• Aucun résultat trouvé

Séminaire MLMS φ

N/A
N/A
Protected

Academic year: 2021

Partager "Séminaire MLMS φ"

Copied!
36
0
0

Texte intégral

(1)

Séminaire MLMS

φ-FEM :

A fictitious domain method for finite element methods on domains defined by level-sets

M. Duprez

1,V. Lleras2andA. Lozinski3,

1Inria, Strasbourg, France

2IMAG, Montpellier, France

3Laboratoire de Mathématiques de Besançon, France

(2)

Outline

• The "standard" Finite Element Method

• Geometrical constraint on the mesh

• Previous Fictitious Domain Methods

φ-FEM

• Conclusions and perspectives

(3)

Weak formulation

Strong formulationof the Poisson equation

FinduH2(Ω)s.t. :

−∆u=f, inΩ u= 0, on∂Ω

H2(Ω)≈differentiable two times

Multiplying by a "test" functionv&by integration by part, one has Weak formulation

( FinduH01(Ω)s.t. :

R∇u· ∇v=Rf v ∀v∈H01(Ω).

H01(Ω)≈differentiable one times, equal to zero on the boundary

Michel Duprez φ-FEM : fictitious domain method with levelset functions 1

(4)

Standard FEM formulation

Weak formulation

( FinduH01(Ω)s.t. :

R∇u· ∇v=Rf v ∀v∈H01(Ω).

Standard FEM formulation ( FinduhVhs.t. :

R∇uh· ∇vh =Rf vh ∀v∈Vh. whereVh is a subspace ofH01(Ω)offinite dimensional.

φ-FEM : fictitious domain method with levelset functions 2

(5)

Standard FEM formulation

Finite element space

LetVh =hψkH01(Ω) :k∈ {1, ..., N}i ⊂H01(Ω). Equivalence with a matrix system

( Finduh =PUhkψkVhs.t. : R

∇uh· ∇ψk=Rf ψk ∀k ⇔

( FindUh ∈RN s.t. : AhUh =Fh

where

Ah= (R∇ψk· ∇ψj)kj Fh = (Rf ψk)k

Uh= (Uhk)k Final solution

uh =XUhkψk.

Michel Duprez φ-FEM : fictitious domain method with levelset functions 3

(6)

Lagrange continuous finite element

FE space :Vh={cont. piecewise pol. functions on aregular mesh}

Piecewise linear Lagrange FE order 1 (P1)

Order 1 (P1), dimension 2 Order 2 (P2), dimension 1

φ-FEM : fictitious domain method with levelset functions 4

(7)

Lagrange continuous finite element : shape function

Why use polynomials ?

because the computation of the coefficientR∇ψk· ∇ψl of the FE matrix is explicit andexact

Important :ifψkis not polynomial, this computation is not exact anymore

Why a mesh ?

because we cannot good approximate a function by a polynomial on the whole domain

Michel Duprez φ-FEM : fictitious domain method with levelset functions 5

(8)

Regular mesh : Geometrical condition

• Simplex (triangle, tetrahedron)

The standard FEM works under theCiarlet condition[Ciarlet 78’]

hK

ρK

< γ

hK

ρK

• In general (hexahedron,...)

The standard FEM works if the Jacobian matrix to an reference element is positive.

Important remark :If the mesh contains degenerated cells :

• It is not guaranty that standard FEM converges

• Theconditioning numberof the FE matrix is bad

φ-FEM : fictitious domain method with levelset functions 6

(9)

What is the conditioning number ?

Conditioning numberof a matrixA:

Cond(A) :=kAk2kA−1k2

For symmetric definite positive matrices :

Cond(A) := bigest eigen value smallest eigen value>1

Example ifA=

1 0 0 0 1 0 0 0 ε

!

then Cond(A) = 1/ε.

Ifεgoes to zero,Agoes to a non-invertible matrix Conclusion

the conditioning number measures theinvertibility of the matrix.

Michel Duprez φ-FEM : fictitious domain method with levelset functions 7

(10)

Poor conditioning of the system matrix

Proposition

Non-degenerated mesh :Suppose that the mesh satisfies the geometrical conditions, then

Cond(A)6C/h2 wherehis the size of the cells.

Only one degenerated cell :

Cond(A)>C/hε whereεis the size the degenerated cell.

Idea :

ψk ψk+1

h ε h

1

FE matrix :A= (aij)ij

ak(k+1)=R

∇ψk· ∇ψk+1=−1/ε

φ-FEM : fictitious domain method with levelset functions 8

(11)

Complex geometries

What can we do oncomplex geometries?

