• Aucun résultat trouvé

The effect of carbonation on the shrinkage, strength, and permeability of Portland cement concrete

N/A
N/A
Protected

Academic year: 2021

Partager "The effect of carbonation on the shrinkage, strength, and permeability of Portland cement concrete"

Copied!
99
0
0

Texte intégral

(1)

THE EFFECT OF CARBONATION STRENGTH,

THE SHRINKAGE, AND PERMEABILITY

OF PORTLAND CEKENT CONCRETE

by

. ADOLFO LAU-CHANG

Submitted in Partial Fulfillment of

the Requirements for the Degree of BACHELOR OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOTf

May 1962

re of the Author. t I" - -*' D e p a r t,;""/nn o f . . . . * . * * Is Civil Engineering 18 ay 1962 e d by. ... P * * * . - 11 ___-___:V--_._j--;- a 0 0X. --. -"-I-- * 0 0 " -t Thesi Swo or ... I -11- -_ * 0 # *

Departmental Committee on Theses

d byo***'*O'.*#***

(2)

.

ABSTRACT

THE EFFECT OF CARBONATION ON THE SHRI!qKAGE,

STRENGTH3 AND ERMEABILITY OF PORTLAND CEkENT CONCRETE,

by

Adolfo Lau-Chang

Submitted to the De artment, of Civil Engineering on 18 May 1962 in partial fulfillment of the requirements for the Degree of Bachelor of Science.

The ex-oerimental work of this investigation as ade

using Portland 6e-i2eht mortar specimens' By using mortar

it i -o6ssib'le't(omdke

sall specimens'. If concrete ere

used' s-oecimens ofmi-ch larger dimensions would be

neces-sary. tut it is evident that the results obta"ed with'

mortar are ualitatively alicable to concrete.

This study is concerned with hree items: the

inves-tigation of the tme r'equired for secimens of Portland

cement mortar to reach moisture euilibrium when stored

in mediums of different relative I aidities; the

investi-gation of the effect that the following factors have on the weight stability and dimensional stability of Portland

cement mortar: time of exposure to carbon dioxide,

concen-tration of carbon dioxides and the curing time; and finally., the nvestigation of the effect of carbonation on the

strength and 'ermeabilit7 Of ortland cement mortar.

It was found that the amount of weight loss and shrink-ige due to drying increases s the relative hidity of the surrounding medium decreases. The relationship between the weight loss and shrinkage due to drying is not necessarily

direct. Portland cement mortar specimens stored at diffei-"dities reach dimensional equilibrium after

ent relative hum1 U_

100 days. in most of the cases sudied he eight continues to decrease after 100 days.

The data coll ted indicated e' 'hat -ore-carbonation in

mediums of 50% co concentrations for tmes of carbonation 2

no longer than 72 hours, in an atmosphere of 52% relative

humiditys has no significant effect on the dimensional sta-bility of Portland-cement mortar. Pre-carbonation in

mediu--ras of 100% Co concentration reduces shrinkage signi-ficantly. In the Ltter cases shrinkage decreases with

(3)

i

.

Curing tine does not modify the reduction of shrinIc-age caused by pre-carbonation. Curing tine afects the amount weight los's reduction-caused by pre-carbonation. For a constant carbonation time, the amount of eight loss

reduction increases wth increasing uring tine.

Weight loss decreases with ncreasing tine of

carbon-ation.

Experiments-'jo'roved that the compressive strength of Po'r"tland 'lerdeh-t-, 'mort6-r's decreases with decreasing caring tire T compressive strength of Portland cement mortars

increases with increasing title of carbonation. Hir7her

strengths are obtained for secimens carbonated in ediums

of higher CO 2 concatration.

Finally, it as fund that the permeability of Portland

cement mortars decreases ith increasing'time of

carbona-tion, until carbonation reaches 23 hours. Permeability

starts to irease with increasing time o carbonation after

2.3 hours*

The collected data is ortrayed br menas of graphs.

Photographs and drawings of pertinent aparatus and machines

are included to illustrate eerimental techniques. In-formation concerning the general testing method is

Presented

Thesis Su-pervisor: Lloyd Cutcliffe

Instru'ctor

Ttle:

(4)

ACKNO-VVLEDGE11fl-ENT

The author wishes to express his ratitude to the Supervisor of this Thesis J. Lloyd Cutcliffe, for introducing him and encouraging

his interest in the subject of carbonation of concret e

The author is very graUteful to Mr. Albert J. O'Neill, Technical Instructor and to r. Joseph E. White of the Building Dfiateria18 Laboratory

for their technical assistance in the experimental

work of --his investigation.

Finally,, to iss Mautilda Za-,,qanian for

(5)

TABLEOF CONTENTS N 0 E k fI i II i I

iv.

Chapter AB STRACT ... ACl\'lTOWLEDGEMENT ... I. INTRODUCTION ... II. PREVIOUS AND PRESENT WORK ON

CARBONATION ... The echanism of Carbonation

Previous Work on Carbonation Present Work on Carbonation

.1) Stabilization ...

2) Vleigjat and Dimensional

i

iii

1 4 4 6 10 11 11 13 15 32 32 33 35 36 38 40

Stabllity ...

3) Iler,-,,-eab- lity

!II. RESULTS

...

IV. DISCUSSION OF RESULTS . . . .

Graphs 1 and 2 ... ura-oh 3 to 1 ...

Gra-phs 15 and 16 ...

Gra-oh 7

V. CONCLUSI0,',-iS

VI. R:E,,COl.,U,,lENDATIONS FOR DRTHEEIR ORK

APPEYDIX A'. APPARATUS AND EXIDERIDYTENTAL

TECHNIQb--,'--S ... 0

APPENDIX B: ClfiPUI-'=,, PROGRA1,11S * . . . . ,

BIBLIOGRAFTZ

41 2 50

(6)

V*

LIST OF GRAPHS

Gra-,oh

1 Percent Change in Weight vs.

COo Concentration %

Curing Time - 7 Days

Time

15

O * * *

2 Percent Change in Lngth vs. Time

n I'll n __ - _ I I .

ju oncentration - uxo

Cui`g Time - 7 Daysl -* . * * * 16

3 Percent Change in eight vs. Time

co2 Concentration - %

Curing Time - Dd7-- ''

R.H. - 52%, 710F .,

4 Percent Change in Length vs. Time

CO Concentration - %

Cuing Time - Day' .. ,

R.H. - 52%, 7OF O.. 0. *Is . 18

Time

5 . Percent Chan,re in Weight vs,

GO Concentratio 2 - 0%

Curing Time - 3 Days

R.H. - 52% 7F .... ..

. . . * * i S-11

20

21

22

23

6 Percent Change in Length vs. Time

C02 Concentration - 50%

Curing Time - 3 Da'ys'

R.H. - 52/O", 7F

7 Percent Change in Weight vs. "Llime

CO, Concentration - %

Curing Time - D s-aY

R.H, - 5,,%., 7F

Percent Change in L.ength vs. Time

COo Concentration - 0%

Curing Tirie - 7 Days

R.H4 52%., 7F

Percent Chan'e in Weight vs. TimeI.

co 2 oncen'ration ;l - 00%

Curing Time - Day

(7)

k* -4 V.

f

-I... I .- :1 .i., II I I. vi. Gra-oh -' e-P

10 Percent Change in LenF'h vs' Time.

co 2 Cncentration - 10%

Curin--, Time - Day - I

--- I I/

R.H. - 52/05 '70:Hl # . . . 24

11 Percent Change in Weight vs. Tine

C02 Concentration - 00%

Curing Tme - 3 Days .

R.H. - 52%, 7OF ... 0.90 25 26 12 Percent Cha,, C02 Co] 'Curing R.H

-age i Length vs. Time

acentration - 00%

Time - 3- D a'y s

5 2`/0.9 7F

- Change in Weigh' vs, Time

13 Percent U 0

co Concentratio - O 01,I,

2

Curing Time - 7 Da7,s

R.H - 52% 7F ...

14 Percent Change i Length vs. Tirne

CO Concentration - 100% -2. Time - 7 Ddys .... Curing ROH'a 5:2-/-,o 7F :,I , t :, z 28

15 Compressive S45rength vs. Time of

Carbonation

co2 Concentratio - 0C4

Age - 270 Days O*..* 29

30

O . * O

16 Compressive rength vs. Time f

Carbonation

CO Concentration 00,% 2

. Age - 278 Days *00 a- -0 .. 0 .. O I* * *001*

17 Permeabili-7 vs. Time of Carbonation,

and Com-pressive Strength vs. Tme of

Carbonaion .

