• Aucun résultat trouvé

Improvement of the electrochemical performance by partial chemical substitution into the lithium site of titanium phosphate-based electrode materials for lithium-ion batteries: LiNi0.25Ti1.5 Fe0.5(PO4)3

N/A
N/A
Protected

Academic year: 2021

Partager "Improvement of the electrochemical performance by partial chemical substitution into the lithium site of titanium phosphate-based electrode materials for lithium-ion batteries: LiNi0.25Ti1.5 Fe0.5(PO4)3"

Copied!
4
0
0

Texte intégral

(1)

Supporting information

Improvement of the electrochemical performance by partial chemical

substitution into the lithium site of titanium phosphate-based

electrode materials for lithium-ion batteries: LiNi

0.25

Ti

1.5

Fe

0.5

(PO

4

)

3

Mohammed Srouta,b, Mario El Kazzic, Hicham Ben Youcefd, Katharina M. Frommb, Ismael

Saadounea,d

aIMED-Lab., Faculty of Science and Technology- Cadi Ayyad University, Av. A. El Khattabi, P.B..549

Marrakesh, Morocco

bUniversity of Fribourg, Department of Chemistry, Chemin du Musee 9, CH-1700 Fribourg, Switzerland cElectrochemistry Laboratory, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland

dMohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, Ben Guerir, Morocco

(2)

Figure SI-2: CV curves of the LNFTP at both voltage ranges 1.5-3.0 V and 1.0-3.0 V

measured at slow scan rates of 0.02 mV/s

Figure SI-3: Nyquist plots of the LNFTP@C material at different states of discharge/charge:

at the OCV (left) at 1.0V, 0.5V and 3.0V (right).

(3)

Figure SI-4: XPS data of C1s, F2p, Ti2p and P2p at different states of charge

Table SI-1: Atomic positions of the LNFTP material obtained via Rietveld Refinement

LNFTP Atoms x y z B Occ. Mult

R-3c Ni 0.0000 0.0000 0.0000 1 0.5 6 Li1 0.0000 0.0000 0.0000 1 0.5 6 Li2 0.5962(4) 0 0.25 1 0.25 18 Fe 0.0000 0.0000 0.1394(2) 1.08(1) 0.5 12 Ti 0.00000 0.0000 0. 1394(2) 1.08(1) 1.5 12 P 0.2906(6) 0.0000 0.25000 3.2(2) 3.0 18 O1 0.1754(8) -0.0195(9) 0.1892(4) 1.9 (2) 6.0 36 O2 0.1915(8) 0.1688(5) 0.0809(5) 1 6.0 36 Rp: 9.11 % Rwp: 8.14 %

(4)

Table SI-2: Calculated interatomic distances (Å) of the LNFTP material

(M)-(O) d (Å) ( Li1 )-( O2 ) <Li-O> 2.28(9) x6 2.28 ( Ni )-( O2 ) <Ni-O> 2.28(9) x6 2.28 (Li2 )-( O1) (Li2 )-( O1) (Li2 )-( O2) (Li2 )-( O2) <Li-O> 3.103(9) x2 2.429(8) x2 2.112(7) x2 2.397(5) x2 2.5103 (Fe )-( O1) (Fe)-(O2) 1.889(8) x3 1.963(9) x3 (Ti)-(O1) (Ti)-(O2) <Fe,Ti-O> 1.889(8) x3 1.963(9) x3 1.926 (P)-(O1) (P)-(O2) <P-O> 1. 556(9) x2 1. 493(7) x2 1.5245

Table SI-3:R value of the fitted Nyquist curves of the carbon coated LNFTP@C electrode at

different states of charge/discharge

Rs RSEI Re Rct

OCV 23.1 - 46.7 240.4

1.0 V 28.8 352.5 38.7 307.8

0.5 V 87.3 247 53 255

Figure

Figure SI-1: Ex-situ XRD patterns of the LNFTP electrodes at different states of charge
Figure SI-2: CV curves of the LNFTP at both voltage ranges 1.5-3.0 V and 1.0-3.0 V  measured at slow scan rates of 0.02 mV/s
Figure SI-4: XPS data of C1s, F2p, Ti2p and P2p at different states of charge
Table SI-3:R value of the fitted Nyquist curves of the carbon coated LNFTP@C electrode at  different states of charge/discharge

Références

Documents relatifs

NIH-PA Author Manuscript.. Brohawn SG, Leksa NC, Spear ED, Rajashankar KR, Schwartz TU. Structural evidence for common ancestry of the nuclear pore complex and vesicle coats. Berke

Inset: field variation of the magnetization measured at 2 K; (b) Scan field of the frequency dependence of the magnetic susceptibility; (c) Frequency dependence of the

A kinetic experiment indicated that EcN inhibitory activity on LF82 started 6 hours post-inoc- ulation and reached its maximum 8 hours post-inoculation, at the beginning of

Afin de maximiser les performances de détection des situations de détresse par notre plateforme, la fusion de données entre les différentes modalités présentées précédemment

ment dans tout le pays Car on venait de loin à Motélon pour y goûter les tommes de chèvres que fabriquaient les armaillis de cette vallée alpestre Tante Augusta était comme une

While the relative energy-dependent anisotropy defined above is useful in studying individual events, for statistical purposes it has three drawbacks: (1) for quantifying the

Using the best unloading policy will lead to a lower average waiting time for trucks at the drop-lot making the truck processing more efficient. After delivering the results to

By optimizing for the key business objectives of minimizing transportation cost and delivery time as well as the environmental objective of minimizing carbon emissions, this