In particular how to usehexahedral meshes âQuasi-compressible elastic models : locking effect

What is the looking effect ?

• Theoretical continuous quasi-compressible models

"converge" to theoretical continuous incompressible models

• False for numerical models with tetrahedrons ! â not enough degree of freedom

Michel Duprez φ-FEM : fictitious domain method with levelset functions 9

(12)

Complex geometries

Alternative :Fictitious domain methods

Advantages

• No need to mesh

• Regular cells

Difficulties

• Adapt theweak formulation

• Conditioningof the FE matrix

φ-FEM : fictitious domain method with levelset functions 10

(13)

Outline

• The "standard" Finite Element Method

• Geometrical constraint on the mesh

• Previous Fictitious domain Methods

φ-FEM

• Conclusions and perspectives

(14)

Previous works, first works

References

Saul’ev 63’(Dirichlet), Astrakhantsev 78’(Neumann), Glowinski 92’(first proof)

Formal idea

Total energy = (energy onΩ) +ε×(energy onc) (ε <<1)

Advantage

Non-conform mesh (complex and time varying geometry) Difficulty

Discontinuity,large FE matrixandbad cond. number

φ-FEM : fictitious domain method with levelset functions 11

(15)

Previous works, XFEM : cut shape functions

References

Moes-Bechet-Tourbier 2006, Haslinger-Renard 2009 Formal idea

Cut shape function :ψk−→ψk1

Boundary condition onΓ: Lagrange multiplier

Conditioning of the matrix : stabilization on the boundary

Advantage Small FE matrix

Good conditioning number Difficulty

Non-classical shape functionsanddiscontinuityin the integrals

Michel Duprez φ-FEM : fictitious domain method with levelset functions 12

(16)

Previous works, Cut FEM : partial integration on the cells

References

Burman et al 2010-2014 Formal idea

Partial integration on the cell near the boundary

Lagrange multiplier or penalization for the boundary conditions Conditioning of the matrix : stabilization on the boundary

Advantage

Standard shape functions

Difficulty

• Integral on the real boundary, cut integral.

• Pkformulation

φ-FEM : fictitious domain method with levelset functions 13

(17)

Previous work : Shifted Bound. Method : Taylor expansion

Formal idea (Dirichlet)

Taylor expansionof the bound. cond.

Reference

Main-Scovazzi 2017 Real boundary condition onΓ:u =uD

Discrete bound. cond. onΓe:u+∇u·d=uD

Advantage No cut integral

Difficulty

• Construction ofd

• Pk,Neumann conditions

Michel Duprez φ-FEM : fictitious domain method with levelset functions 14

(18)

Outline

• The "standard" Finite Element Method

• Geometrical constraint on the mesh

• Previous Fictitious domain Methods

φ-FEM

• Conclusions and perspectives

(19)

What is the idea of φ-FEM ?

Hypothesis :

Assume thatΩandΓare given by alevel-setfunctionφ: Ω :={φ <0}andΓ :={φ= 0}.

Idea ofφ-FEM :

Include the Level-set function in the formulation to take into account the boundary conditions

Michel Duprez φ-FEM : fictitious domain method with levelset functions 15

(20)

Formal approach

ϕFEM for the Poisson Dirichlet Problem

?ut.q.

−∆u=f u= 0au bord

−→

?vt.q.∆(ϕv) =f Ω ={ϕ <0}, u=ϕv

φ-FEM : fictitious domain method with levelset functions 16

(21)

φ-FEM : weak formulation

Hypothesis :ΩandΓare given by a level-set functionφ: Ω :={φ <0}andΓ :={φ= 0}.

φ-FEM formulation : Findvhs.t.

Z

h

∇(φvh)·∇(φwh)−

Z

∂Ωh

∂n(φvh)φwh+ Stab.

Term = Z

h

f φwh ∀whWh, whereWh ={cont. piecewise pol. functions on a the mesh}.

Thenuh:=vhφas approximation of the initial problem.

Michel Duprez φ-FEM : fictitious domain method with levelset functions 17

(22)

φ-FEM : weak formulation

Stabilization terms(to ensure a good conditioning number)

σh X

E∈FΓ

Z

E

∂nhvh)

∂nhwh)

+σh2PT∈TΓ

h

R

T(∆(φhvh) +f)∆(φhwh) where[·]is the jump on the interfaceE

( ThΓ={T ∈ Th :T∩Γh 6=∅} (Γh={φh= 0});

FΓ ={E(an internal edge ofTh)such that∃T ∈ Th : T∩Γh 6=∅andE∂T}.