(8)

LIST OF PHOTOGRAPHS

vii.

!'ho t o g, r a-ph Page

42

4 3

44

46

Snecimen

and Mold

... 4 ... 00

Measurin' Sample in the Upriglat' -9

Gauge ...

1 2 Stabilization of Specimens 3 4 a 1P 0 0 * * U ),-,.ent Carbonation Equi

Specimens Cut -,'or Strength'

5

Measurements

60,000 Found

,draull 'Testin' '

-PI a c h -IL n e

Permeability Measuring Apparatus

-46

47 48

6

(9)

1

I. INTRODUCTION

Concrete has certain properties that have been

respons-ible for its widespread use as a building material.

Struct-ural members made of reinforced concrete can develop very

high strength. In addition it is a material of relatively

low cost, it can be molded into complex shapes, it is

dur-able and fire proof.

But concrete also has some shortcomings. One of the

most iportant ones is its relatively low dimensional

sta-bilit7- Concrete tends to cree-P and shrink. Creep is defined as the increased deformation with time due to sus-tained constant loads. Shrinkage is due to dimensional changes caused by water loss. The effect of shrinkage in

a structural member made of concrete can be serious. After

a structural member

is set in place, srinkage will

intro-duce tensile stresses. Concrete is weak in tnsion.

The

presence of tensile stresses in a concrete member usually causes cracks. These cracks can deteriorate the structural value of these-members severely.

There are several theories that describe the exact mechanism o f srinkage. Among the most aeptable ones are:

the capillary tension theor7* the'surface sorption theor72

the swelling pressure of the gel theoryy and the interla7er

(10)
(11)

3.

cost. In additions improved strength, and hardnesss and reduced ermeability may result from carbonation of

con-crete. The contribution that carbonation can give to con

crete technology seems excellent.

As it is explained in the following section of this

relports carbonation of concrete depends on vaA ous factors such as relative humidity of the surrounding medium,

con-centration of carbon dioxides length of exposure to carbon dioxide, curing conditions etc. The purpose of this

in-vestigation is to gather data concerning the agnitude of

the effect of each one of these factors in the carbonation, of concrete and the resulting improvement of the dimensional

stability of the material It is also the purpose of this

investigation to correlate the empirical information obtained

with the theory of the process of carbonation developed so

far, This'study is also concerned with the effect that

carbonation has on the strength and the permeability of the concrete.

(12)

4. II. PREVIOUS AND PRESENT WORK ON ARBONATION

The Mechanism of Carbonation

There has been substantial amount of research done

in the field f carbonation of concrete. Existing

evi-dence indicates that sstantially

all the constituents

of cement are sbject to ultimate carbonation under deal

conditions ().

At the present time2 tere is significant technological and theoretical interest in the effect of carbonation on

Portland cement based materials. The reaction between

car-bon dioxide and Portland cement might be the partial explana

tion for te slow shrinkage of these materials in service

over a long period of time. There is also enough evidence

Uo indicate that the low dimensional stability of concrete

may be improved by intentional pre-carbonat-2 on. In addition,,

pre-carbonation can increase the strength-and lower the permeability of concrete.

The slow shrinkage of concrete is due mainly to two causes: water loss due to drying and &ange in length due

J-to carbonation. To obtain coiTplete understanding of

car-bonation it is necessary to investigate both the process

(13)

5 The four principal compounds of Portland cement are as follows:

Tricalcium Silicate 3CaO*SiO 2 (C S)3

Dicalcium Silicate 2CaO*SiO 2 (C )2

Tricalcium Aluxainate 3CaO*Al 0 2 3 (C3A)

Tetracalcium Aluminoferrite 4CaO*A1 0 Fe (C AF) 2 3 2 3 4

All four compounds set by reacting with water and forming

hydrates, The rate of hydration of all four is quite

different. When water comes in contact with the cement

particles, it is expected that C A crystals on he surface3

of the particles react immediately, while the other surface

crystals will react at a slower rate. With time the hydra-tion will proceed towards the center of the particle some-times taking years for the particle to become completely hyd-ated. This is the reason hy fresh concrete should be cured for several days after it has been placed.

The product o he reaction of tricalcium silicate a3fd

water is a saturated solution with lime due to hydrolysis. 'In a short period of ime calcium hydroxide crystals begin

to appear in the hydrating mass, mixed with the usual

structure of less hydrated silicates, The reaction between

the calcium hydroxide and carbon dioxide is usually referred to as carbonation, This reaction occurs in the presence of water$ and the' products are calcium carbonate and more water:

(14)

Ca(OH) 2 00 2 CaC 03 + H 20 (2.1)

In the presence of excess carbon dioxide and wa- CaCO

3

reacts to yield calcium bicarbonate:

CaCO- C- + H o T,-T r 0

2 --2 -3'2

Usually the supply of C02 for these reactions to occur comes from the surrounding ar. The concentration of CO

2

in air is approximately .03%.

There are several factors which influence the extent

and the rate o carbonation. The mst important factors are: the relative hidity during exposure to carbonic gas, the concentration of carbonic gas in the surrounding medium, the length of the exposure the specimen size, and the

ur-ing conditions.

Previous Work on Carbonation

Mortars have been used in -most of the experimental

work done in carbonation. By using mortars it is ossible

to make small specimens to study the process of carbona-tion. If concrete were used much larger specimens would

be required, but it is obvious that the results obtained

with mortars are qualitatively applicable to oncretes. As it was mentioned before, the relative hmidity during exposure to carbonic gas is a very critical factor in carbonation. The relationship between carbonation and the relative hmidity is dependent on the specimen sire.

(15)

M

... I . .

1-7 1

If the rate of carbonation is very rapidy secimen size

becomes very critical. Water is released during arbona-tion, If the specimen is not small, moisture ill not be able to diffuse out rapidly and the internal relative

humidity will differ from the relative humidity of the

surrounding medium,

Verbeck 4 studied the effect of relative humidity on carbonation using mortar secimens, I by by 111 in.

All s-Pecimens were cured for seven days. They were divIded.

in four groups, and each group as stored in atmospheres

of 100 7 50 and 25 per cent relative humidity. The

specimens attained moisture equilibrium after 52 days. After,

the specimens were exposed to carbonic gas at atmosphere

until the new equilibrium was reached. It took 60 additional days. The shrinkage due to drying increased with

decreas--ing relative humidity. The amount of shrinkage produced, by

carbonation was largest for the secimens kept at 50%

rela-'Cive humidity. Very little shrinkage was caused by CO in2

the specimens stored at 100 and 25 per cent relative humidity. At 100 per cent relative humidity the pores of' the

paste are filled with water$ soy t is difficult for the

CO to diffuse iard. In addition,, Calcium ions counter 2

diffuse toward the surface precipitating calcium carbonate and clogging the pores. As the relative humidity decreases

more pores become emp-tied and the diffusion of the carbonic

(16)

9as into the aste is increased. ""his also reduces the

pore clogging at the surface caused by the calcium

car-bonate precipitate.

Carbonation occurs. to a very sall extent a 25 per cent relative humidity due to low moisture in he paste. The presence of water is necessary for the reaction of

carbonation to occur, Consequently the amount shrink-age caused by carbonation is very small.

The effect of specimen size on the rate and extent of carbonation was mentioned before, The problem with large

specimens is that it takes a very long time to attain

moisture equilibrium between the inside a the outer media. The moisture gradient in he cross-section of a large

specimen will cause certain sections of the sioecimen to

carbonate at a faster rate than others.

Water is released in the carbonation reactions. If

he specimen has attained moisture equilibrium, the ater

released by the reaction will disturb the equilibrium In

the case of a small specimen, it is easy for the water to

diffuse out and the specimen will regain its equilibrium.

In alarge specimen this ould take a long period of time. The rate and extent of carbonation is dependent on the concentration of CO in the urrounding edium. Re-2

search done 4 has demonstrated that the shrinkage and

weight gain due to carbonation increases ith increasing

(17)

The concentration of CO also has an effect in the2 humidity of he interior of the pas-'U-e* Lower

concentra-tions of carbonic gas produce a slower reaction and hence

should evolve ater at a lower rate.

In the test described previously., secimens were stored at different relative humidities and allowed to reach

moist-ure equilibrium, nd ten subjected to carbonation while maintaining the same hidities until the new equilibrium was reached. est have also been.made,, using similar

spec-imens, where after U--he same initial curing time were

ex-posed to simultaneous drying and carbonation surrounded by

mediums at various relative humidities.

