• Aucun résultat trouvé

ACCURACY IN THE DETERMINATION OF THIN FILMS OPTICAL CONSTANTS BY THE ATR METHOD

N/A
N/A
Protected

Academic year: 2021

Partager "ACCURACY IN THE DETERMINATION OF THIN FILMS OPTICAL CONSTANTS BY THE ATR METHOD"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00223480

https://hal.archives-ouvertes.fr/jpa-00223480

Submitted on 1 Jan 1983

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ACCURACY IN THE DETERMINATION OF THIN FILMS OPTICAL CONSTANTS BY THE ATR

METHOD

G. Hincelin

To cite this version:

G. Hincelin. ACCURACY IN THE DETERMINATION OF THIN FILMS OPTICAL CONSTANTS BY THE ATR METHOD. Journal de Physique Colloques, 1983, 44 (C10), pp.C10-109-C10-112.

�10.1051/jphyscol:19831023�. �jpa-00223480�

(2)

JOURNAL DE PHYSIQUE

Colloque CIO, supplément au n°12, Tome M, décembre 1983 page C10-I09

ACCURACY IN THE DETERMINATION OF THIN FILMS OPTICAL CONSTANTS BY THE ATR METHOD

G. Hincelin

CNAM, Laboratoire de Physique du Vide et des Composants Electroniques, 292, rue Saint-Martin, 75141 Paris Cedex OS, France

Résumé : On montre que l'existence d'erreurs systématiques importantes provenant des imperfections du faisceau d'analyse permettent d'expliquer la décroissance anormale de l'épaisseur calculée en fonction de la longueur d'onde dans le proche infrarouge.

Abstract : In this paper we present evidence that important systematic errors, owing to the light beam imperfections, account for the anomalous decrease of the calculated values of the film thickness as a function of the wavelength in the near infrared.

In the Kretschmann and Raether configuration /1//2/ (prism/thin metal film/vacuum), a Surface Plasma Wave (SPW) can be excited at the metal/vacuum interface, by matching the incoming wavevector component parallel to the surface Kx and the wavevector Kq

of the SPW : P

(1) n and cp are the prism refraction index and incidence angle respectively.

At a fixed frequency to, the experimental reflectance R' = f(cp) varies readily as a function of tp, and a pronounced minimum occurs at cp = cp . The optical model is ap- proximated by a perfectly plane and homogeneous film of thickness D, with a local die lectric constant £ (u), inserted between two semi infinite dielectric media of real permittivities n (to) and £„((*>) = 1 respectively.

The dielectric constant e, (to) and the thickness D of the film can be determined for each frequency io by a fitting of the theoretical R (cp) curve, computed with the help of the classical Fresnel's formula. The optical layout and measurement methods have been described in a previous publication /3/.

I - DISTORTIONS OF THE RESONANCE CURVES.

The theoretical resonance curve R (9) is calculated with the hypothesis of a perfec- tly parallel and monochromatic light beam, whereas the real experimental beam has finite angular aperture and spectral width.

The angular distribution of incident radiation flux as a function of cp, can be re- presented by a "rectangular" function F (<P) of half angular aperture Oo - The densi- ty of spectral luminance D(^) is assumed to have a triangulary shape, its half width at half maximum being denoted AX.

Denoting by V Q , ^0 the mean values of the incidence angle and central wavelength res- pectively, we assume that the experimental reflectance R1 is given by the following

convolution : "

(2) At a fixed wavelength ^0, and for a given set of the three parameters (e ,e.,D) the curve R' = f(cp0) may be numerically computed for different values of cp0. The distor- tions in the resonance curve, can be expressed in terms of the difference 6R(cp0) bet- ween R p ^ o ) and Rp(cp0) at each incidence angle cp0.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19831023

(3)

C10-110 JOURNAL DE PHYSIQUE

I n o r d e r t o c h a r a c t e r i z e t h e s e d i s t o r t i o n s i n a more s i m p l i f i e d way, we u s e a n ap- p r o x i m a t e r e l a t i o n f o r t h e t h e o r e t i c a l r e f l e c t a n c e i n t h e v i c i n i t y o f K O . t h e com- p l e x w a v e v e c t o r o f t h e SPW a t t h e boundary between t h e two h a l f s p a c e s E ~ / E ~ . For t h e plasma f i l m o f s u f f i c i e n t t h i c k n e s s D , t h e w a v e v e c t o r is a p p r o x i m a t e d by KSo = K O

+

AK /1//4/ and f i n a l l y :

J ~ ( K , ) . J ~ ( A K ) R ( K ) = l - 4.

