• Aucun résultat trouvé

Cours physique Nucléaire (KHALLADI .M.FADEL) Chapitre V : Réaction Nucléaire II. La Fission Nucléaire

N/A
N/A
Protected

Academic year: 2022

Partager "Cours physique Nucléaire (KHALLADI .M.FADEL) Chapitre V : Réaction Nucléaire II. La Fission Nucléaire"

Copied!
4
0
0

Texte intégral

(1)

Cours physique Nucléaire (KHALLADI .M.FADEL)

Chapitre V : Réaction Nucléaire II. La Fission Nucléaire

Nous avons vu précédemment que l’énergie de liaison par nucléon décroit graduellement lorsque A prend des valeurs supérieurs à 100. Ceci entraine qu’environ 1 MeV par nucléon est libéré quand un noyau lourd, tel que l’uranium, se scinde en deux fragments plus légers. Ces processus de fission constituent la source d’énergie dans les réacteurs nucléaires et dans les bombes à fission.

Un modèle simple du noyau 𝟐𝟑𝟓𝟗𝟐𝑼 montre comment la fission se produit. Le modèle considère que le noyau 𝟐𝟑𝟓𝟗𝟐𝑼 comme étant composé de deux parties, chacune contenant un grand nombre de protons et de neutrons. La courbe de l’énergie potentielle pour ces deux parties est présenté sur la figure *.

Lorsque ces deux parties se séparent, une grande quantité d’énergie potentielle électrique est convertie en énergie cinétique.

Figure *

Beaucoup de noyaux ont une haute probabilité (ou une grande section efficace) de capture pour des neutrons thermiques. Quand cette capture se produit, un noyau avec A nucléon est transformé en

(2)

un noyau avec A+1 nucléons. L’énergie de liaison moyenne du dernier nucléon dans un noyau lourd vaut à peu près 7 MeV. Si un neutron est capturé, le noyau aux (A+1) particules aura donc un surplus d’énergie d’environ 7 MeV et il se retrouvera dans un état excité. Si cette énergie d’excitation est suffisante pour porter le noyau au-dessus de la barrière de fission, il va se scinder immédiatement et libérer une grande quantité d’énergie.

C’est précisément ce qui arrive quand le 235U est bombardé par des neutrons thermiques. Il y a création d’un état excité de 236U à 6.8 MeV au-dessus de l’état fondamental. Comme la hauteur de la barrière de fission du 236U est également de 6.8 MeV, le noyau subit tout de suite la fission. D’autre part, pour l’isotope 238 de l’uranium, le 238U, la fission n’a pas lieu lors de la capture d’un neutron lent, pour la simple raison que le niveau excité résultant dans le noyau 239U est à 5.3 MeV tandis que la barrière de fission est de 7.1 MeV. Par conséquent, la fission induite ne pourra se produire avec le 238U que si le neutron incident dispose d’une énergie cinétique d’au moins 1.8 MeV. Or de tels neutrons rapides ont des longueurs d’onde de de Broglie et donc des tailles effectives plus petites et leur capture est difficile. La section efficace de fission du 238U au moyen de neutrons rapides est 2000 fois plus petite que celle correspondant à la fission du 235U avec des neutrons thermiques. C’est pour cette raison que le

235U est beaucoup plus utile comme source d’énergie de fission.

L’uranium naturel est composé de 99.3 % de 238U et seulement de 0.7 % de 235U. L’énergie libérée par la fission nucléaire peut être estimée de la manière suivante. L’énergie de liaison par nucléon est de 7.6 MeV pour le 235U et d’environ 8.5 MeV pour les deux fragments de la fission à A ≈ 100 (figure **). Par conséquent, l’énergie libérée vaut 235 (8.5 MeV – 7.6 MeV) ≈ 200 MeV par noyau.