It is quite obvious that the hmidity inside the spe c

-imens will be higher than that of the surrounding medium during the period zPaere simultaneous drying and

carbona-tion is taking place. The result as that specimens

car-bonated and dried simultaneously in relative humidities

above 50% shrank less than the specimens that were subiJected

P-n-r"onnatinn procedure. The

U J L, I.L' Y J_.L.Lt5

reason was because carbonation actually occurred at higher humidity than that of the surroundino medium* This

reason-ing is supported by the fact that the samples kept at 25% relative humidity shrank more in the simultaneous drying

and carbonation procedure than in the drying and subsequeit carbonation procedure.

(18)

10

In the absence of carbon di-oxide, hydrated mortars and concretes suffer changes in length when the moisture conditions ae changed. Vrnen the s'-6ec-lmen is subjected to wetting and drying in normal air., -the changes in length are due to both carbonation and changes in the moisture

conditions. The rate of carbonation in normal air is ve'rT

low because of the low oncentration of carbon dioxide in the atmosphere.

Investigations made by Shideler (5) show that ore

-carbonated secimens shrink half as uch as un-carbonated

specimens hen subsequently exposed to alternate c7rcles of'

drying and wetting. Tests made by Verbeck () also show

that samples subjected to the drying and subsequent car-bonation procedure have proved volume sability. Results

also showed hat the increase in volume stability is not

directly related to the aount of carbonation of the

var-ious secimens

Present Work on Carbonation

The presont, study is concerned with three items: the investigation of the ime required for secimens Of

Portland cement mortar to reach moisture equilibrium when

stored in ediums of different relative huiwidities- the

Investimation of the effect that the _-Collowing facu-ors

stability and dimens

(19)

.

-Portland cement mortar specimens: tme of exposure to carbon dioxide$ concentration of carbon dioxide, and the curIng time; and the investigation of the effect of carbonation on the permeability of Portland cement mortar secimens.

1) Stabilization

In he -bests to determine the time required for the stabilization of Portland cei,,ient mortar, secimens 1 by I by 6-4- in. were used. All secimens 1,,iere moist cured

for 7 davs at 73F. The specimens were divided into 4 groups

and stored in-relative humidities of 7 76,, 52 and 33 per

cent. An initial measurement of length and we'igght as made

at the end ol"' the curing period. Subsequent easurements were ade at different intervals of tme to determine changes

in length and weight. This as stopped when apparent

equil-ibrium was reached. The results appear in Graphs and 2.

Each one of the curves represent the average easurements of six secimens. To calculate the values or these two

graphs, two programs were vriritten for the IBM 1620 A

listing of these programs, and Tables and 2 vvhich

corres-pond t-,-Graphs and 2 respectively, aear in Aptendix B.

These to Programs are listed as Program and Program 2.

2) Weight and Dimensional Stability

The eect of he tme 0- ex-posure -to carbon dioxide,

the concentration of carbon dioxide, and the curing time have on the eight stability and dimensional stability of

(20)

.. ...- ... 1 __

120

Portland cement ortar was investigated in the following

manner. Portland cement mortar secimens, by 1 b 6z in.

were cast. Three groups o 28 secimens were cast. These

groups were oist cured at 73F for 1, 3 and 7 days. Initial

Weight and length -measurements were taken. Tnen each one

of these groups as divided into two grouses of 14. One

group to be carbonated n a medivzn of-100% carbon dioxide

concentration the other group to be arbonated in a medium of 50% carbon dioxide concentration. In these-grou-ps of 4j, pairs of specimens ere carbonated for the following times:

0 min,, 10 min,, hr.$ 2 hrs., 4 hrs*, 24 1ros., and 2 hrs.

The relative humidity during sultaneous carbonation and drying was kept at 52% I-or all the secimens. Weight and

length measurements ere taken at different intervals of

time until apparent euilibrium was reached. The results appear in Graphs 3 to 14. To calculate he values for these

graphs. two more programs were ritten for the IBM 1620.

A listing of these progra-ms and Tables 3 to 14 w1iich

--orrE,-,s-pond to Graphs 3 to 14 respectively appear in Appendix B.

These to programs are listed as Program 3 and Progra 4.

To correlate the factors entioned in the paragraph above and the srength of the specimens, the ollowing

tests ere made. The length of all the secimens was reduced to 2 inches. Tese I y I by 2 in, risms were tested for

(21)

M

13.

3) Permeability

To investigate he effect of arbonation

on

the permeability of Portland cement mortar the following tests

were made. wo 6 by 12 in. ylinders and twelve 2 in.

cubes ere cast. These specimens ere moist cured for seven days at 73F. At the end of the curing period, the

cylinders ere sliced into - in. thick slabs by eans of

a diamond saw. EQual aount of slabs and cubes ere

car-bonated in 100%

CO

2 atmospheres-for the following times:

0, I., 14,, 40., and 87 hours.

U U

.. There was no adequate apparatus to measure 'he per

meability of the slabs available. One had to be designed. A diagram and a photograph of the appartus designed appears

in Appendix A. The procedure to measure permeability was

as follows. The slab was placed in the apparatus. The sab was subjected to a head of about 3 feet of water. The slab was allowed to absorb water ad stabilize for 24 hours

be--lore taking any readings. After the 24 hours passed he

head as raised acrain to about 3 feet and a reading 1,1ras

taken. Five more readings were taken at 10 hour intervals. The ermeability was computed after every one of the five readings. The average value was used as the permeability

of the slab. The results appear in Graph 17.

The 2 i. cubes ere stored n the constant tem-perature

(22)

i

14.

temperature room was F and the relative humidity 50 per

cent. When -IChe cubes reached 28 days of age (standard ASTM

specification) the7 were tested n conTpression to obtain

a correlation with their corresponding permeability. The

results appear in Graph 17.

I, r . I,N

(23)

m

IT i. 31 I wi 14) VI et -1 'Al

(24)

Ml

IM '

-MMM

iI I

4

J' 44 am j -J E-5 i7

(25)

it i7l t7 4 4. T.. t_ 17 -- l- 71--74 4 -- ----IL - ---, __ - -14L, ----: I ___ __: ---- L---I R 7 6 11 I i ---m - -,---1 ., ,-, -r__ _ - , 17 109 B 7 6 5 4 - -- - --- I -. 2 1 9 8 -7 6 I I I C T i I 1 - - 1 : _ - . : '77 _:j- '-II" -w "' '- -- ----i I. . I. - . , I I I . . . . II I -:,,, :: : :, " : .I , . I . I I . T I I I I I : . _4 - -- - - - -- - - - __ , -___ _ -- -- -- --- - -- ., 11 - -. - i - --... .1 - I. - _ __'l.____ , I .1. 1; .1- . ...- 11 - _- ... -; -- - . -1. -1 - , I I---- -- -_ ... -I i .1 ' ' .- I i I I , . . . I 1 2 0--i __._ -- I l I ,; o: _ I - ;. 7:. _q - ,. I' : ::' _ 1: I I ]:_ : r 1-1-7 --, - : i_ F __ - - __ __ C li _77777 !-i __ --,- :. I i ! -- - -, i :_ I I

-...

: -, -1 -1 : -_,_._-I 1 , - .,., - I:- : 1 1 . - :_ . : - .... _.. I. I - I I .. - , , , , _" , - 11 'r, -i- .. I .1. ! --- - - . . I - .1 I 1- - . - . -.-- i - ll. , . b .. ! I I , . ; - .. ., :,. ". t _: : - 4 i - .., . _.... .. I .1. I - .. 1 __ _". -- --_. -41- - . I ---. 1- - - f . __ ; - - ' [ 7. 1 _'. -_'. 7 , i . _ .[ - .. -+- 4 - - - , I i -! - - - - -- ; :.J _ . L_. ; ---. ... . _. 1. . : .,-.',-,: 7 : - ... I - A_-_,_____ S*4 1z, 4", N \Z tAA I -'-i I - I .4:. . i i 11 I . : . : ... :.: -__ ___J --- i _ I v ]- I I I II :; - I . -1"..:. ;, / i ]: i ! 1 ! ; I : i I i :_ . I I I I (. I _ 1 A:, : -- - _: __ j J :,-\ J : I _ _ 1 1 I _ _ L I.J __ I- -1 i --- V -. Al II: 1,1 : . ; I : . w::. ___ : I i [ i 1 - I I I I I .1 I , I II - I , -1 --- -- I----I j -7--- -, : I I .: . T I :__ 7-i __ --,, ---,, 1, l----l-.l - -I .- -I... I -r, = . 1. ;. , :, :_ -:1 - -- 1: i . I : :1 : 1 - - l__.lll--: V, - - tl.;.:__,__ __________I .---. - . 7: . I : : 1 - L. , I . I -. __l M4 . to t 1j : ; - ! i. , , : : - _, , i I , ; . - ---L -i. ! . :, i. I _ 1 ! :,. ., '. t ; '- : : . : .. I - I ; i I I '-! .. - !, , 1 .. , , , - - : . . : : z , . .. - - - .... . I .1 I I I . -. . - 1: -T F7777 - I _ _: - __T 7-- 7- --:. , 4 - - - A : d 47 4 7-. J .- - - - - --;. : , :1 l.. t .1 ! ; I .:, : i 1 .. ' 4 ; - , L.i _7, 7 ---_e /,., 4, V/

