• Aucun résultat trouvé

OPTICAL CONSTANTS OF LAYER STRUCTURES FROM ELLIPSOMETRIC DATA

N/A
N/A
Protected

Academic year: 2021

Partager "OPTICAL CONSTANTS OF LAYER STRUCTURES FROM ELLIPSOMETRIC DATA"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00223454

https://hal.archives-ouvertes.fr/jpa-00223454

Submitted on 1 Jan 1983

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

OPTICAL CONSTANTS OF LAYER STRUCTURES FROM ELLIPSOMETRIC DATA

S. Logothetidis, J. Spyridelis

To cite this version:

S. Logothetidis, J. Spyridelis. OPTICAL CONSTANTS OF LAYER STRUCTURES FROM ELLIPSOMETRIC DATA. Journal de Physique Colloques, 1983, 44 (C10), pp.C10-31-C10-34.

�10.1051/jphyscol:19831005�. �jpa-00223454�

(2)

JOURNAL DE PHYSIQUE

Colloque CIO, supplement au n012, T o m e

44, d k e m b r e 1983 page C

10-

3 1

OPTICAL

CONSTANTS

OF LAYER

STRUCTURES

FROM ELLIPSOMETRIC

DATA

S. Logothetidis and J. Spyridelis

Physics Laboratory, University of Thessaloniki, ThessaZoniki, Greece

~6sumi5 - I1 est possible de calculer lesconstantesoptiques nl,kl et

n,,,n,,

dl un cristal uniaxe, en utilisant des mesures ellipsom&triques sur un plan perpendiculaireB l'axe optique, avec l'aide d'un algorithme tr&s efficace.

Cette mkthode B 6t6 appliquGe au composB B-GaSe pour des longueurs d'onde de

3600

A

2 6800

A .

Abstract - With the help of an efficient algorithm it is possible to calculate the optical constants n~ . kl and rill , kll of an uniaxial crystal using ellipsome- tric measurements on a plane perpendicular to the optic axis (the cleavage

has been applied to B-GaSe compound in the spectral region

The determination of the optical constants in single-axis crystals, with the optic axis c normal to thc crystal surface, presents many difficulties. /1,2/. The method proposed by F. Meyer et a1

/ 3 / ,

according to which the optical constants of €-Case were calculated using ellipsometric data obtained from the crystal planes parallel and normal to the optic axis of the crystal, cannot be considered as a general one, due to thc fact that the layer crystals are extremely thin. N.K. Nangia et a1 /4/

havc rccently calculated, with satisfactory precision, the complex refractive index iiL normal to the optic axis c but not thc complex refractive index iill parallel to the optic axis c, from reflectivity measurements of normal and oblique incidence to a crystal plane mormal to the optic axis c of the layer compound Bi2 (Tel-,Sx)3.

In this paper we shall try to present a method for the determination of the optical constants of layer compounds, which is based on a combination of algorithmssuitablc for the solution of the non-linear least square problem of ellipsometric data.

I

-

GENERAL PRINCIPLESAW LEAST SQUARE PROBLEM IN ELLIPSOHETRY.

Ellipsometry studies the interaction between a polarized beam of light and an opti- cal medium

/ 5 / .

The change of the polarized state of the beam can be described by two independent parameters, i.e.

A

and I. In single-layer crystals, with their optic axis normal to the crystal surface, the Fresnel coefficiens will bc

1

-2

2

i

2

i.

=

[cosB-(nl - sin

8)

I / [cos8+(iif - sin 0) 1 (1)

2

5i

z

; P .

[

iilql

COSB

- (6; - sin

0 )

I i [Gl core

+

(7: -sin

8)

1

( 2 )

where

0 represents

thc angle of incidence and fil =nl -ikl, 9,

=n,,

- ikll are the prin- cipal complex refractive indices.

The Fresnel coefficients of relations

( 1 )

and

(2)

are related to the ellipsometric parameters A and

Y

as 6

= (? / > ) =

tanY.exp(jd).

P

s

For a certain wave-length

X

and for M measurements under Oi(i=l,?,..,M) different angles of incidence the following non-linear relations

will be derived: A: s

d(A,0.) and

I: = I

(A,Bi), where A=(al,a2,. . ,anlT represents the parameters vector. Due to the

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19831005

(3)

ClO-32

J O U R N A L

DE PHYSlQUE

e x p e r i m e n t a l e r r o r s a n d t o t h e n o n - l i n e a r i t y o f t h e s e r e l a t i o n s , f o r t h e d c t e r m i n a - t i o n o f t h e p a r a m e t e r s v e c t o r A , i t i s n e c e s s a r y t o a p p l y a n i t e r a t i o n mcthod t o t h e r r o r f u n c t i o n G(A) / 6 / .

