . Define for x>~0 ~(x) to be t h e function t h e g r a p h of which is t h e linear i n t e r p o l a t i o n b e t w e e n t h e points (0, 0), (A 1, 7 0, (A s, ~ ) . . . I t is easily checked t h a t ~ ( x ) = Ix[ e(lxD satisfies t h e conditions in L e m m a 4.4 a n d in (5.11), (5.12). T h u s t h e sufficiency of (5.9) is proved.

N e x t we p r o v e t h e necessity of (5.9). R e m e m b e r t h e a s s u m p t i o n t h a t # k = 0 f o r all k. F i r s t we show t h a t if (A) is fulfilled, t h e n it holds for e v e r y e > 0 t h a t

V ( m a x

[X~/n

I >~ e) --> 0 if nk --* o~ w h e n k ---> co.

n>~nk

(5.13)

(5.13) follows f r o m t h e i n e q u a l i t y below:

P ( m a x

I X~n/n [/> e)

= P ( m a x

I (S~) - S~)-~)/n I >~ e)

n>~nk n ~ n k

\ n>~nk \ n ~ n k

(12)

B. ROStN,

Limit theorems for sampling

We shah give an indirect proof and we assume t h a t (A) and thus (5.13)are fulfilled, b u t not (5.9). Then, b y restricting to a subsequence of { k}l without introducing a new notation, there is a sequence of integers {Ak}F,

A ~ / ~ ,

such t h a t

. . . (5.14)

k = l , 2 We can also assume t h a t

P(I X~l [/> A~) -~ 0 when k -~ oo P(I Xkl [/> Nk) = 0 for k >1 k 0,

(5.15) (5,16) because if (5.15) does not hold, then (5.13) cannot be fulfilled for

nk=Ak,

and if (5.16) does not hold (5.13) cannot hold for nk = [Nk/2].

We have for k>lk 0

P ( m a x I x ~ / , ~ l >~ l ) = l - P(I X ~ l < ~, ,~ = n~ . . . N~)

n ~ n ~ N~

= 1 - 1--[

P(Ix~l<,~llx~,l<~,~=n~

. . . n - l )

N~ ,v~ P([ x k , [ < n) - ( n - n~) >/1 1-I P([ Xk~ [ < n) Nk

= 1 - 1-I

. = . . ~v~ - (n - n~) . = . .

f ) }

=1-- I-I 1 - dFk(x)

> / 1 - e x p - ~

dFk(x)

n = m . x l ~ n I, n=nt, xl>/n

{ 1 -n~) P(s<~

Ix ,l < ~ + 1

,}

(5.17) /> 1 - e x p - s

I n the last step we used (5.16). B y virtue of (5.15), we can choose {nk}~ such t h a t

n~<~A~,k=l,2 ... nk-->oo,

and

nkP(IXkll>~Ak)-->'O

when k - + ~ . Then we get from (5.17) and (5.14)

lim p(max lX~/nl>~ l)>~ l - h m exp { - ~ A . ( s + l - n k ) ' P ( s < ] X ~ l l <s+ .~..

~> 1 - 1 i m exp 1 - f l ' x ' d F ~ ( x ) + n k P ( ] X k l [ > ~ A k ) } > ~ l - e - q > O . This result contradicts (5.13) and thus the necessity of (5.9) follows. Hence Theorem 5.2 is completely proved.

6. The law o f the iterated

logarithm

The sharpest result (under suitable conditions) about the asymptotic fluctua- tions of sample sums in the case of independent r.v.'s is the law of the iterated

(13)

ARKIV YOI[ MATEM&TIK. B d 5 nr 2 8 l o g a r i t h m . W e shall p r o v e a n analogue of this law a n d we shall first p r o v e s o m e l e m m a t a .

L e m m a 6.1. ~ is a population o/ size N a n d xd is o b t a i n e d / t o m z~ by removal o/ t elements. T h e n

a 2 , < , ( ~ ( N - 1 ) / ( N - t - 1 ) , t = l , 2 , . . . , N - 2 .

Proo/. W i t h o u t loss of g e n e r a l i t y we a s s u m e t h a t g = {al, a 2 . . . aN} h a s m e a n 0.

L e t ~ ' = (al, a~ . . . a~v-t}

N - t N N - 1

, 2 ~ ( N _ t _ l ) - i ~. 2 _

~ < ( N - t - 1 ) -1 ~ a~ a~ -- o'~ 2

O'y[.

9 =I ,=1 N - t - 1

a n d t h e l e m m a is p r o v e d . T h e n e x t l e m m a is t h e c o u n t e r p a r t of a well-known result for i n d e p e n d e n t r . v . ' s (see e.g. L o i r e [14] p. 248).