(26)

C 1. -= - 7- I I .. .. . i. , - -T I .1 ---- -- - -7 -- -,:: _- -,-_-- - - i 1 : _ f: . __.'T :-". . - _ I - _ 9 i - _. J7, = :7. -jZ7., --.- -- 7:, a 4 " f! L.-T4. :I - I -KaiserTech ft 1: .. -1 -1: _: Rff:F 6; ; 1 I- F -: '. _ A 6 4: 3 77-77- 77' J J 3 71 -77T -77 -7= j=.=,--:-::-L--:4 ._7 7 I : iFE V 1; : t! .: . I 7 , -,- _ i -- - -- -;7 , _;- _-`7 - .j_77-_--:j7 -` . ` .-- I- . 1. "I __ - _ L-k--]-2 r 4_ :,... ; : i I , , i , I V I I I I V- : - 1._; _ _:. _ - 1 i- .- -, - : i_ i-: - , , 2z: ;- I -- -., -1 . , , . ., .. ,-, ' ._ . . . .; _. '. .1 : .. .1-1 ' ' 1- " : -- . "' ' _- -- 6'-- I - - - =1 -1 ._ --- :- - --- I F:A, -K. 7"T 41. 7t ... .. ... ___ ...

(27)

, , , ka;pZ1-_-- 4.-- -- q- - --.. - :_ _ i : -g4i 5 4 777-, Tq7_j77--T ----11,_, t 4 . I _-;_ -_. 11 - LJ_ 11- __ - : T-!. ! _- ... IJ --1. . 11 ; i I I I -I - -- --- --- --- ,--3 i :..i. 1.

-1

M.

---,

L

I i __- I--- - ; _F_ -1 -1 .- II V - , - " , -.. :J - I i .:_;: kA. .I I . 1 : , I A A j F .... ,. . i - I i _ 1 . I wr jf , -i _- _ - .:, , ,.- i I . r [I -1 . --N A .Z .11- . . I I I _1It ... ... _. _. ___R: I :i _t. ' .. i: .: i , = II I: - -:LiLL 1. - . _ .. I . ! I -1 .% p I ; -1 - i I 64 q -, . , - . , . _ t . , _. , i ; I I - I I - I - - , , , . - , ; .. , , _ . . ; . -.-. . 1 , , , Z . I .::7 1 -- - __ 77rr71777 7. - _x . -.7--l- A fghanis , ta n,-; ... _:_ I- I_ - __ --__ -''- ".' : ... I -!- -F7t.ll! 1.-. -Z __! i ! ,- __ I .. I,; I: ... I ... I .1-=T --- .-: : : I ! Z ., 11 , , .; ! . J. ! : -, 1. 1 I , 'I : -. 17 ... ... . . .... . .... -"N 7_ 7_-LL -7 Z IL q j J i T= 1 Z L4 ILIr if 7 E, 77=4-7, 777 7. _7777-:- -7t--4 - --- 4 ... C4 r4 CA N `L 1 /V/ J/V9;m - -- -_ - --- --- ___ E ----I , :FmN I -f7- -.1 - __,V_3 l- - _-, :. f : 7 -:l 7= _- __ 1 I 1 - - i--- - - 1 -_1 ---] --- --- __-_' .-..4 -!.:J--l-- :t -i .I- T - - ; - 1 - j -, - J _ -_:, i... ,. -1I , f ` , ... . 11 ! --l_ , ... ! i, I ; 1 , i - ; -'if I 1, 'l 44 I? 16 .I.' 1:4 I . 1: _k ,_ , _/ __ I --- - V--- __; I -_ I I= .- I ... I I i ` T A _ -1 -, , iT j

i ; I . I.I. . I 7,I ii. ; : .A: fr

I . -7 - - -- l__j_ I I .... ... -. ... -- ; -T -I -- 1--L'. 11 , I --- L-1 -.- --i111 - --- 1- l--, I I 1 I 1 .i -1 7 I - , .., I I. .; I -.I 1 . I . ; , 11 F ,"+ I . i - _. .. i I . Ib _ I _ _-_ ; i i ; I I i + I iI ,_ I_ .Ilf t .iI - 4 .. 1- - -T." ' -, I -1 _ -1 I- - -- I .. Li-, _-.1- , II :, i-, tj--: . ;._ : -': I,--- 7 -. - :-.! ." ,

(28)

--- _ -lr- t77 .77 -,AFRICA.-,.." :.A t .4 r J-:-...

il. 1, .. -_ LL --i-- .1 . I 1 - - _ - _ -.. .4,_ ! r., : .-, .I __ __ -- . , -- " --- :- -7, . ..., - --- _ -- --;-- I--- I i _li,,-I-. , 14.*-- I 0 __ r

7r-.11 !, . , . 1 ---t -T,----_ .;. i . I _:: I - --- - ---:indications 777. --. --.--.--.--.--. -..i.-I -..i.-I- . ! I f ;: .. _1-+-i._ . . - I .. I . - - w . l'--l- .. -, - .- 4 - - -- .:- i - L. , I- I - -__ lr- - . , -:..-I __A 1 - - - r . .- I . . I -.": _, F: - l / r i ?- " , -- -.-l i : , I 1._: .4- .. I __ I . -- I I - T. I , : 7--- 4 -1- i- " -- - - 11 _ . - _1 1- 1 -- i I.- - . . .., .- . - _ ., =L 4`_ -,-i- __ -:i : i , ; + i :+ I .1_ -, ---/ 1. k. ; : ;: :1 LLLLL - - i :-L' LLd- L _--;, , : 'Li ` L , . . .-I : T + ;,. . ; 1 ,4 ., ,4.1 ... :. I I , __l. .,- . -

1-f .- i .. i., U I I I :-, .: ; i .. -:_ 1 1 , -_ __," J 4. --- ! Ili t---I I I . - :F ;!. -. 1 F__!Q7lli_ _lltg _l -__ .

L 7-F 77-7 777-, .:;777-, .: 1 -- .. . :..: ; : j.. ; -_ - -... , ,... 1- I !,: , . - , :. 1.77 7T-Ii 1 9 a 7 6 5 4 q 1 . ! ' 1. - 1. E ;: ; 41--1 7 1 t-L i 4 F F 3 I_ i ,2 I ,I i i i I- 7i-, j7i-,__ i sir Ii-I 41 J II I i I A 4 .,I 7 7 __77--j7Tl-, --. -:.I 77 , - , _r , - , i i : i + 1 ! i " i - 1 : i li . ; i , I i --- __ _._j ... ... --- ---v -, , " -_1 : -: .-, F . , Z i 4 i -- - ___- - I ! i I: I L It M 1A r I T + TF: -1 - _.. _ = -- - .. __ l-, ____ -,yp-77 - ...Z -1. __ --T:T-,; q __ -J .+ . -,:. - .- -=- - _. S -7 6 S 4. 14", "Z 4 44 Z fib All ... - - _ I I -" . .:_.- - - - .. ...,7 - : -:_ 1 - -... i , , i i t i , - _ t _1- . .-i .. -1. 1 i: _ -7__Z 0 //J 91VH7 )V! _ZA1_-?2apVol

(29)

tp 71= 7 cl 1 S j., j_ roi A 4 l -S

I

7- 77[-__ ___ ;:--- z - - --- 1 := - :

1L

!'I ---- " __ .,- Tj: _IA - - 7. Xi li , I I --1,, , -I - -- or __- .- _ -::. '' L-_ Z --I-: --I-: ; ; - ' ! ! L-. - 11: . -- : t. 1, - - I 1-t-, ._ _t .: '__ __ - I ] -;_ 1, `- L--l -i4 - ", - - - __ _T777_ In -- 1 1 r I... I - i _H7 -- -4 --- ; A -, _ - ----i i711-,--.,,;`! ___ k -' = i - -_f-- -i-i.- -7-- __ - I T .., - ; .- , - !__,- -.-, ! . i . -: I F`-`=... 116 7-7 S) . ---- - -.- I - - jI ' ' L - I .- .." ' " - _- _ - 1 . I I : 1- -- r T- , ;- -1 I 1 ; -J - - i I 7-- _ _`: . : - ... . : -- , f--;_ , , __j, 11_ : -1! :4 ! :;

.