Pour chaque fission, il y a en moyenne 2.6 neutrons rapides ; environ 1 % des événements de fission conduisent à l’émission d’un neutron lent, après un délai de 10 secondes en moyenne.

Figure **

Les neutrons émis dans une fission induite du 235U pourront à leur tour provoquer la fission d’autres noyaux de 235U et donner naissance à une réaction en chaine.

(3)

III. La Fusion Nucléaire

La fusion nucléaire est une source d’énergie potentiellement beaucoup plus importante que la fission car les ressources en matériaux appropriés sont presque inépuisables. La fusion est un processus très séduisant parce que les produits finals sont stables. Le problème de l’élimination des déchets radioactifs ne se pose pas. La réalisation de la fusion contrôlée et l’extraction d’une puissance utile représentent toutefois un défi extrêmement difficile. La source de difficulté apparait quand on considère les deux réactions de fusion entre les isotopes de l’hydrogène, le deutérium (𝒅 = 𝑯𝟏𝟐 ) et le tritium (𝒕 = 𝑯𝟏𝟑 ) :

d + d → t + p + (4 MeV énergie cinétique) t + d → 𝟐𝟒𝑯𝒆 + n + (17.6 MeV énergie cinétique)

Dans les deux réactions, la répulsion électrique intense entre les deux noyaux de charges positives tend à les écarter l’un de l’autre. A moins que leur énergie cinétique initiale totale ne soit égale ou supérieure à 0.1 MeV, ils ne peuvent s’approcher suffisamment près pour que les forces nucléaires puissent les faire fusionner. Il est très facile de communiquer 0.1 MeV ou plus à un noyau dans un accélérateur. La seule manière pratique pour arriver à la fusion à grande échelle est d’utiliser la réaction thermonucléaire ; il faut chauffer les matériaux jusqu’à ce qu’au moins une petite fraction des noyaux acquièrent une énergie cinétique suffisante pour fusionner. Ceci nécessite des températures de l’ordre d’un million de degrés Celsius.

Le problème de base de la mise au point de la fusion contrôlée est celui du confinement des matériaux. En effet, aucun solide ne peut résister aux températures élevées requises. Comme les gaz chauds de deutérium et de tritium sont complètement ionisés, ils forment un mélange conducteur d’électricité, appelé plasma, qui est composé de charges positives et négatives. Ce plasma peut être confiné en endroit de l’espace par des champs magnétiques. Après avoir chauffé le plasma par

(4)

bombardement au canon à électrons, on augmente brusquement le champ magnétique. Ceci comprime le plasma, fait monter sa température encore davantage et provoque la fusion de quelques noyaux.

Références

Documents relatifs

• Les noyaux stables sont répartis le long d’une ligne située au centre de la bande : C’est la ligne de stabilité ou vallée de stabilité. Cette ligne s’arrête au noyau

la cassure du noyau d’uranium, c’est Lise Meitner qui comprit – avec son neveu Otto Frisch – le processus physique en jeu, et notamment l’origine de l’énergie libérée

proton n’interagit qu’avec ses plus proches voisins, ou force entre protons est de courte portée. à très courtes distances, la force nucléaire est répulsive (force

Un calcul exact, tenant compte de l’addition des moments angulaire en mécanique quantique et le recul du noyau, n’interdit pas l’émission dans la direction du spin, mais donne

particle alpha, charge Q’, incidente avec un paramètre d’impact b sur une charge ponctuelle Q de masse infinie, avec une énergie cinétique E. → trouver l’angle de

 Paul Taras, Concepts de Physique Nucléaire Notes de cours, Juillet 2008.. o disponibles

Une centrale nucléaire utilise un réacteur nucléaire pour chauffer l’eau d’un circuit primaire, laquelle échange de la chaleur dans un générateur de vapeur avec l’eau

Cette histoire peut être divisée en trois parties : la découverte du noyau et de ses propriétés fondamentales jusqu’en 1939, le développement de la spectroscopie nucléaire et