L e m m a 6.2. zc is a population with mean 0 and variance a 2, and x is a l~osi- rive number. T h e n

P ( m a x I S, ] ~> x) ~< 2 P (] S , I ~> x(1 - n / N ) - a V 2 n ) .

l < ~ < n

P r o @ F o r t = l , 2 . . . n A t is t h e e v e n t

(max,<,lS, l<x

a n d

Istl~>~).

B is the event d S . I >t ~(1 - n/~V) - . 2V~n). Let, as before, B, he the algebra of events defined b y conditions on X1, X 2 .. . . . Xt. F r o m t h e disjointness of A 1 .. . . . An a n d t h e f a c t At E Bt it follows t h a t

t = l t = l . t

(6.1)

According t o t h e conditioning principle (p. 385), t h e m i x e d conditional distribution of Sn, given Bt, is a t t h e p o i n t o9, equal t o t h e distribution of St (o9) + S'n-t, where S'n-t = X ~ + ... = X ~ - t a n d X~ . . . X'n-t is a r a n d o m s a m p l e f r o m t h e p o p u l a t i o n zd ( o 9 ) = g w i t h t h e e l e m e n t s X 1 (o9) . . . X t (o9) r e m o v e d . T h u s

n -- t ) 6~,(~) ,

E a t S n = S t 1 - ~ - S ~ a n d a 2 ( S , ] B t ) ( o g ) = 2 ( n - t ) ( 1 - ( n - t ) / ( N - t ) ) . L e m m a 6.1 yields

a 2 (S~ [ Bt) < (r 2 (n - t) (1 - (n - t ) / ( N - t)) ( N - 1 ) / ( N - t - 1) < n a 9 (6.2) F r o m T c h e b y c h e v ' s i n e q u a l i t y we g e t

(14)

B. ROSgN, Limit theorems for sampling

(6.3) When w e A r it holds t h a t ]St[>~x and thus

] E ~ ' S ~ ] ~ x ( 1 - ( n - t ) / ' ( N - O ) ~

x ( 1 - n / N ) . Combining this with {6.2) we get from {6.3) t h a t

when eo E A t then

P" (] S. ] >~ x ( 1 - n / N) - a V~n) ~ 89

(6.4)

We insert (6.4) into (6.1) and obtain

n

P ( B ) >t 89 t~=~= P ( A t ) i.e. t=l ~ P ( A t ) <<- 2 P ( B ) , which is the desired inequality, and Lemma 6.2 is proved.

Lemm~ 6.3. ~ = {a v a 2 .. . . . aN} is a population with mean O, variance a ~ and [ a , [ < M , ~ = l , 2 . . . N .

Then

~M

P r o o f This is a well-known inequality for independent r.v.'s (if a * stands for ordinary variance), see e.g. Lo~ve [14] p. 254. A scrutiny of the proof shows t h a t it is an inequality of the Tchebychev type based on a function which satisfies the conditions of Lemma 3.2. Thus the inequality carries over to sampling without replacement. The relation a ~ = N ( N - 1)-IEX~ only weakens the inequality.

Theorem 6.1. { ~}1 is a sequence o f populations, all having mean 0 and vari- ance 1 and all elements on an interval [ - M , M]. T h e n it holds for every e > 0 and every sequence {nk}~ ~ for which l i m , nk = oo, that

~?) )

l i m P m a x ~ < l + e --1. (6.5)

~--,~ \,>~n~ V2v log log v

Conversely, to a given sequence { k}l, which satisfies the above conditions, there exists a sequence (n~}~ with hm~ nk = oo, such that for every e > 0 it holds tha

lira p ( m a x 8~ *> > ~ l - e ) = 1 . (6.6) k ~ \,~n~ V ~ log log v

(15)

AIIKIY FOll MATI~.MATIK. B d 5 nr 28

Proo].

First we prove the direct part (6.5). After the preparation with the above lemmata the rest of the proof is an almost verbatim repetition of the proof of the analogue result for independent r.v.'s. Let 0 < e < 88 and 2 > 1. We define

Tt

= [~tt], t = l, 2 . . . . and the events

Ak, = (max S(~ k) >/(1 + e) 1/2

Tt

log log T t ) , k, t = 1, 2

...

l~<~<Tt+ 1

First we only consider t-values for which

Tt+l<~2-1eNk.

(As Nk--->~when k-+oo such t-values exist when k is large enough.) From Lemma 6.2 we get

otkt=P(Akt)<'-.2P([S~),+ll>.~(i+e) (1-2)1/2TtloglogTt- 2l/~t+l ).