=

I --_ !!- __ - L --- l___L_ --A I .- .-I ---I I 'II 1, t - ; . I I I -: . :-. ',.- " I I _: ., , , :-- ---- --- ---- ---- I -,. - .,- --,. . 1 , ., _': . -, :: :1 ...-I . I I I I . I I - - - -I I , . .-I - - - i -_'. 1 - 1 , r o . --- -- --- -:- -- - ----; ;I - I -i -, -, I I I -. 1 I -L---, 7- : , -I -il.:-." ,- - ; -_ _ ! -J-:.- - .j :.. i - __ . I , ' .-: J I I -__ : ! .: - I III:,- - ''! --- I 777 v-w N?W __7 _l\Z -E i _k. IN, F - - I I . . I II,- I I %, Ili I lb- I _m. . : _ I , -- - I....- - _j _: i ---- -- --. - _ - - - :: . ... I I .. ... I. - - I .- I I - _-__ ... - -,_l_:__ _ __ ___: , -,- , , , d , -, I I I I - .. Z .- 1 -_11,--l- I -.1 . ; i : 1 1 1 1 : ! ; ; 9 = a LL-Li_.j.: 7 t 4P =mt ---_:_ i _L: _J_j --i. .... .-T. .- 1 2 t I I : 1z,:i F 1z .1 C ; s i i 4 3 :i 2 , I -9 R_ I -- - - --- ---7 ---7 -7 L ,i I. 4 . - - -1, 7,+_F7", :. 7 I 1 ! ! i_I . I Ilk tj VI T /V/ ---I 'I X/ -- I -_:_ ...!... J.- __'. _-.- I- +;. I . . -i I I I :! :1 ! -,: ; - _1 : . : . t :l-I; ! I _. _ . :_:. I I . Z : - -1 _ 1 7 ; -":L I i II Z __l _t l "Z. la -F i I f __l\

i

:l .. -4- , -I . - 141, , . :: I - ,, + + , ', 1.7!7?.2po-"v- _ .,O , 7 Z - :: ; , ,. , - N , I i.__I.. ;:-; F l

I I.. ;". ; I : - 1: I , ; - + i. ;- '. ,

. ; ; , 4 . ;I- : : : .- - -1 --: t : '. t ; - ;. i ; i 4-- ;- j

--.

7-I ! . . . I

(30)

77-:-44 II -7,1- 4 T 1'. - --- ---K f Size lf 4"Zi. -T77777. --- ---... .. ---... L., ----I 4r A: :J -- 7t 7 7 17. I71- 1 M --- ' 1 c c E E' e 4 Z I J 7 I 2 2 w J A 4", 144 A li j"T ... .. Cj

(31)

LW H, Z= - - 7 I--- L 2 7T77 p 7 A 4 . .... . . __J J . i 4 _E --I- 77' J i j 6 A .... ... .. :p 4 3 7" 7 '777 7-7 7 77. Z 7 7 77-6 5 77-77. 7 J -7--7 7 -4. 7-- . ... 9 _-7-7 -- 777 7-T' 4 --- --- - I Z3, 1 7 1 5 41 j .1#5511147M A/ ZA1:Y.>&9d L:A H, 7 4 i 77 'Ai Z

(32)

... __ ET=K_ . . - _. -111-1-- --- - - --TM I - _j I _'- i .-1.1-l-, - 1 - 1 i , - -_-_'.l_ I ; ;: ! : w I-J i --- Z, P_% - "', _: ... --- 1`4_ - - 1--- :-L-l -__:_ I - _' -- .- r f-,

r,

-1 i, .%.. I- : J.': 1_1 L i.V_ 71. 11 _4 :t:_ 't: '- -- - 1- .. ... -.- I .-.- _.----_l ... .l.---.--.--..----'--,----,--- - I - I - . , - . . . - I I I __ I - I _ - T- -- - -- - _r '- - I -- -, - - - , _:_' __1 011. HI Z --I.- :L=i ---. - :T-- - % I , - - - 1, 11-1-t _ - - - --- -4- -4- -+ -- I J- -1-f::-;-,I----,,-.,-;:---.i-l1--i-:::--!-l, . . . .. --- . I , - I.,. . i v A -1, i i . F_ 11 I I I I -9 1 a I 7 i F"I 4 1 I i i i _. i , i 9 a i -/ 1 - i i s i 1 4 i I "I I I 4 -4 _10 QO L-A to 1; A .: : 7 I - I ' : .. I ; . f : . z _ . -[ I I .. . ; :; 11 .j ] -.I - 1. 11 - I - 4---[7 I ---l-1 j 1.11Z -- ; I , - - - , - . . . . - . ._ - - 17- - - -I - _ I= .---i ".77 -117 777. r i _n po, Li : 7 _.' ; . . . . . I -- 7--'- , ---17 7:7717 --- -I E -7 6 4. . . : i- .1 . : .] I -T - -' ' i . ; . I : -I _'. 1' . z Vl_':- _- _' "'- . .. ' -.-. , _ - r. -... -I- --- :-- .: .. ' -I 1 -. 1 ... ' - ... I . - ':' - : .. .:A. . ( ; - : : ' .1 . -. . ... ... - .. i 4.1. I 'l. : . i '.. :. . .. .L: : - . i. -. - I - . I I . 1 . - I ; F I I -- l. -. ; , . . -- : -: !-_- 1 1 t .. Li_, _ - _," 'L ' 4 - --- -: : ' :... . 1 : " : _ 7 _' -,-::: . :' .; . I .1 . . .1- !_ -. -' ;. . :- . , ; i. .- :' .7-1 " ::,, 7 ; -.-.t -- - _. . . . i -__ll 1 *_1 N "IL VAJ iz 11 ---- i- : -, 1 - - ---7 .: ... i :' - : .1 : - , ;' -, : - ! . ; ; , ., . :' 1 , , .: - ; : : : '; .: , T --- :: -: - - -: . " . . ... , - . - : .: ., i .- - - . ; ,. - .--- --T .. , -f 1 : - -- I 3 ': -:: :- :,J M It lI. 7.

I

: !::- 7 : -:-, . , :'--i:: -." .. 'N ... lk _ 7[7T77T -. N I-.. . i : ': : : - _: .:_ " . , :. -. 1 :_-: - 7 I 1: .. l - -1 '-. "' .':' '; :. 1 :'::- - : 4 :' ,:I : "- -, -- -- j_ ,.!. __ - ;' :_ L :. : ._j . -, , - - f V! g,jv z .gol

(33)

W - - ! 4-; --- I ;-,:-= EEi 1 ;:- -- I .- - - , . -, --. , -- -.- -.- --- - -f : - -1- -.. - -= r . .- 4 - -7 ---. . .i : t, . L.. -.. --'- --' .' - 11 -- 7 o: ' - ,.: -I 11 ---- I I i :, -,-- I : I . : , '-, - , - ::; - ll:E- - ! ---- :: ---- -,47z J F1 -.,.; -1.1 -. - . I I 1. - .. I -. -, - . - - I.... I - I , -1 1. . .-. . - 'A -,4 IZ4

!

-4'

4 I-SI

-, If - I .. -: ..

Q ---,

'. i-

-i

. .J--7 - L.. .. - . . -: --- .1-: i , -.4- - I . .-:.,- 11 ll-,-l - ---- ; : : ; .:, j i -- in.,i, i - - -,-.; -.1. I : , - I Ir. I I I I --- : I - I I --- 4- I , +--I- -/ - 1 -- F--, 4 I I . ; -- :--,-.- ... .-- -W -_7 -- t- I(- I 4-1-H-1 -10 I' , - : I " - ; , . 1 4 1 - I ! ,i ,I . ; I I . 1 t - ; I IL; -_4 1 - I- ; , -1 ! :.:;.