P x 2 ( 3 )

e[K

]12

+ [Jm(Ko) + J m ( ~ K ) ]

l k x

-

Sp

The r e f l e c t a n c e h a s a d i p a t :

K: = Re(K, + AK)

The s h a p e o f t h e r e s o n a n c e c u r v e i s deduced from t h e d i p c o o r d i n a t e s

(K,,

m R,) and t h e h a l f w i d t h a t h a l f h e i g h t AK+ g i v e n by :

A t a p a r t i c u l a r optimum t h i c k n e s s DoDt, f o r which J,(AK) = Jm(K,) t h e minimum r e - f l e c t a n c e R r e a c h e s a minimum e q u a l t o z e r o . I f 6R i s s m a l l enough, i t i s o b v i o u s t h a t t h e r e s o n a n c e d i p i s n o t a p p r e c i a b l y s h i f t e d by t h e beam i m p e r f e c t i o n s

(6K: = 0 ) . W i t h i n t h e s e a p p r o x i m a t i o n s , t h e d i s t o r t i o n s c a n be c h a r a c t e r i z e d by means o f two p a r a m e t e r s o n l y :

-

~R(K:) t h e d i s c r e p a n c y between t h e e x p e r i m e n t a l and t h e t h e o r e t i c a l minimum.

- t h e b r o d e n i n g 6K ( o r 6K/AK% i n r e l a t i v e v a l u e ) .

I n t h i s way, t h e p r e v i o u s p a r a m e t e r s c a n b e e a s i l y c a l c u l a t e d w i t h t h e h e l p o f t h e r e l a t i o n ( 2 ) .

T y p i c a l v a r i a t i o n s o f 6K/AKk a n d ~R(K:)

,

f o r a n a n g u l a r a p e r t u r e a, = 0.014 d e g r e e and a s p e c t r a l w i d t h Ah = 1 mm,are shown i n f i g u r e s 1 a a n d 1 b f o r s i l v e r l a y e r s of d i f f e r e n t t h i c k n e s s e s .

Fig. 1 a a n d 1 b : V a r i a t i o n s of 8K/AK+ a n d ~R(K:) v e r s u s t h e l i g h t w a v e l e n g t h f o r s i l v e r f i l m s o f t h i c k n e s s e s : a = 60 nm; b = 50 nm; c = 40 nm.

(- c o n t r i b u t i o n o f t h e a n g u l a r a p e r t u r e a , = 0.014 d e g r e e ;

---

c o n t r i b u t i o n o f t h e s p e c t r a l w i d t h Ah = 1 nm).

(4)

I n o r d e r t o compare t h e r e l a t i v e i n f l u e n c e o f a , a n d Ah, t h e f u l l l i n e c u r v e s show t h e c o n t r i b u t i o n o f a , o n l y ( s u p p o s e d l y AXZO), w h e r e a s t h e d a s h e d l i n e c u r v e s show t h e c o n t r i b u t i o n o f Ah.

The limits o f t h e measurement u n c e r t a i n t i e s a r e a l s o r e p r e s e n t e d AR < 0.002;

AK/AK+ < 0 . 0 0 5 .

The d f s t o r t i o n s coming from a , i n c r e a s e r e a d i l y a s a f u n c t i o n o f t h e w a v e l e n g t h : t h e y a r e n e g l i g i b l e compared t o t h e measurement u n c e r t a i n t i e s a s l o n g a s A< 0.5 urn b u t become p r e p o n d e r a n t i n t h e n e a r i n f r a r e d . On t h e o t h e r hand, t h e d i s t o r t i o n s i n p r o v e n a n c e o f Ah n e v e r e x c e e d t h e l i m i t s o f t h e measurement u n c e r t a i n t i e s . I 1 - SYSTEMATIC ERRORS IN THE IR DOMAIN.

When f i t t i n g t h e t h e o r e t i c a l a n d e g p e r i m e n t a l r e s g n a n c e c u r v e s , t h e d i s , t o r t i o n s b e i n g i g n o r e d , s y s t e m a t i c e r r o r s 6 e r ' 6Se. 1 and S D o c c u r i n t h e v a l u e s o f t h e p a r a m e t e r s . F o r s m a l l v a r i a t i o n s d e r , d e . , dD o f t h e s e p a r a m e t e r s , t h e c o r r e s p o n - d i n g v a r i a t i o n s i n t h e s h a p e o f t h e r e s o n a n c e c u r v e dKx, dRm and ~ ( A K m ) c a n b e

e x p r e s s e d a s f o l l o w s :

4

The A ( I , J ) c o e f f i c i e n t s o f t h e m a t r i x [ A ] o f t h e p a r t i a l d e r i v a t i v e s a r e numeri- c a l l y computed from r e l a t i o n ( 4 ) t o ( 6 ) . The s y s t e m a t i c e r r o r s a r e t h e n s o l u t i o n s o f t h e s y s t e m ( 7 1 , t h e r i g h t member b e i n g [6K! = 0 , ~R(K!), SKI

6Ser which i s r o u g h l y p r o p o r t i o n a l t o t h e a n g u l a r s h i f t o f t h e r e s o n a n c e d i p , c a n be I g n o r e d i n a f i r s t a p p r o x i m a t i o n .