As

Tt+l(Ttlog

log

Tt)-l--->O

when t--->oo, we have for sufficiently large t's

and from /.,emma 6.3 we conclude

c t ~ < 4 e x p { - ( 1 + 4 ) T-~+I l~ l~ Tt e 2

Tt

(1

Ml/2Ttl~176 2Tt+l Tt)}.

We assume t h a t 2 was chosen < 1 + e / 4 . Then it holds if t is sufficiently large

where U(2) is a constant depending on 2. We define t~ = max

(t[Tt <~nk)

and

t'~'=min (tlTt>~3-1eN~).

Then

t" tk

\.~<.~8-,~N. ]/2 v log log ~ t~t~

As t~, tends to infinity w i t h k it follows from (6.7) t h a t the sum in (6.8)tends to 0 when k-->oo. Thus, we have proved: If 0 < e < 8 8

nk<3-1eN~,

and nk-->oo when k --> oo, then

lira P ( max S~k) . _ ~ > l + e ) = 0 . (6.9) k-,~ \-~<~<a-,,N~ l/2 v log log v

From (6.9) one easily deduces t h a t

lira P [ max __

k ~ ~s6-,~N~<~<(s+l)6-~,N k I/2 ~,

S~

~ l + e

)

= 0 ,

log log

397

(16)

B. ROS~.N, Limit theorems for sampling

The direct p a r t of Theorem 6.1 now follows from (6.9) a n d (6.10). We shall prove the converse p a r t b y a reduction to the corresponding result for inde- pendent r.v.'s. We introduce a notation; X1, X2 . . . . are r.v.'s a n d S~ = X 1 + ... + X,.

Then A(n, m, e) stands for the event A(n, m, e) = (max..<<~<m S, (2 v log log y)- 89 >

1 - e ) . The pr. of A(n, m, e) depends on the distribution of the X ' s . W h e n the X ' s are assumed independent with the s a m e d.f. F we indicate the dependence on F b y writing Pp(A) a n d when s X ' s are sampled from the population we write P , ( A ) . The following proposition (B) is a consequence of the law of the iterated logarithm for independent r.v.'s

(B): L e t X p X 2 .. . . be independent copies of a r.v. X with d.f. F, which satisfies E X = O , a ( X ) = 1 a n d I X ] ~<M (with pr. 1). Then, for all positive num- bers e a n d (~ a n d a n y n a t u r a l n u m b e r m, there is an N, depending only on e, (~, m a n d M, such t h a t

P t (A(m, N, e)) >~ 1 - (~. (6.11)

L e t {et}• a n d {~t}~ be sequences such t h a t et"~O a n d r when t-->oo.

F r o m (B) there follows the existence of a sequence {mt}~ of integers, m t S ~ , such t h a t P~(A(mt, rot+x, et)) >~ 1 -(~t, t = 1, 2 . . . . if F satisfies the conditions in (B). We say t h a t a population g has p r o p e r t y Et if P,(A(mt, mr+l, et))>~ 1-2r)t.

Now let {g~}~* be the given population sequence. We claim t h a t for every fixed t only a finite n u m b e r of the ~ ' s lack p r o p e r t y Et. Assume the contrary.

Then, b y selecting a subsequence (without introducing a new notation) we can assume t h a t F k - - > F 0 i.d. when k-->oo and t h a t P~(A(mt, mt+l, e t ) ) < l - 2 ~ t . The event A(mt, mr+l,

et)

depends only on the finitely m a n y variables X x .. . . . Xmt+l"

Thus from L e m m a 3.1 we conclude t h a t PF,(A(mt, mt+l, et))=limk P,k(A(mt, mr+x, et))~< 1 - 2(~t, which yields a contradiction. Thus only finitely m a n y ztk's lack p r o p e r t y Et. L e t for t = l , 2 ... k ( t ) = m i n (/clTr, has p r o p e r t y Et, v>~lc) a n d let nk = mt when maxs<t k(s) ~</c < maxs<t+l ]C(8). I t is easily checked t h a t (6.6) holds for this sequence {nk}F a n d t h a t nk--> oo when k--> co. This concludes the proof.

Chapter 3. On stochastic processes with continuous sample paths 7. Generalities

We shall later s t u d y certain stochastic processesrelated to samples from finite populations, and especially convergence of such processes. We shall t h e n m a k e use of the general convergence theory for stochastic processes, worked out es- pecially b y P r o k h o r o v [18]. We give a brief exposition of some f u n d a m e n t a l concepts a n d results, a n d we follow closely P r o k h o r o v ' s ideas.