E--

d : L .. I I :, ... 1-..- 17-a / I i .3 Ii = t-t-I : :- ll-,.ll;----i-;--:. '.. --- . : , . ,, .. I :-, ; I - -V, 1147 - -- :7- , -1 - i . : . ... :1 - , _: I 1 __ i. 1 ... i, : T: . -- 1 i i =i---- ... -7T7T'777-.1 .... ---- - I , . i '. 77 '-. -.4 -1; . - 1-1-1 A L '- / - I AL I --- I I .. I I i- -1 _j -: -, F- -L ; -- Lj T-7--I : .: I I ; : , 4. , , r-l L-4 - : ; I-P. I I- , il. ... . I F 1--..7- - j:. '.' i 1. --F4 4-J '17 J 1 -17 i7 --77 -- - --- --- --- 4 71 1 : . !-t o.. i- 7- 1 77 :7 ,17 . , 1 1 , I I I . ! ,1 , -'ilt-/-/ /; :-:, .- A .1 .1 I : 1 : . . . I I - -t I ; , i!' -: t i 1--t-L - I -- Lz --- ! - r - t -, , , 1 i., -.., . , 3 . .. , ; -- .1 i -- . . .1 L . I r. -. . . i . 4 7 , 7-I..--I- -,, r I - - 7 ,7. r- , .,- , , : ; , : - : , --A- :,;-, -_+,-, - -

', --

...

--- I---I ;.- 1 , :" : : :I : : . ; . I ; , r 2 , - I : . - - i-F - --7r- 7- t-.- d - --:- , I - , , , - ; -, :J, 1 -+ 1 ,1 : .: : .. - :, -: , :., . , . ;. -:, - I --: --- _ ---- :- __: - I : -'w ', 777-1 ' Z, -: 77 --- i -". , - . , . : .. I , . i " . .1 - . 1 Z . -i -: ; -I L:-: iL:-: . z . I ll- -_jr-111111-- mll 4 1=1 -7 F II-3 -i : i, - I- -:: --- 1---.. 1 ; :: . --- -- J -'- -"I--I -"I--I ; :. + ' .1 I - .. 12 . ; I 1 i -- 4-..;_-- -- iI .. I,- -I .--I-1. i i i - - . -:-, I . : , "I - I ..1, . , " - -,-, -I . : - , 2 1 a 7 5 . I . I I - - --I --. - 1 1 1 I ! ! i -i A i. 1 .I I m-I . I : I -- -+. :- ; ! . w : I -1 ---- ----1 - , -- -.. 1. I.:.:. I 1 : I, I I , 4L,--- ; 1. q ! , . . -1 , i -r. I I : : --i-7;7'.7-ea I - :1 F -:1 -, -- 1- -., I V 1'.11/-/,---/-,L---,,- 'I -1- -.- 1: NW: P/ : ;; . ... - I f - /////" i : 1. : : : :-- :-- :-- :-I ::-I ; , 5 . ': :. ..: .. .. i - I . . . I.. : -.. ; . :: : ; I - i I - : :. 1 -: '. ! i . 1. -, a: . .1. . -1 - _ .+ - -- .... - I I -,I : .-: 1: :! , _. - .? . .. . .. . j - - -J Ilk -,tvkom "V/ ,P i -- i . -- . 4 VQ I 1 4 - -: , , . 1'.., : 4 4 F .. i -e- -: --f - - I I - 11 I J I . -! 4t +-. 1-.--: -! - -1- ` -1 i-- - --,. -,--T -, . k ! : I J ... ! ! ! I f - , , + r -.- 7 . . I I / I/ I 1 , : : I r I / I , / / - : -i : ': ! i , , , 4 - + 1 , , . : .. I ., , . t, I - - .7 r : I .:, , . , , 77 ...- I I . . : ; i I, . ! t p I I . I I I ... I I -1. ..- - .- .- I I I - I , . I . , - - I . r - I 1, I .I . -T- . - 1 ..- ., ... .I .. 4 - -- l - '.. - I : : .: :,. -I-.--- - - --- -,- - -- - - --- ... . .. . ... --- -- I I -.. - - .r - -- -rr ' -. 4 --, .,. -I I I , --" . 1. ; , 1 1 -1 t t I - ,

(34)

,'me la-t- - --, -- t- - . , - , ., Z,-- , -- =. I n - ., =7, 9 , 1 - - '. 1-1- - I- --- - I -1 - . -. 11 -i. . .i ;! 7Z.-t-d : I f -.. i l. " ], - - I.- 11 -' --; -17-1--.--:. -- 77 m-,, -,- ----[-. l - " , - -1, - :- , ! ,

--1

!

--4,

- I - --- P ---- ..- -- , ... ... - . q - 2. !` -, i. k i! I -- 4a- I I- . - -, -- - - - -X 4 "' I -,:-, - Z : I T -: -, -1 t ; -,;--,--I , % %-- \ IS , j -4 :1---.7, -- \ -- , '-A, I W -- -i- --- -- 1 -:1- -11!-\*-V ... 1 i i ;- i ' - " I T -,- - -i".T T.--1. 1, : - T -- - .--- l.l--l- I -,- . -i +- , --' i -11 I - I F i -i .- . i -. -i"

I--II--_j- i, , 1.7.1-- I -V.- T -- - " - -1 - .. -- -,- I - 1; 4--l. -4-1-I I -i- !-- --- -, i i I' f -+-4---!---i----i-4---[---- !I !

--1 I I a I : f Is i 9 a .7 6 i i . 1 .71- , . Li - ---f A AL-L-LA -wil 1: J. --- -i7l .7 ... ... 77-4i i7 ... ---i J. F. 7 E1, 7-7- 7- 717777-17 =7777 77:t"-. 77:t"-.77:t"-.77:t"-.77:t"-.77:t"-.77:t"-.77:t"-. 77:t"-.77:t"-.- ..--- --- - ---L-, --11-11-,-M,!n

7

.2 r., C)

-F-

I ;".8 -I .. : -., - .. I--- _- - t-j.... .II 1 -4 Li: ---1 ., L i.: - - - - . :-11,.- 1, w. . - : :' - ::- -! . :; , - 7 :: -f ---- "-f --- -t. 0,! 4 --- .. , f- - - -- v _ : :I- '. , 4. -- , , -- , , - -, -I ! . i.:.. ,I' L, !- - ... -, -:i f - -; , , .. :.. ., 17 - , 1 1 - - -1- i- -. --- - --- I I I -1- .7. , , I1: , - t: -4 .: - 1 II'' --- ----; 1; ; - , -:i .-: I - --- rF -3 .: " I , -',-.sm .. , ,- - ."" .--. - , J -- . -- : +--. -- -4-7- --j,,- ,, -Y-1 , 'A,v trl X -fQ \Z %I tu 6 I , : I L t4 . : - . 1 :_, I.i o- :-i:7 7 -,-,: ,- --. - , i -- 7-j- I :-11, , ,, . --- l,--- t,1 -... ,::: T:,: jl%F.xgw - I ---i - !- 11, 'ZI F, ! -r - I II 1 .1:. I -7 -.. .. t - 1I - i A ; .11 -t :-- .: i I T ` I -Z -. 1 . " - I T.r ... f,-, I j -, -. 1-:.-. r ; 1 i - , -- -, ,- ; ---- -1-.- -t - .1 ... --- :44 1 -. 1 - ;- i ! ; i I .- I - I - -t i 11 ... -i : - 1- 1. - ; ! ;: -,-- -F .1 !- .1 .- I .... I I 11; . i , ,- I -1, -, J - i i. --- +- - 1 -"- -.- -; I -, 4- - L-I J I . I , -1: 11 I - I i - : f -4 -1. I 1 .... . --f 7-A #J t

(35)