For t h e s o l u t i o n o f t h e p r o b l e m i t i s n e c e s s a r y t o know t h e s e n s i t i v i t y o f G(A) i n i t s minimum r e g i o n a s w e l l a s t h e mode o f i t s c h a n g e f o r c e r t a i n d c f i n i t c v a l u e s o f p a r a m e t e r s ak / 7 / . Such a n a n a l y s i s c a n b e made w i t h t h e a i d o f a q u a d r a t i c form o f t h e T a y l o r e x p a n s i o n o f t h e f u n c t i o n G(A) a r o u n d t h e r e g i o n o f t h e b e s t v a l u e A , i . e .

w h e r e I i . .(A) r e p r e s e n t s t h e i j c l e m e n t o f H e s s i a n m a t r i x / 6 / .

1J

I n f i g . (1) t h e c r o s s - s e c t i o n s G ( a k ) a r e p r e s e n t e d when a l l t h e p a r a m e t e r s e x c e p t ak a r e f i x e d a t A*. C o n t o u r s o f G(A) combined w i t h t h e c r o s s - s c c t i o n s G(a ) c o m p l e t e thc p i c t u r e o f i t s b e h a v i o u r i n a n e x t e n d e d a r e a a r o u n d t h e b e s t v a l u e A * . k ~ h e in f o r m a - t i o n o b t a i n e d i n t h i s way f o r t h e b c h a v i o u r o f f u n c t i o n G(A) m a i n l y i n t h e a r e a o f t h e b e s t v a l u c o f G(A*) c a n b c u s e d i n o r d e r t o c h o o s e t h e b c s t a l g o r i t h m f o r a c e r t a i n o b j e c t i v e f u n c t i o n (;(A).

I n t h e c a s e o f a l a y e r compound w i t h o p t i c a l c o n s t a n t s a k ( n L , k l , n l , k l l ) we o b t a i n t h e c u r v e s o f f i g . (1). We o b s e r v c a s t r o n g d c p c n d e n c e o f f u n c t l o n ~ ( i ) on p a r a m e t e r s

5

and kl

.

We a l s o n o t i c e t h a t c u r v e s G ( n l ) , G ( k l l ) h a v e a q u a d r a t i c form a r o u n d A* . T h i s means t h a t b y a n y method, Gauss-Newton o r m o d i f i e d Gauss-Newton / 8 / , t h e c o n v e r g e n c e w i l l b e f a s t a n d t h e e v a l u a t i o n o f nL and kll p r e c i s c T h e f l a t n e s s o f c u r v e s G(nll) and G ( k l l ) a s shown i n f i g . ( I ) a r o u n d t h e mlnlmum o f G(A) s u g g c s t s a weak d e p e n d e n c e o n t h o s e p a r a m e t e r s . 'The parameters c o n v e r g e n c e w i l l b e s l o w s i n c e i t d e p e n d s on t h e v a l u e o f e l e m e n t s H i i / 6 / .

'The programme we a p p l i e d f o r t h e d e t e r m i n a t i o n o f t h e parameters (nl

,

kL

.rill

,kll ) was t h e MINIUT / 9 / . I t c o n s i s t s o f t h r e e d i f f e r e n t m i n i m i z a t i o n m e t h o d s w h i c h c a n b c a p p l i e d q u i t e i n d e p e n d e n t l y and by which wc c a n overcome t h e main d i f f i c u l t i e s f o r t h e d e t e r m i n a t i o n o f t h e p a r a m e t e r s (nl ,kL ,nil , k l l ) i . e . t h e i n i t i a l v a l u e s o f t h e p a - r a m e t e r s , t h e weak d e p e n d e n c e o f t h e e l l i p s o m e t r i c a n g l e s A and

+'