C[0, 1] is the metric space of all real-valued continuous functions on [0, 1], with the uniform metric. Points in C[0, 1] will be denoted x or x(t). B y a stochastic process on [0, 1] with continuous sample paths we m e a n a comple prob- ability measure P, defined on a a-algebra of sets in C[0, 1] including all closed sets, a n d which is inner regular with respect to closed sets, see def. on p. 162 in [18]. When / is a measurable m a p p i n g of C[0, 1] into a n o t h e r metric space S, we write p r for the measure on S, which is the forward t r a n s p o r t a t i o n of P

(17)

ARKIV FSR MATEMATIK. B d 5 n r 2 8 b y /, see [18], p. 163. W h e n / is real-valued we call it a f u n c t i o n a l of the process or a r.v. defined on the process. F o r a finite set M ; (tl, t ~ .. . . . tin), t, < t~+l, v = 1, 2 . . . m - 1, of points in [0, 1] we define t h e marginal distribution pM as the measure in R m which is i n d u c e d b y P a n d t h e m a p p i n g x--> (x(tl), x(t2) ...

X(tm)), x E C [0, 1]. A process is u n i q u e l y d e t e r m i n e d b y its m a r g i n a l distributions.

I t is a n o n t r i v i a l p r o b l e m t o determine if a given set of " m a r g i n a l " distribu- tions a c t u a l l y are t h e marginals of a process w i t h c o n t i n u o u s sample paths, see Lo~ve [14], T h e o r e m B, p. 517, a n d also P r o k h o r o v [18].

8. Wiener processes

W e will be m u c h c o n c e r n e d w i t h t h e stochastic processes k n o w n as Wiener processes a n d t i e d - d o w n (or conditional) Wiener processes. These processes are real Gaussian processes a n d can be characterized b y their m e a n value function M ( t ) = E X ( t ) a n d their covariance f u n c t i o n R ( s , t ) = C o v (X(t), X(s)). T h e ordi- n a r y Wiener process (with p a r a m e t e r (r 2) is defined b y M ( t ) = 0 a n d R(s, t)=

a 2 m i n (s, t). I t is well k n o w n t h a t this process has continuous sample paths, see e.g. Lobve [14], p. 547, a n d we c a n identify its restriction t o 0 ~ t ~ < 1 with a measure on C[0, 1]. This measure we denote W((r2).

L e t X(t) be a W i e n e r process w i t h p a r a m e t e r a ~. The tied-down Wiener pro- cess with t y i n g p o i n t T can be intuitively described as t h e process X(t) u n d e r t h e condition X ( T ) = 0. F o r m a l l y we define it b y M(t) = O, R(s, t) = a ~ s(1 - t/T), 0 ~< s ~< t ~< T. These processes also h a v e continuous sample p a t h s a n d we denote t h e measure on C [0, 1] corresponding to the p a r t 0 ~<t ~< 1 of t h e process b y W(a ~, T): We m a k e t h e n o t a t i o n a l c o n v e n t i o n t h a t W(a 2, ~ ) = W(a2). A treat- m e n t of these processes can be f o u n d in D o o b [5].

9. Convergence o f stochastic processes

P~, k = 1 , 2 . . . . a n d P are stochastic processes w i t h c o n t i n u o u s sample paths, i.e. pr. measures on C[0, 1]. W e s a y t h a t Pk converges (weakly) to P w h e n k--> c~, d e n o t e d Pk ~ P w h e n k --> oo, if

fcEo.1/(x)Pk(dx)--> fcEo,1/(x)P(dx ) when k-->

for e v e r y continuous, b o u n d e d f u n c t i o n a l [ on C[0, 1]. See definition on p. 164 in [18].

The suitability of this convergence c o n c e p t follows f r o m t h e n e x t lemma, which is c o n t a i n e d in T h e o r e m 1.8 in [18].

L e m m a 9.1. I / Pk =~ P and i~ / is a/unctional which is continuous almost every- where (P), then P~ --> p r i.d. when k --> oo.

The following c o n c e p t is crucial for characterization of w e a k compactness of families of pr. measures on C[0, 1]. T h e f a m i l y ~ = {P} is said t o be tight (to satisfy condition (~) in [18]) if for e v e r y e > 0 there is a c o m p a c t set Ks = C[0, 1]

(18)

B. ROSfiN, Limit theorems for sampling

such t h a t P ( K , ) > 1 - 8 . holds for all P E ~ (see p. 167 in [18]). The following result is contained in [18].