φ-FEM : fictitious domain method with levelset functions 18

(23)

φ-FEM : a priori error estimate

Theorem (D.-Lozinski 2020, optimal error)

Letube the continuous solution andvhtheφ-FEM solution Deformation error:|u−uh|1,ΩChkkfkk,Ωh

Displacement error:ku−uhk0,ΩChk+1/2kfkk,Ωh withC=C(φ)andkthe polynomial order.

Proposition (Optimal conditioning)

The finite element matrix ofφ-FEM satisfies Cond(A)≤Ch−2.

Michel Duprez φ-FEM : fictitious domain method with levelset functions 19

(24)

φ-FEM : Simulation of the Poisson-Dirichlet problem

Domain: circle of radius√

2/4centered at(0.5,0.5) Surrounding domain:O = (0,1)2

Level-set function:φ(x, y) = (x−1/2)2−(y−1/2)2−1/8 Exact solution:u(x, y) = exp(x)×sin(2πy)

Artificial external force :f :=−∆u Boundary :uD :=u(1 +φ)

Remark(non-homogeneous case) Ifu:=uD onΓ,

we replaceφhvh in the scheme byφhvh+uD onΩΓh.

φ < 0

0 1

1

φ-FEM : fictitious domain method with levelset functions 20

(25)

φ-FEM : Simulations in P

1

10−3 10−2 10−1

10−6 10−5 10−4 10−3 10−2

1 2

h

standard. FEM on the ext. domain standard-FEM

Φ-FEM

10−3 10−2 10−1

10−6 10−5 10−4 10−3 10−2 10−1

1 1

h

standard. FEM on the ext. domain standard-FEM

Φ-FEM

L2relative errordisplacement error H1relative errordeformation error

standard FEM on the extended standard FEM φ-FEM

domain with a perturbation ( Dirichlet :(1 +φ)u)

Michel Duprez φ-FEM : fictitious domain method with levelset functions 21

(26)

φ-FEM : Poisson-Dirichlet problem

Explanation of the numerical results

• Why better than standard FEM ?

âStandard FEM : polygonal approximation of the boundary â φ-FEM : better approx. of the bound. with a levelset

• Numerical cost ofφ-FEM :

â Good point : small size of the FEM matrix â Bad point : quadrature more expensive

integral of polynomial product

standard FEM φ-FEM

φ-FEM : fictitious domain method with levelset functions 22

(27)

φ-FEM : Stabilization and conditioning

φ-FEM inP1with stabilization φ-FEM inP1without stabilization

10−3 10−2 10−1

10−6 10−5 10−4 10−3 10−2

1 1

1 2

h H1 rel. error (deformation) L2 rel. error (displacement)

10−3 10−2 10−1

10−6 10−5 10−4 10−3 10−2

1 1

1 2

h

H1 rel. error (deformation) L2 rel. error (displacement)

10−2 10−1

102 103 104 105

1 2

h

Conditioning

10−2 10−1

102 104 106 108 1010 1012

1 10

h

Conditioning

Michel Duprez φ-FEM : fictitious domain method with levelset functions 23

(28)

φ-FEM : high polynomial order

Remarque :φ-FEM works high polynomial orders

P2 P3

10−2 10−1

10−10 10−8 10−6 10−4 10−2

1 2

1 3

h

L2 rel. error (displacement) H1 rel. error (deformation)

10−2 10−1

10−10 10−8 10−6 10−4 10−2

1 3

1 4

h

L2 rel. error (displacement) H1 rel. error (deformation)

φ-FEM : fictitious domain method with levelset functions 24

(29)

Neumann boundary condition

Consider thePoisson Neumannproblem : ( −∆u+u=f, inΩ

∇u·n=g, on∂Ω

If φ= 0 and ∇φ=nonΓ,

the last system is (formally) equivalent to ( y=−∇u, inThΓ

y· ∇φ=+g, inThΓ ≈> ∇u·n=g onΓ

Michel Duprez φ-FEM : fictitious domain method with levelset functions 25

(30)

Neumann boundary condition : weak formualtion

Find(uh, yh, ph)∈Wh(k)such that for all(vh, zh, qh)∈Wh(k) Z

h

∇uh· ∇vh+ Z

h

uhvh+ Z

∂Ωh

yh·nvh

u

Z

Γh

(yh+∇uh)·(zh+∇vh) +γp

h2 Z

Γh

(y· ∇φh+1

hphφh)(z· ∇φh+ 1 hqhφh) +σh

Z

Γih

[∂nu] [∂nvh]+γdiv Z

Γh

(divyh+uh)(divzh+vh)