/ 1 , 2 / o n t h e p a r a - m e t e r s 11 ,kli and f i n a l l y t h e "bad'' b e h a v i o u r o f t h e f u n c t i o n G(ak) w h e r e a =TI , k k . Each o n c o f t h e t h r c e m i n i m i z a t i o n m e t h o d s we u s e d f o l l o w s a c e r t a i n p r o c c $ u r e . T e f i r s t o n e which i s a Monte C a r l o /9/ method i s a p p l i e d f o r t h e i n i t i a l m ' n ' m i z a t i o n o f t h e f u n c t i o n , s o t h a t t h e r e q u i r e m e n t f o r t h e c l o s e s t i n i t i a l v a l u c A t o f o f t h e v e c t o r p a r a m e t e r A t o t h e A* i s n o t n c c e s s a r y , e s p e c i a l l y f o r t h e m o s t p r o b l e m a t i c p a r a m e t e r s

rill

and kll. T h i s mcthod l i m i t s t h e p a r a m e t e r v e c t o r A t o t h e c l o s e s t p o s - s i b l e a r e a a r o u n d A

,

r e d u c i n g t h e v a l u e o f t h e f u n c t i o n G(A) t o a g r e a t e x t e n t . T h e s e c o n d m e t h o d , t h e o n e o f N e l d e r and Mead / 6 / , i s a s a f e a n d q u i t c r a p i d method when we a r e f a r f r o m t h e minlmum a n d c a n b e a p p l i e d f o r c o n v e r g c n c e t o t h e e x a c t minimum.

I n t h e c a s e o f o u r f u n c t i o n G ( A ) t h i s method g i v e s v e r y good v a l u e s t o t h e p a r a m c t c r v e c t o r A a n d c o n s e q u e n t l y a v c r y s m a l l v a l u e t o t h e f u n c t i o n G(A), n e c e s s a r y f o r t h e good e s t i m a t i o n o f a l l t h e p a r a m e t e r s . T h e t h i r d m e t h o d , t h c method o f F l e t c h e r / l o / , i s r a p i d a r o u n d a minimum o r a n e a r l y q u a d r a t i c a r e a a l t h o u g h s l o w e r i n t h c c a s e o f a "badly1' b e h a v c d f u n c t i o n / h / . T h i s method g i v e s v e r y good r e s u l t s f o r a l l t h e p a - r a m e t e r s i f t h e v a l u e o f G(A) i s v c r y s m a l l when t h c f i r s t i t e r a t i o n c y c l e b e g i n s and t h u s t h e p a r a m e t e r v c c t o r A i s v e r y c l o s e t o A * . T h i s c a n b e a c h i e v e d by t h e two f o r m e r m i n i m i z a t i o n m e t h o d s .

I I

-

EXPERIMENTAL PROCEDURE AND RESIII.I'S.

For t h e e l l i p s o m e t r i c m e a s u r c m c n t s a 8 - C a s e c r y s t a l o f 6 x 6 x 0 , 2 mm h a s b e e n u s e d . T h e back s i d e o f . t h e c r y s t a l was made r o u g h a n d b l a c k e n e d t o p r e v e n t u n d e s i r e d r e f l e c t i o n . E l l i p s o m e t r i c m e a s u r e m e n t s w e r e p c r f o r m c d u s i n g s t a n d a r d t e c h n i q u e s o n a G a c r t n e r L-119X e l l i p s o m e t e r i n t h e PCSA c o n f i g u r a t i o n . A s t h e m e a s u r e m e n t s had t o b e rclcascld by a s many e r r o r s a s p o s s i b l e , i t was n c c e s s a r y t o d c v e l o p s u i t a b l e p r o c e d u r e s f o r t h e a l i g n e m e n t a n d c a l i b r a t i o n o f t h e e l l i p s o m e t e r / 1 1 , 1 2 / . A s p e c i a l a t t e n t i o n was p a i d i n t h e t u n i n g o f f t h e B a b i n e t - S o l e i l c o m p e n s a t o r f o r e x a c t q u a r t e r wave r e t a r - d a t i o n / 1 3 / . T h u s , t h e r e a d i n g s w e r e t a k e n i n f o u r z o n e s t o c o r r e c t a l l d e v i a t o n s and e r r o r s . F o r m e a s u r e m e n t s i n t h e 3600 - 6 8 0 0

R

w a v e l e n g t h r e g i o n t h e e l l i p s o m e t e r was e q u i p p e d w i t h a H a l o g e n lamp and a s c t o f i n t e r f e r e n c e f i l t e r s , o f FWHM b e t w e e n 20 t o 5 0

8 .