Theorem 9.1. Necessary and su//ieient /or Pk ~ P when k---> co is that 1. pM___> pM i.d. /or every marginal M .

2. {Pk)~ is tight.

I n order to apply the above theorem, one needs a manageable criterion for verification of tightness. The following criterion, usually referred to as Dynkin's criterion, will satisfy in the cases we shall consider.

Theorem 9.2. {Pk}F is a sequence o/ pr. measures on C[0, 1]. For (~ > 0 and A > 0 we de/ine

~p(A, 5 ) = h m sup Pk( m a x

[x(t)-x(T)l>~5).

(9.1)

k .--> oo O ~ < T ~ I - A T<~t<~T+A

Then, su//icient /or {Pk}~ to be tight is that

1. For every 8. > 0 there is a constant C~ such that

P~(Ix(O)l<C,)>~l-8.,

k = 1,2, . . . .

2. For every fixed ~ it holds that A-lv2(A, (~)-+0 when A-->0.

We indicate a proof (cf. L e m m a 2.3 in [18], and Particular case 1 ~ of Theorem A in 35.3, [14]). F o r (~ > 0 and A > 0 we define the following subsets of C[0, 1].

B(A, ~) = (~ II ~(t') - ~(t") I < ~ ~ I t ' - t"[ < A)

As (A, O) = (x l max

Ix(t)-x(sA)l<~),

s = 0 , 1 . . . [A-l].

8 A ~ t ~ ( s + l)A

For a n y positive numbers e and ~ there is a A o such t h a t Pk(B(A o, (~))>

1-8., k = l , 2 . . . To prove this we chose Ao such t h a t

and k 0 so t h a t

\r<~t<~r+A" ~ 3]

for k~>k o. Then it holds for k~>k 0

Pk (B(Ao, ~)) >~ 1 - ~--~o Pk ~ 8 > ~ l - - 2 ( [ A o - 1 ] + l ) v 2 Ao, ~ > 1 - - 8 . ,

(19)

ARKIV FfR MATEMATIK. Bd 5 nr 28 F u r t h e r there exist A~ > 0, k = 1, 2 . . . . so t h a t P~ (B(A~, (~)) > 1 - e. The propo- sition above now follows b y p u t t i n g A 0 = m i n (A0, A1 . . . A~0).

L e t e > 0 a n d O~',~0, v--~oo. There is a sequence A ~ ' ~ 0 , v--> oo, for which

Pk(B(A~,5~))>l-e.2-~,k,v=l,2

. . . Now consider

K=f'I~=IB(A~,O~).

The functions in K are equi-continuous with a common modulus of continuity given b y the linear interpolation between the points (A2, Ol),(A3,52), . . . . F u r t h e r

P(K)

> 1 - e a n d the t h e o r e m follows easily.

Chapter 4. Central limit problems 10.

Preliminaries

Analogues of the central limit t h e o r e m for sampling from finite populations h a v e been extensively studied. Among the works on the problem we mention Wald a n d Wolfowitz [19], Madow [15], Noether [17], tfoeffding [11], Motoo [16], Erd6s a n d Rdnyi [6], I-I~jek [8], a n d [9].

We state the problem we shall consider first in this chapter. As usual, Xk~ . . . . ,XkN k is a r.p. of the elements in gk, o = u , = X k 1 + . . . + X k , , l ~ <

n<-.N k,

k = 1, 2, . . . . F o r simplicity we write S,~ instead of --"k"q(k) S*,~ stands for the standardized sample sum

s * .~ = ( s . . - E S n . ) / a ( S . ) . (10.1)

The problem is to determine the class of possible limit distributions for S* and the conditions for convergence. I n Hhjek [9] there is given a complete treat- m e n t of the problem under the infinitesimality condition (N) defined in R e m a r k 1 to Th. 12.1. We shall consider the problem w i t h o u t assumption (N), b u t under the additional assumption, t h a t

0 < l i m

nk/Nk<,.lim nk/Nk<

1 (10.2) Our analysis will be based on the f u n d a m e n t a l L e m m a 2.1 in [8], a consequence

N k

of which we now state. L e t gk={ak,}~=l and let Ykl . . . YkNk be independent r.v.'s with the following two-point distributions

P(Y~,=ak~-I~k)=l-P(Yx,=O)=nk/N~,

v = l , 2 . . . Nk, k = l , 2 . . . . (10.3) We define

Z~k=

Y~I + ... + YkN k, k = 1, 2 . . . . a n d

Z* =Z~,/a(Z~,).