11 NNIMMENOW.-. -- --- - __ i 71 - i -I .; I 4 4 : i ` - I , 4 i 1 , i I v, i I j - i '. , _i ."__1 : ___. __ _ __ T i ; -11 ., -4 ::4 .. 1, -i. , - ] - . -;.- -1 -- 117': 4 I I i. v 1 L .. iI a , L i t-I . I I . ; i i 7 i i _ I -i - - - 7 -, - I I 11. - - -. 1 i - 4 --Y i 1; ' I :-i !- : I . -1 T 1 I ... I i -I , 1 . P --- -,' , 1; T -T -P _; 1. 1. .. ... - - - - , :! : 1 - .. i - I -. I ! _ -. 1 -.-. : i I . :, r,. I :; .... - i I_ - : .. i .: i .. I -7 : I 1_ _fl . : i !_ 4 i , :,_ i -i I 'A.-Jr-. I I ... .... - - = 1 7 : . -i:: , , ., A . - . __ 7- - , t I - -.t :: [_ .i -- 7t-.1 1 I-_ A -i, , , w , - --- . F , -:. - j J -.,n r ... -7 -- L- 1-1 __ . " : ! i, 7. -_4__ -,f 4 , I". ; ! I .:,i t .- I ... .L-: : : -` V; -:.. 1.t -t-.7 i . I I-:, -__, E .- : .:, i ! , ; _: I 1 - 1 - --- ;--I - ; -:1 i i .I II ... Ir ,- ! ; - , 1 . - 1- . " " : ..I... --i , I. ...! I i I _ I .: I 1, "- ; il ... ,__ - -_ _-____I..I - ___ _-_ --.-i 9 a i i II I m . ::o;i 6 5 T--T7 77 ZZ .... .- ---IT-4-1 . .. . ... 7 7_7 7-Z 77 :T E7 77 d -- ... --- ---- ---- .`.- '-- -- , '7'-I:__,__, :-. -_ -: :. I I =___F: ;: I !_ t . , : . - , -27 __I It 144-1 Mimi% B 7 6 5 4 3 2 1 9 8 7 6 S 4 3 2 3-7 .. - ..; T I..: i :. -__ I.. i _L I f . -: ; : ;" :_! !. 1. I--- -- ---- 7- I___II__,- + : ... 1 - 1 i i , -7- ____ . :. i . ", :: :,i .. :, d.., ! . . - . -:, -_ ...- . . . .- .-- ,- .1 .I " I -- . . _I__ .. -.. I--- , - : .. ; .; I -R I - 1 1 I . .. '! - - .1 i . ; R-__ _ - - .. .. . . .- . ... I..- - - - I I ... I _ _ , 4 _ . . . . - .- . I II - . I . I . m. .I.;. : I I . IL..;. I 7 , ! ! .7 -7- -. I I- , , I ,- _ 7 I. m - - :I . . r : I : : : i , i 1 , , , - - - . . .. I . . : ,- - ! -.%.- _ .E " _' : , 7,! - , ...% 11 - I - I _. . I- - . _ . _ - I . . I I . - .. - . 1. .1 .. . - . w r. 1 , _r. , I II I I i ... - _ :_ -. -.. - . '. . .. - - - -- - . - . .... q I II . . .- 4 - , I 1 - ,- . . 7 -, = = '= .4 77b 71 . . .I- .- -- - -- .I--1-I. %- .-,_, 'i I- .- .. 1; I 1. . -r :. .-, . , I .. . - I . ! . - .. , . I ; , - . ., , . . .: . -i : ; , - I -,....- ._---- I - I 1 , -,- - .. , - -- -- I-- ---- - - -1 - . . ; ., . -. r , , I I . : 'I , -. ; , 1 : , ; i I - i I : i - " . ;. I . i .1 I I_ _i .. ; .I ; . ., : 1 . - p I . : , 1, . . - : I z . i .1 . 1 .. I I . , .: -r t .1 I . .. I - -. , 1, I : ; . ; 1: : . .iI

.- -_________ ___ -. .. .. ..- t-, - - , - --- -It- I-,--- I I- - __ I__ _ _ - --- ; -L . I __

.-I 14 (5 CA lb a lb lm I I 1 if I'l _/ /vz I I .4, fe Z I I Z P i -1 i :.1-1 -1.: 1, !: _. . I I . . i , . .t .M IN 1* IQ , 1Z Is I , A-I --- i_ .... ... ...,. -1 ... - --. i _-1 -IL 1 4 -I I - _. i- __-I T : I I- t I r .4 . , I _,_ _:__ _ _- -I -I_ t .I i , _ . I i , ! ;.- , - 1 1 -I t I !-- Zi 1. / J I I I I I I I " f e, - , . Z.; a - .- LI_ O . i , 7 _,_ , , ; .- - _i i -! 11 _ , .4 , - 1 I - _ 7-- I 1. i I - A, . z T .7, . . . - m ... .. .: I- -7:1, -.. F --.. -.. -..- j I . - I -` :-: ---- L -,._'I . . -41 1 i. . I I "I -" -, , , , , 11 _ ''. r : I I - ... . ,. - i -_... I L I 1;: E .!-- ],-_: _!-F, . , _,_ -_ 1 . . , !,. ! I I i ) ... I

(36)

INSL N A-oz W --- T--7, _Z' L7717 i i loo T 'T 4 . .... ... . ... .... .. 7. 7 r .t7-4 --7-- -7-4_4_. 77 - --- ---- --YJ 5§ VY 7 7t,

(37)

rl"l-i -1 I-. I m ,i I I I J-d --- ---- :,. 17 :-:i: .3 4 4 --F --4: V 4 7 _7F Ji T --- -i I i - - -- l- -- --- ... - - -- I ; I i I i I I I I I I - - 1 t + --. i- 4 - t f --- --1 .-, - -"-- -" - J 1. 4-7 ----l _ _ _. J, 1 -4 I4--IL

(38)

w

--- --- __._ ---1447, I I I ,I I C, U q. M Z 0 6 'A 3-is -,Cs 7z .2 2 IQ 0 61 LL w I .1% Z _,l i,'4 _`1 !4 I- I-I-I I- --S -7 5 5 4 a f7 4- -..r- T 44 14, tAX _l 11 -11 l (! 5..) /v-I S. -q !r r _- Z ,, lAl 0 p

(39)

no ,FHAFEJEETF 7 jJ IT .41L 7=7 . ---77' .... . ... T i4_i --- --- --- - A 1 - , 0 0 11%

t

1% m

i , ".1 "" -,l ,, -, 1= -t -= -,I _: --! L-1 1, - -, ` , - . \_' -.. . _. -_.., - _1 " :[ _-, .: -_ - -, , I -I . 1 ;, , : 1 , .- -, -. -- , - ; I _1 4 .I -_ __i _1,_I 4, 1 -5 I- _ ..._- I_: . c--- -- - -- ,___-1 777 4 4j _ 7+,t L IC i -:! 4-1-1 4 J_ L, 1-44-1-4 71 4 ILL r 7 -7- T-4.' 7 7i 7:_ -.7 "T 4, tz 1 J '7 74 -T l _7 jL! 71-1,-4 41 J. i 4 J JL T J 774` 7i 4 4 -;_J Z I t--4 4_1 4-t 7777 i 4 t - --- !_Jl_ L J. 7_1 17 L- T 7, _F; J -4 -A 44 Al --4 4+ t 1 j, Tr-I.-j. ' I _-l z ldL aj A p 7 " _:::td"_ 'i I , i T-- 1 --- - '.,' 1:1.1 i . I Lilllj_-, --- - JIF I _r 10 ts qo , IS _Ez"T , 4. it;- "I , I _4 .- E 'J., ti, : 'Il-, 114 7] - I I- -f _:_ 1:44 Q -1 i - -. .-,._ , L'ff,;L F _ , , : 7:177 X-,'.17 V,

(40)

IV. DISCUSSION OF RESULTS

Graph I and 2

The weight and length euilibrium curves represented., in these two-graphs correspond to specimens stored in

co -free mediums at 4 different relative 2 umidities. The

changes in length and changes in weight represented in

these graphs are due to drying only. As it is expected,

the secimens stored in mediums of lower

relative-humidi-ties loose more weight and shrink more. The only aparent discrepancy is in the case of the specimens stored in a surrounding medium of 97 per cent. In that case the speei-mens gained weight and shrank at the same time. In a

medium of hat ty-pe it is expected that secimens will gain

weight as more and more pores of the Paste bedome filled

with water, and the aste becomes hydrated. As it can be .seen in Graph 2 for samples stored in 97% relative humidity

there is an initial shrinkage in the first 27 days, but

after--that there is little change in lenr,-th.

It is interesting to note that after 151 days the

specimens have reached dimensional stability, hile their weight eilibrium has not been attained et. The only exception are the samDID s stored at 76% relative humidity,

where after 151 days, both weight" and dimensional stability

have been reached. This fact shows that the relationship

between shrinkage and weight change is not necessarily direct.

(41)

___

33.

Graphs 3 to 14

It is evident from Graphs 4 6 and that

pre-carbonation in ediums of 50% Co concentration 2 for tes

no longer -than 2 hours, and stored in an atmosphere of

52% relative hu-idit7l has no significant effect on the dimensional stability of the specimens. This is regardless of the curing time. Apparently under these conditions

the extent carbonation is insignificant,

The efect of curing time on the weight s11--ability of

specimens carbonated in mediums of 50%

CO

concentration

2

is significant. This fact is evident from Graphs t5, 5 and 7.