'The a n g l e s o f i n c i d e n c e i n t h e e l l i p s o m c t r i c measurements, c o v e r c d t h e r a n g e

(4)

F i g . 1 - C r o s s s c c t i o n s o f t h e e r r o r f u n c t i o n . F i g . 2

-

Thc c o r r e c t c d o p t i c a l con- (H) f o r n p a r a m e t e r , (*) f o r kl parame- s t a n t s nl ,kL and

rill

, kll o f B-GaSc a t t c r and

(A)

f o r

rill

p a r a m c t e r and

(-1

f o r kII. room t c m p e r a t l l r e .

from 40' t o 7 0 ~ . I J s u a l l y f i v e measurements wcrc made f o r each wavelength

171e f o u r o p t i c a l c o n s t a n t s f o r each w a v e l e n t h can b e d e t e r m i n e d from t h e f i v e measu- r e d e l l i p s o m e t r i c a n g l e s (Ai "iJi), c o r r e s p o n d i n g t o t h e d i f f e r e n t a n g l e s of incidence

ei.

The c a l c u l a t i o n o f t h e f o u r o p t i c a l c o n s t a n t s ( n l , k l , n ~ l , k l l ) c o n s i s t s e s s e n t i a l l y o f successively minimizing t h c G(A) f u n c t i o n . An i n i t i a l v a l u e no and kf' f o r t h i s c a l c u - l a t i o n was computed from t h e e q u a t i o n iio = N o t a n B . ( l - 1 6 . s i , n B i / ( l + 6 i ) 2 ) 4 , w i t h o n t

i!

t a k i n g i n t o a c c o u n t t h e a n i s o t r o p y o f t h e m a t e r i a i . 'This i s t r u c f o r a f i r s t o r d e r a p p r o x i m a t i o n . A d i f f i c u l t y a p p e a r e d i n t h e i n i t i a l v a l u e s o f nf,kl;): 'So c a l c u l a t e t h o s e two, e s p e c i a l l y i n t h e r e g i o n o f w a v e l e n g t h s o v c r t h e absorption e d g c o r u n d e r t h e e n c r y y gap v a l u e , whcrc t h c v a l u e s o f k l , k l a r e much s m a l l c r t h a n t h e r e s p e c t i v e v a l u e s of t h e r e f r a c t i v e i n d i c e s , i t i s t o a p p l y t h e mcthod o f t r a n s m i t t i n g beam under v a r i o u s o b l i q u e a n g l e s o f incidence and m u l t i p l e reflections. From t h e

~llaxima and minima o f t r a n s m i t t a n c e Ts(B) and T (B), i t i s p o s s i b l e t o c a l c u l a t e t h e P v a l u e s o f t h e c o r l s t a n t s nl ,rill, t h e t h i c k n e s s e s o f t h e c r y s t a l s and t o e v a l u a t e kl a n d k l l .

S i n c e t h e R-GaSe i s t r a n s p a r e r l t f o r l i g h t n e a r X ~ 6 3 0 0

a

( f i g . 2 ) t h e d e v i a t i o n s of A from 180°, must b c due t o a n u n c o n t r o l l e d o v e r l a y e r , a l w a y s p r e s e n t i n a i r . A l s o w a t e r was found t o be a d s o r b e d p t l y s i c a l l y . Thus, a c l e a n s u r f a c e exposed t o a i r would t a k e up s e v e r a l monolayers o f w a t e r I n a few h o u r s / 3 / .

We c a l c u l a t e d t h e f o u r p a r a m e t e r s nl ,rill ,kl ,kll f o r each wavelerlgth t w i c e . Thc f i r s t t i m e wc supposed t h a t t h c GaSc s u r f a c e was f r e e o f t h a t o v e r l a y e r and s o wc a p p l i e d t h e minimizing method, g i v e n by t h c G(A) f u n c t i o n . I n t h a t c a s c t h c v e c t o r of t h e p a r a m c t e r s was A=(n1 ,kl

,?

, k l l ) T . The s e c o n d t i m e we supposed t h a t on t h e B-GaSc s u r f a c c was formcd an isotropic, homogeneous d i e l e c t r i c f i l m / 3 / , w i t h a r e f r a c t i o n

index N1 Then, i n t h e (;(A) f u n c t i o r l , t h e v e c t o r o f t h e p a r a m e t e r s was A=(nl ,kl , n ~ l , kll ,]il,d)', where d i s t h c t h i c k n e s s o f t h e l a y e r f o r which d

<A.