The distri- butions of S* a n d Z* are denoted respectively F * (x) a n d G* (x). The l e m m a n k n k n k

below is an immediate consequence of L e m m a 2.1 in [8].

, oo S G , lo0

Lemma 10.1.

I/ condition

(10.2)

is /ulfilled,

then

{F%}l and

( n k . f l

possess limit distributions simultaneously, and i/they have limit distributions these coincide.

Following H~jek we will derive results a b o u t the convergence of t %si b y

~G* )oo G* is a convolution of two-point distributions eonsidering the sequence t . # 1 . "k

a n d we s t a r t b y studying such distributions.

401

(20)

B. ROSb.N, Limit theorems for sampling

11. On convolutions of certain two-point distributions

We shall consider pairs (c,d) of sequences of real numbers, c={cl, c ~ . . . . }, d = {d 1, d 2 .. . . }. W e assume t h r o u g h o u t t h a t such sequences satisfy c 1 ~< cz < . . . < 0 a n d lim, c , = 0 , d 1~d~>~...>70 a n d lim, d , = 0 . I f a sequence c or d is given only for a finite n u m b e r of indices it is completed to an infinite sequence b y addition of zeros. B y I(e, d)l we m e a n the sequence we get b y arranging - c 1, - c 2 .. . . , d~, dz . . . . in decreasing order, a n d with (0, 0) we m e a n the pair in which b o t h sequences consist of only zeros. I t will be convenient to have a notation for componentwise convergence.

De/inition. (c(k), d(k)) :~ (c, d) when k -+ oo if limk G (k) = c~ and limk d, (k) = d , for u = 1 , 2 , . . . .

The following result is easily proved.

L e m m a 11.1. The set o/ pairs (c, d) /or which ~ (c~ + d~) <~ M < oo is compact under ~ convergence.

N e x t we define a class of two-point distributions. F o r 0 < 2 < 1 A (x; 2 ) i s the pr. distribution with pr. ( 1 - 2 ) in the point - ] / 2 / ( 1 - 2 ) a n d pr. 2 in the point ] / ( 1 - 2 ) / 2 . The corresponding c.f. ~v(t;2) is

~ ( t ; 2 ) = ( 1 - 2 ) exp { - i t V 2 / ( 1 - 2 ) } + 2 exp {it ] / O - ~ t ) / 2 } (11.1) Lemma 11.2. (c,d) is a pair /or which ~ ( c ~ +d~)< ~ and O < 2 < l . Then F(x;2, c,d)=[-I* A x; 2 ~ - I - I * A x - 2 , (11.2) converges. ( ~e a n d 1-I* stand for convolution and A(x/0; 2) is the d.f. with pr. 1 in x =0). The representation o/ F(x; 2, c, d ) a s a convolution o/ /actors A(x/c~; ~) and A (x/dr; 2) is unique in the /ollowing sense when (c, d) ~ (0, 0):

(i) I / 2=# 89 there are exactly t w o sets o/ parameters which yield the same F(x; 2, c, d), namely, F(x; ~, c, d) = F(x; 1 - 2, - d, - c).

(ii) I / ~ = 89 it holds that F(x, 89 c, d ) = F ( x , ~', c', d') i/ and only i/ 2 ' = 89 and

{(e',d')l=l(~,d) [.

Proo/. I n order to show t h a t (11.2) converges we show t h a t the corresponding product of e.f.'s

~o(t; 2, c, d) = ]~ ~0(c, t; 2)" f i ~o(d~ t; 2) (11.3)

v = l v = l

converges uniformly on every compact interval on the real axis. I t will be convenient to s t u d y ~o for complex arguments. E a s y eastimates yield t h a t

11 - ~(~; ~)l < c I~ I ~ i n . 4 )

(21)

IlIKIV FOR MATEMA~IKo B d 5 nr 28 holds on e v e r y c o m p a c t set in t h e c o m p l e x plane. T h e c o n s t a n t C depends on a n d t h e c o m p a c t set. A c c o r d i n g to t h e a s s u m p t i o n ~ (c, 2 + 2 d~) < r it follows f r o m (11.4) t h a t t h e p r o d u c t (11.3) converges u n i f o r m l y on e v e r y c o m p a c t set in t h e complex plane. T h u s ~(z; 2, c, d) is a n entire function. Especially w e h a v e u n i f o r m convergence of (11.3) o n e v e r y c o m p a c t interval on t h e real axis. T h u s q(t; 2,

c,d)

is a c.f. a n d F(x;~t, c, d) is a d.f.