= Z

h

f vh+γp h2

Z

Γh

g(z· ∇φh+ 1

hqhφh)+γdiv Z

Γh

f(divzh+vh),

whereϕhis the Lagrange interpolation ofφof orderland Wh ={(uh, yh, ph)∈C0(ΩhC0(ΩΓh)d×L2(ΩΓh) :

(uh, yh, ph)K ∈Pk×(Pk)d×Pk−1}

φ-FEM : fictitious domain method with levelset functions 26

(31)

Neumann : optimal convergence

Theorem (D.-Lleras-Lozinski 2021, optimal error)

Letube the continuous solution anduh theφ-FEM solution Deformation error:|u−uh|1,ΩChk(kfkk,Ωh+kgkk+1,ΩΓ

h) Displacement error:ku−uhk0,ΩChk+1/2(kfkk,Ωh+kgkk+1,ΩΓ

h) withC=C(φ)andkthe polynomial order.

Proposition (Optimal conditioning)

The finite element matrix ofφ-FEM satisfies Cond(A)≤Ch−2.

Michel Duprez φ-FEM : fictitious domain method with levelset functions 27

(32)

φ-FEM Neumann Poisson

Level setfunction : distance to the boundary

Exact solution:u(x, y) := sin(x) exp(y)

Sourceterm :f:=−∆u+u

ExtrapolatedNeumannboundary condition :

˜

g=∇u·∇φ|∇φ| +

10−3 10−2 10−1

10−6 10−5 10−4 10−3 10−2 10−1

1 1

1 2

h

kuuhk0,Ωh/kuk0,Ωh

|uuh|1,Ωh/|u|1,Ωh

10−3 10−2 10−1

10−10 10−8 10−6 10−4 10−2

1 2

1 3

h

kuuhk0,Ωh/kuk0,Ωh

|uuh|1,Ωh/|u|1,Ωh

FIGURELeft :P1; Right :P2

φ-FEM : fictitious domain method with levelset functions 28

(33)

φ-FEM Neumann Poisson - Sensibility to cut cells

0 0.2 0.4 0.6 0.8

10−4 10−3 10−2 10−1

θ0

h 0.217 0.109 0.0543 0.0271 0.0136

0 0.2 0.4 0.6 0.8

10−2 10−1

θ0

h 0.217 0.109 0.0544 0.0272 0.0136

FIGURESensitivity to the rotation inφ-FEM,k= 1andl= 3. Left :L2 relative error ; Right :H1relative error.

Michel Duprez φ-FEM : fictitious domain method with levelset functions 29

(34)

φ-FEM : Linear elasticity equation - Dirichlet

Model

( −div(σ(u)) =f, inΩ, u=uD, onΓ φ-FEM model

−div(σ(φv+uD)) =f, inΩ,

10−2.5 10−2 10−1.5 10−8

10−7 10−6 10−5 10−4 10−3 10−2

1 1

1 2

h

L2 rel. errorΦ-FEM H1 rel. errorΦ-FEM

[Duprez-Roussel]

φ-FEM : fictitious domain method with levelset functions 30

(35)

Conclusion

Results

For the Poisson Dirichlet/Neumann problem : Optimal convergence

Discrete problem well conditioned

Simple implementation : standard shape functions Formulation available for any order of approximation φ-FEM works for the elasticity equations

Work in progress Dynamic system Fluid structure

Implementation of elastic models in Sofa

Michel Duprez φ-FEM : fictitious domain method with levelset functions 31

(36)

Thanks for your attention !

Références

Documents relatifs

the totality of 0-bounded harmonic functions on a Riemann surface R and by On* the class of all Riemann surfaces on which every ^-bounded harmonic function reduces to a constant..

Zalmai, Efficiency conditions and duality models for multiobjective fractional subset programming problems with generalized (F , α, ρ, θ)-V-convex functions.. Zalmai,

Preda and Stancu-Minasian [18] defined classes of n-set functions called d-type-I, d-quasi type-I, d-pseudo type-I, d-quasi-pseudo type-I, d-pseudo- quasi type-I and established

[r]

[r]

Montrer que f est égale au suprémum de ses minorantes anes continues.. En déduire que f est convexe et

La qualit´ e de r´ edaction et de la pr´ esentation entrera pour une part importante dans l’appr´ eciation des copies.. Le barˆ eme tiendra compte de la longueur

[r]