I n t h a t c a s e we r e - g a r d e d t h a t t h e kll p a r a m e t e r was u n e f t ' e c t e d f r o m t h e o v e r l a y e r and s o we r e d u c c d t h e dimension o f t h e v e c t o r A i n o r d e r t o rninimizc e a s i l y t h e f u n c t i o n G(A). A f t e r w a r d s we c o r r e c t c d t h e kll p a r a m e t e r which was n o t changed b e c a u s e o f t h e o v c r l a y c r .

(5)

C10-34 JOURNAL

DE

PHYSIQUE

The c o r r e c t o p t i c a l c o n s t a n t s a r e c a l c u l a t e d by t h i s p r o c e d u r e a s shown i r ~ f i g . 2 . The d e v i a t i o n i n kl p a r a m e t e r was 0 . 0 7 a t s h o r t e r w a v e l e n g t h s a n d 0 . 0 5 a t l o n g e r wa- v e l e n g t h s ( a t t r a n s p a r e n t r e g i o n ) . A s i m i l a r c h a n g e was n o t i c e d a l s o f o r t h e nl p a r a - m e t e r . While f o r t h e p a r a m e t e r s

yl

and k l l . t h e r e s p e c t i v e d e v i a t i o n was w i t h i n t h e l i m i t o f e s t i m a t i o n e r r o r . F u l l d e t a i l s w i l l b e g i v e n e l s e w h e r e ; we i n d i c a t e h e r e o n l y t h e e s s e n t i a l r e s u l t s . The c a l c u l a t i o n of n k

y

,kll,,. was good even f o r any random e r r o r o f t h e c l l i p s o m e t r i c a n g l e s :'~6,:A6 k : l b . I h e m i n i m i z i n g method we used was good f o r M=3 i n c a s e we d i d n o t r e g a r d a t f i i n f i l m . The e r r o r i n t h e e l l i p s o m e - t r i c a n g l e

A?,

b e c a u s e o f a produccd o v e r l a y e r

&A?

i n c r e a s e s w i t h i n c r e a s i n g a n g l e of i n c i d c n c e ' a n d a p p r o a c h e s t h e p r i n c i p a l a n g l e o t ' i n c i d e n c e . A comparison o f t h e p r e s e n t nl,

rill

and kl ,kl, v a l u e s v e r s u s

X

w i t h p r e v i o u s l y p u b l i s h e d r e s u l t s shows t h a t t h e p r e s e n t work a g r e e s with t h e d a t a o b t a i n e d by Meyer e t a 1 /3/, T o u l e t e l a1 /14/

and Akhundov e t a 1 / 1 5 / . D i f f e r e n c e s i n kl below t h e 3eV (-4200

a )

e n e r g y , between o u r r e s u l t s and t h o s e o f hleycr / 3 / may b e due t o t h e d i f f e r e n t growth method o f GaSe and t o t h e d i f f e r e n t t r e a t m e n t o f t h e s u r f a c e l a y e r .

111 - CONCLUSIONS.

The p r e s e n t work d e m o n s t r a t e s how c l l i p s o m e t r y , o n a s u r f a c e p e r p e n d i c u l a r t o t h e o p t i c a l a x i s c , can b e used t o d e t e r m i n e t h e o p t i c a l c o n s t a n t s o f a c r y s t a l w i t h u n i a x i a l symmetry, i n t h e case t h a t in the prvgrammc a s u i t a b l e and e f f i c i e n t a l g o r i t h m w i l l b e u s e d . By measuring on a s u r f a c e , s o u r c e s f o r s y s t e m a t i c e r r o r s might b e e a s i l y c o n t r o l l e d . To o b t a i n a c c e p t a b l e s o l u t i o n s , t h e r e q u i r e m e n t s on i n i t i a l e s t i - m a t i o n s o f t h e unknown p a r a m e t e r s

rill

and kll a r c i m p o r t a n t . A c c e p t a b l e s o l u t i o n s a r e o b t a i n e d even i f t h e m e a s u r i n g e r r o r s o f d and '4' a r c a s l a r g e a s f 0.1'.

We must be c a r e f u l i n t h e case t h a t an o v e r l a y e r i s formed on t h e s u r f a c c b e c a u s c o f a d s o r p t i o n . I n t h a t c a s e we s h o u l d a l s o t a k e i t i n t o c o n s i d e r a t i o n f o r t h e a c c u r a t e c a l c u l a t i o n o f t h e o p t i c a l p a r a m e t e r s . Our r e s u l t s f o r GaSe a r c i n good agreement w i t h p r e v i o u s l y p i l b l i s h e d d a t a .