To p r o v e t h e uniqueness p a r t we consider t h e zeros of v 2. F r o m t h e u n i f o r m convergence of (11.3) it follows t h a t t h e zeros of ~ are e x a c t l y those of the factors ~0(c~z;~) a n d ~0(d~z;~). T h e zeros of ~0(~z;~) are

z = ~ - ~ V ~ ( 1 - ] t ) [ ( 2 n §

n = 0 , __+1, --4-2 .. . . (11.5) Suppose we h a v e t h a t

F(x; ~, c, d) = Y(x; ~', c', d'),

where ~ (c~ + d~) < co a n d

~(c:2+d'~ 2)

< ~ . T h e u n i q u e correspondence between c.f.'s a n d d.f.'s yields t h a t (11.6) t h e n holds for all real z. B u t b o t h sides in (11.6) are entire f u n c t i o n s a n d t h u s (11.6) holds f o r all z.

v = l = . = =

(11.6) First we a s s u m e 0 < 2 < 89 a n d 0 < ~ ' < 89 B y e q u a t i n g t h e zeros of t h e left- a n d r i g h t - h a n d sides of (11.6), which are closest to t h e origin in t h e q u a d r a n t I m (z) ~> 0, Re (z) > 0, we g e t

c{ ~ l/t(1 - i) ( - ~r - i In {(1 - 2)/~}) = C1-1 ]/~-(1 - ~t') ( - a - i h {(1 - t')/~t'}).

T h u s c~ = l/)/(1 -- 1'} = Wt' (1 - 1'). In {(1 -- Jl')/1'}

Cl U~(1 - it) ]/~(1 - ) . ) In {(1 - Jt)/~t} '

which yields ~=)~' a n d c I = C 1 . B y considering t h e zeros closest t o t h e origin in t h e q u a d r a n t Ira(z)~<0, Re ( z ) > 0 we o b t a i n t h a t

dl =d'l.

N o w we c a n cancel t h e factors ~0(ClZ;~t ) a n d q(dlZ;2 ) in (11.6), r e p e a t t h e a r g u m e n t , a n d g e t t h a t c2 = c~ a n d d~ = d~ a n d so on. N e x t we a s s u m e 0 < 2 < 89 a n d 89 < ~t' < 1. Again, b y considering the zeros closest t o t h e origin in t h e q u a d r a n t R e ( z ) > 0, I m ( z ) > 0 for t h e right- a n d l e f t - h a n d sides of (11.6) we g e t t h a t

c ; * V ~ ( 1 - ~ ) ( - = - i In {(1 - ~ ) / ~ } ) = d F 1 V~; (1 - ~') ( ~ - i h { ( l - ~ ' ) / ~ ' } ) which yields 2 ' = 1 - ) , a n d d~ = - c r B y proceeding as a b o v e we o b t a i n t h a t a necessary condition for (11.6) to hold is t h a t

~ ' = 1 - ~

a n d

( c ' , d ' ) = ( - d , - c ) .

I t is easily checked t h a t this c o n d i t i o n is also sufficient. I n quite an analogous m a n n e r t h e proposition c a n be d e m o n s t r a t e d for 89 < ~t < 1 a n d 2 = 89 T h u s the l e m m a is proved. T h e following result is immediate.

L e m m a 11,3.

F(x; ~, c, d) has mean 0 and variance ~.~ (c,,§ 2

N e x t we p r o v e a convergence result.

(22)

B. ROSgN,

Limit theorems for sampUn$

Lemma ll.4. Fk(x) = F(x; 2k, c(k), d(k)), k = 1, 2 . . . . is a sequence o/distributions defined according to (11.2) /or which it holds that 0 < l i m ~ 2 k ~ < l i m k 2 k < l and

(i) The possible limit distributions /or Fk when k - - > ~ are those which can be written

N(O, 1 (c~ + d2,))~e i]* h ( x / c , ; ~)~e ~ * A(x/d~; 2) (11.7)

~=1 ~=I ~=I

where (c, d) satisfies ~ (c, + d~) ~< 1 and 0 < 2 < 1. N(/~, 2 a 2) is the normal distri- bution with mean la and variance r ~.

(ii) Necessary and sufficient for F~(x) to convergence i.d. to the distribution (11.7) when k ---> oo is

1. if (c, d) : (0, O) that (c(k), d(k)) =~ (0, O) when k --> oo.

2. i/ (c, d) :~ (0, O) and 2 :V 89 that 2 ~

(a) { k)l has at most the two limits points 2 and 1 - 2 .

(b) /or every subsequenee {k,}~=l for which lira, 2,, = 2 it holds that (c(k,), d(k,)):~

(c, d) and for every subsequenve /or which l i m , 2 ~ = 1 - 2 it holds that (c(k,), d(k,)) :~ ( - d, - e).