The spacing betyieen the seven curves in these graphs in-creases with decreasing curing time. This can be explained in the ollowing manner. As it was discussed reviously,

Verbeck 4 found that specimens that were carbonated and

dried simultaneously had iternal humidities higher than

that of the surrounding medium 52%, in this case). It

is logical to say that the longer the curing time he larger

the internal umidity. Verbeck also found that the'rate

and extent of carbonation decreases with increasing relative

humidity (above 500. Therefore it can be concluded that

the extent of arbonation is higher for samples of low curing time because the internal h= id-ity s closer to

(42)

34,

From (raphs 3 4 6 7 and the effect of the

time of carbonation on weight and dimensional stability is not very clear. The general trend of these curves

indicates that shrinkage and weight loss decreases ith

increasing time of carbonation. This is eqected because

carbonation at high hmidities precipitataes calcium carbonate

in the' surface of the secimens, clogging the -cores of the paste. Tis reduces the -oermeabilit7. -in consequence the

amount of water lost due 'o drying is reduced nd the amount

of shrird-age that occurs is decreased. Therefore the longer the time of carbonation, the lower the permeability and

the srinkage

It can be seen from Graphs 10, 12 and 4 tat when

the-concentration of CO is 10001, the tLirie o carbonation2 /0 becomes significant to the dimensional sability of te

specimens. The extent of carbonation increases ,Keith in-crease in the time of carbonation. Therefore ermeability decreases with increasing time of arbonation. The result .is that shrinkage also decreases with increasing time of

carbonation. It should be noted from these three graphs that the uring time has no effect onluhe srinkage The curves on the three graphs are ver7 smilar.

From Graphs 9 11, and 3 it is evIdent that the

se-parat! on between the dif-Perent curves in each graph

(43)

.35.

behaviour has been discussed previously. It should be noted that for the same curing times,., the separation between the curves is larger for specimens that were

rbonated in mediums of 100%

CO

concentration than for specimens carbonated in mediums here the cncentration

of CO was only 50%.2

The effect of time of carbonaflon on shrinkage

and weight loss is clearer in Graphs 9 0 1 12 13

and 14 than it is in Graphs 3 43 53 63 7 and S. In the

former it is evident that shrinkage and weight loss de-crease with increasing time of arbonation. The

ex-plana-tion for this henomenon has already been discussed.

Gra-,ohs 15 and 16

Gra-phs 15 and 16 show that the compressive srength

of Portland cement -niortars decreases with decreasing ur-ing time. This penomenon is logical because the samples cured for a longer time have a larger supply of wter to

a'tain a more complete ydration. The strength depends

on the degree of hydration of the aste.

Tnie general trend of these curves is the increase in

compressive srength with the increase of the time of car-bonation. This is expected because the extent of

carbona-tion increases with increasing carbonation time. The

extent of carbonation is inverse17 related to te per-meability of-the paste. The smaller he erper-meability the

(44)

36. reases the it s an gths are ms of higher increases

it is

rea-s -o e c iraen rea-s ion. of

carbona-ity obtained

tion. The average no eMeri-of arbon-of carbona-act can be ,,,later forces Ls calcium :)onate is When this s that were an increase I. . .71 : -, ". .. .7 -", I-I - I -,

(45)

i

37.

The second explanation is concerned with the forma-tion of gel. Further carbonation causes the CO to react.2 with the hydrated product C S fo'rming a silicate gel*

3 22

This gel increases the pern. eability of the paste*

(46)

;i

."a

38,

V. CONCLUSIONS

1. The amount of weight loss and shrinkage due to

drying increases as e relative humidity of the

surround-ing, medium decreases (Graphs and 2.

2. The relationship between the weight loss and the

shrinkage due to drying is not -necessarily drect.

(Graphs and 2.

3. Portland cement mortar secimens stored at differ-ent relative humidities reach dimensional 'equilibrium after

100 da7s- In most of the casesstudied the ueight

contin-ued to decrease after 100 davs. (Graphs and 2.

4. Pre-carbonation in mediums of 50% co

concentra-tion, for times of carbonation no 1onger than 2 hours, in an atmosphere of 52% relative humidity, has

no'signi-ficant effect on the dimensional stability of Portland

cement mortar secimens. (Graphs 4 6 and 8).

5. Pre-carbonation in mediums of 100% concentration reduces shrin]kage significantly. Shrinkage decreases with

increasing time of carbonation (Graphs 6 10 12

and 14).

6. Curing time does not modify the reduction f

shrinkage caused by -ore-carbonation. Graphs 4 6 So

10, 12 and 14)*

(47)

-39.

7. Curing time affects he amount of weight loss

reduction caused by pre-carbonation. For a constant

carbonation time, the aount o weight loss reduction

increases with decreasing curing time. Graphs 3.t 5. '7.q

11 and 13),

B. Weight loss decreases with increasing time of'

carbonation (Graphs 3 7 11 and 13).

9, The compressive strength of Portland cement mortars decreases with decreasing curing time Graphs 15 and'16).

100- The compressive strength of Portland cement ortars increases with increasing time of arbonation. Higher

strengths are obtained for specimens carbonated in mediums

0f higher CO concentrations. (Graphs 15 and 16).

2

11, The permeability of Portland cement mortars

de-el-eases with increasing time of carbonation$ until car-bonation time reaches 23 hours. Permeability starts to increase with increasing time of carIz nation, after 2)

(48)

40.

VI. RECOMMENDATIONS FOR FURTHER STUDY

1. The carbonation equipment should be redesigned.

The new system should include the following features:

no leakage2 the internal pressures suld be controllable,,

a fluid here CO2 is not soluble should be used instead of water.

2, uture studies of pre-carbonation should include

as variables, the specimen sLze and water-cem-ent ratio.

Investigations should be-m'de by exposing secimens to longer times of carbonation (longer than 72 hours).

3. Specimens should be stored in ediums of differ-ent relative humidity or times longer than 151 day to determine the time required to reach eight equilibrium.

4. An analysis sould be made to determine the rela-tionship between the eight loss due to drying and he

shrinkage due to dryingo

5. After specimens have been cured, different

dry-ing periods should be allowed to occur before

"pre-carbonating". The effect of these drying Periods on the ultimate weight and dimensional stability, is o

con-siderable, interest.

6, The experimental investigations o the effect of

pre-carbonation on the permeability of Portland cement mortar should be done again to check the results obtained

(49)

41,

7. The effect on Derme4bility of other factors such

as wauer cement ratio., concentration of CO 2Y curing time.,

etc. in combination ith pre-carbonation slaould be sdied.

S. The permeability equipment should be ira-proved in

the following areas. A funnel should be used instead of

a cylindrical tin can to prevent air from getting trapped

inside the apparatus, The area of the s-tandpipe used was

2 any

0.254 cm To prevent possibility of capillarit7,,, a standpipe of larger area should be used. But it should

be kept in mind that the increase in te area of t-he stand-pipe ill increase the time interval between readings,

since the water level will not descend as fast.

Références

Documents relatifs

Using the osmosensing signaling pathway which consists of a phosphorelay connected to a MAPK cascade, we predict signaling robustness to changes in kinetic

A Simple 96-Well Microplate Method for Estimation of Total Polyphenol Content in Seaweeds.. Zhang, Qing; Zhang, Junzeng; Shen, Jingkai; Silva, Angelica; Dennis, Dorothy A.;

Dans le cas d’un mélange riche en ciment, la chaleur dégagée pendant le durcissement du béton peut également accroître le retrait différentiel.. Les chapes de béton liaisonnées

Differential expression of these genes, actA and actB, was then investigated in three different media: (i) semisynthetic medium (SSM), which promotes the production of thiolutin;

Les résultats menés dans le cadre de cette recherche montrent que, dans ce contexte de transition énergétique, certains changements sont perceptibles dans les

As a proof-of-concept, we give in this paper a new proof of Squier’s homotopical theorem using cubical categories3.

4 :( تﺎﺻﺻﺧﻣﻟا) تﺎﻧوؤﻣﻟا – ، ﺔﯾﻟﺎﻣﻟا ةرﺗﻔﻟا ﺔﯾﺎﮭﻧ ﻲﻓ ﺔﻘﻘﺣﻣﻟا حﺎﺑرﻷا ﻲﻟﺎﻣﺟإ ﻰﻠﻋ ﺎﮭﻠﯾﻣﺣﺗ مﺗﯾ ﻲﺗﻟا ةدﺻرﻷا كﻠﺗ ﻲھ نوﯾدﻟا تﺎﺻﺻﺧﻣ كﻟذ ﺔﻠﺛﻣأ نﻣ و ﺔﻧﯾﻌﻣ ﺔﺑوﻏرﻣ

Whereas poly-epoxy polymers represent a class of materials with a wide range of applications, the structural disorder makes them difficult to model. In the present work, we use