Aknowledgmerlts

.

-

Wc wish t o t.hank Ur. K . blanolikas f o r t h i s h e l p f o r t h e i d e n t i f i c a t i o n o f t h e s t r u c t u - r e o f o u r compound w i t h t h a t o f 8 - C a s e . S . L . would l i k e t o e x p r e s s e s h i s i n d e b t e d n e s s t o t h e p u b l i c B e n e f i t F o u n d a t i o n "Al.EXANDER S . ONASSIS" f o r t h e award o f a f e l l o w s h i p . REFERENCES.

[ l

1 .

ABELES F. ,WASIIBUKK t1.A. and SOONPAA I I . 1 I . , J .Opt .Soc . A m . 6 3 (1973) 104.

[ 2

1.

JONES M . L . , SOONPM H . H . and RAO B.S., J .Opt .Soc.Am. 64, Ti974) 1591.

1 3 ) . MEYEH F.,DE KI,UIZEN/\I\R E.E. and DEN ENGELSEN D . , . J . O ~ ~ . S O C . A ~ . 6 3 (1973) 529.

1 4 1 . NA?I(;lA V . K . ,SOONPAA H.H. and RAO B . S . , .I .Opt . S o c . h . , 72 ( 1 9 8 2 ) 2 3 2 .

[ 5

1 .

AZZAM K . M . A . and UASllAKA N . M . , El l i p s o m e t r y and ~ o l a r i z d L i g h t (North-Hol land, Ncw York, 1 9 7 7 ) .

161. IBRAllIIl M . M . and BASHARA N . M . , J . O p t .Soc.Am. 6 1 (1971) 1622

[ 7

1 .

BEVERIDGE G.S .(;. and SCHECHTEII K.S., o p t i m i z a t i o n Theory and P r a c t i c e (McGraw- fii 11 Kogakusha, 197U), p . 634.

[ 8

I .

W0LI:T: M . A . , Numerical Methods f o r I l n c o n s t r a i net1 O p t i m i z a t i o n (Van Nostrand Keinhold Company, 1978)

.

I 9

I.

.JAMES I-'. and ROOS M., Comp. Phys. Commun.

10

(1975) 343. LONG WRITE-UP OF MINUI'I', CERN CO>lPLJ'rER CEN'I'RE 1977.

1101. FLETCllER R . , Comp. . I . 1 3 (1970) 317.

[ 11

I .

ZLIDLER J . R . , KOIILES

K . K

and BASFIAKA Y . M . , .Appl. O p t . 1 3 (1974) 1115.

[ 12

1.

AZZAM R . M . A . and BASIIARA N . M . , J . O p t .Soc.Am. 61 (1971) n 1 8 . [ 13

k.

AZZAM R.M.A. and KKUEGER J . A . , . I . P h y s . E8 (1975) 445.

[ 14

1.

I,E 'I'OULLEC R . , I)ICCIOLI N., MEJA'ITY M . a 2 BALKANSKI M . , IL NUOVO CIMENTO,

38R

(1977) 159.

[

i

5

1.

AKHUNDOV G . A . ,.clUSAEV S .A

.,

BAKIIYSkIEV A , E

. ,

GASANLY N .M. and WSAEVA L. G

. ,

Sov

.

Phys. Scm. - 9 (1975) 9 4 .

Références

Documents relatifs

The theoretical resonance curve R (9) is calculated with the hypothesis of a perfec- tly parallel and monochromatic light beam, whereas the real experimental beam has finite

whereas, &#34;ns similar for both forms at 8000A /lo/. Other than at 3190A, there is no prominent electroreflectance structure 1141 which might influence optical data under

According to the variational principle,the best molecular orbitals are obtained by va- rying the one-electron functions yi until E achieves its minimum value.The condition for

Both aerosol optical depth and ash plume height satellite estimates were compared with European Aerosol Research Lidar Network (EARLINET) lidar measurements and the UK’s BAe-146-

- Calculated values of density and order parameter enhancement from the best fit data for an exponential and linear profiles respectively. These are well over an

Our approach is rooted in Formal Concept Analysis (FCA) [7] and pattern structures [6], which are two frameworks for knowledge discovery that allow the comparison and the

The solid line, drawn through the index data, represents the index calculated using the free elec- tron theory with the parameters given above, and. is in very good

2014 A method for obtaining the optical constants by employing the correlation between the characteristic electron energy absorption spectrum of a substance with its