3. if (c, d) r (0, O) and 2 = 89 that (a) 2~-->89 when k-->c~.

(b) I(c(k),

d(k)) I ~ [(c, d) I

when k--> ~ .

We will use the following estimate in the proof.

Lemma 11.5. ~(t; 2, c, d) is defined in (11.3). I f

12-89189

a n d

Itl<min(-eN+X,-1

dNl+t),

t2 ~. (c: +d:)}" _I~(c,t;2)~0(d,t;2)

then I yJ(t; 2, c, d) - exp [ - ~ ~+1

~<exp Oltl~max(-c~+~,d~+~). (c,+d,) - 1 (11.8)

N+I

where the constant C only depends on O.

Proof.

C1, C 2 . . . . denotes constants. I t holds that

~0(t; 2) = 1

- I f ( 1 + tR1 (t; 2)),

where IRI(t;~)I<,C 1 if I t l < l and 12- 89 Further we have 1 -- z = e-~(1 +

z2R2(z)),

(11.9)

(11.10)

(23)

ARKIV FOR MATEMATIK. Bd 5 nr 28 where IR~(z)l < c~ if

for real ~'s

I z l < 2 - ' ( l + C 1 ) . B y combining (11.9) a n d (11.10) we get

~(~d; ~) = e-(:"')+~ (1 + [~l:R:(t, ~, ~)), (11.11) where

[R3(t, ~,

A)[ ~< C a if It[ ~< [~-~[ a n d [ 2 - 89 ~< ~ < 89 Thus

~ ~c ~ § d~) 9 YI (1 § Iv~tl:R:) (1 § Id:~l:R~)

~(c,t; ~t) ~(d~t; ~t) = exp - ~ ~

N + I 2 /Y+l J N + I

a n d if

Itl<

min(--c~l+l, dNl+l) a n d

1~-89

~ < 8 9 it holds t h a t

(l§ tl3R3)(l§

C3[tl a

Ic:l:+e. ~)

N + I

<

e~p {c~ I tl= .max ( - c~+:, d~+l)

a n d the estimate (11.8) follows.

: (el+ d~)l

N-i-1 J

Proo] o89 .[,emma 11.4.

First we assume

2~-->)[ a n d (c(/c),

d(k))=~(c,d)

when /c-->c~.

(11.12)

~ ~c s + d~) ~< 1 a n d we have According to L e m m a 11.1 it holds t h a t /.~ ~

<~ e~p --ff I - (c,+d,) ~o(t;2~,c,d)-I-Iq~(c,t;~.)q)(d,t;]t)

II {"(-A )}

x I-I ~(c~ (k) t; ;re) ~(d~ (~) t; 2k) + exp -- ~- i (c~ + d~)

x ,=IYI ~(c,t; X)

q~(d,t;

~t) - exp - 2- 1 - (c~(k) + d2(k))

x 1-I ~(c,(k) t; ;tk) ~(d,(/~) t; A~)) = R~(t, N) + R,(t, g , k) + R.(t, N, k).

L e t T a n d s be a r b i t r a r y positive numbers. F r o m (11.12) we conclude t h a t supk m a x

( --CN (k), d~(k))--> 0

when N--> co a n d t h a t I ~ - 89 ~ < 89 The estimate (11.8) now yields t h a t there is a No, depending on T and e, such t h a t IR4(t, No) ] ~< e a n d [Rs(t, N0, k)l~<e if Itl~<T. I t is an immediate consequence of (11.12) t h a t 405

Références

Documents relatifs

From one point of view it is more natural t o consider power series in infinitely m a n y variables, corresponding to Fourier series on an

The theory of O-fiat modules is obtained by a dualization of the theory of O-injective modules (see.. The proofs of the following two results are dual to the proofs

BROLIN, Invariant sets under iteration of rational functions Theorem 12.1.. Consider the set Pq of predecessors of q,

Si les conditions du th6orbme sont remplies, les xq, coefficients de % nous donnent une solution du syst6me... ARKIV FOR

We next observe two interesting facts about Baire sets that hold for some impor- tant, but special, spaces.. Example 3.4 shows that both conclusions may fail in a

Here, where a sample function is (in part) a derivative, it becomes a right derivative after imposition of right continuity. An exchange of correspondence with

Some further general remarks on algebras with a Hilbert space structure are given in this paper (sec.. The verifications are left to the reader.. ARKIV FOR

Our smooth- ness condition precludes the possibility of an equation with double characteristics having non-singular characteristics or of a surface being strongly