I t i s o f i n t e r e s t t o d i s t i n g u i s h t h e p a r t i a l e r r o r s owing t o t h e b r o a d e n i n g 6K

K R R

(SKEi and 6 D) from t h e s e owing t o t h e ~ R ( K ; ) t e r m ( 6 ei and 6 D)

,

w i t h

K R K R

6 ' ~ ~ = 6 e i + 6 E . and 6% = 6 D

+

6 D. We have computed t h e s y s t e m a t i c e r r o r s i n t h e c a s e o f s i l v e r l a y e r s o f t h i c k n e s s e s Dl = 44 nm and D2 = 60 nm r e s p e c t i v e l y , t h e former c o r r e s p o n d i n g t o D < D t h e l a t e r t o D > Dopt

.

K O P ~ ' R s

T i g . 2 shows t h e v a r i a t i o n s o f 6 E:, 6 E,, 6 6; ( u p p e r c u r v e s ) and gRD, 6 K ~ , 6 ' ~

I I I

( l o w e r c u r v e s ) v e r s u s t h e w a v e l e n g t h i n t h e s p e c t r a l domain 0.6 t o 0.9 ym.

F i g . 2 : S y s t e m a t i c e r r o r s SSc.

a n d 6 ' ~ ( f u l l l i n e ) , f o r s i l v e r f i l m s o f t h i c k n e s s Dl = 44 nm (DID ) a n d D2 = 60 nm

o p t

(D>Dopt) a s a f u n c t i o n o f A.

c u r v e s b : S y s t e m a t i c e r r o r s 6 S ~ i and 6 S ~ , i f t h e r e l a t i v e b r o a d e n i n g is i n c r e a s e d by 70%.

V e r t i c a l b a r s show t h e l i m i t s o f measurement u n c e r t a i n t i e s .

(5)

ClO-1 12 JOURNAL DE PHYSIQUE

Whatever t h e w a v e l e n g t h , a b r o a d e n i n g o f t h e r e s o n a n c e l e a d s t o a p o s i t i v e e r r o r

K K

6 c; and a n e g a t i v e e r r o r 6 D.

.L

On t h e o t h e r hand, t h e minimum i n c r e a s e & R ( K ~ ) l e a d s t o Op o s i t e e r r o r s , a c c o r d i n g o p t

t o t h e c o n d i t i o n D < D o r D > Dopt; i . e . Both SRei, 6

rP

D a r e n e g a t i v e i n t h e c a s e D < D and p o s i t i v e i n t h e c a s e D > Dopt.

o p t A l s o shown a r e t h e u p p e r limits o f

i n t r i n s i c measurement u n c e r t a i n t i e s AE; a n d AD, c a l c u l a t e d i n t h e same way f o r a

I

p e r f e c t beam ( A X = a. = 0 ) a n d a b s o l u t e u n c e r t a i n t i e s on t h e e x p e r i m e n t a l v a l u e s dq < 0 . 0 1 d e g , AR < 0 . 0 0 2 , AK/AK+ < 0.005

S e v e r a l p o i n t s s h o u l d b e commented upon :

a ) A p a r t i a l c o m p e n s a t i o n o f t h e s y s t e m a t i c e r r o r s o n e . ( f o r D < D ) a n d o p t

D ( f o r D > D ) is o b s e r v e d . I n b o t h c a s e s l$ci

1

o r

I

$D\ n e v e r e x c e e d Asi o r AD o p t

r e s p e c t i v e l y .

K R

b ) I f D < Doot t h e n e g a t i v e v a l u e s o f d D a n d d D l e a d t o a c a l c u l a t e d t h i c k n e s s

- 8

v a l u e i n f e r i o r t o t h e t r u e t h i c k n e s s o f t h e l a y e r . The s y s t e m a t i c e r r o r

l & S ~ I

grows as a f u n c t i o n o f t h e w a v e l e n g t h a n d becomes g r e a t e r t h a n AD, beyond X =0.75um

R K

C) I n t h e c a s e where D > Dopt, 6 ci a n d 6 ci a r e p o s i t i v e , t h e n 6 ' ~ ~ i n c r e a s e s r e a d i l y v e r s u s A, a n d i m p o r t a n t e r r o r s a r e o b t a i n e d on t h e v a l u e s o f ei.

A s a m a t t e r o f f a c t , numerous e x p e r i m e n t s h a v e shown t h a t t h e c a l c u l a t e d t h i c k - n e s s a l w a y s d e c r e a s e s i n t h e i r domain a s w e l l f o r D<Dont, a s f o r D >DoDt, and t h e p r e c e d i n g r e s u l t s d o n o t t o t a l Ty a c c o u n t f o r t h e o b s e r v e 2 a n o m a l i e s .

We w i l l e m p h a s i z e t h a t t h e r e l a t i o n ( 3 ) i s t o o a c r u d e a p p r o x i m a t i o n f o r t h e e x a c t s h a p e o f t h e r e s o n a n c e d i p . When u s i n g t h e F r e s n e l ' s f o r m u l a i n p l a c e o f t h e s i m - p l i f i e d r e l a t i o n ( 3 ) , t h e e x a c t r e l a t i v e b r o a d e n i n g i s a l w a y s g r e a t e r t h a n GK/AK?, w h i l e t h e d ~ ( k ; ) t e r m is i n good a c c o r d a n c e . I n c r e a s i n g a r b i t r a r i l y SK/AK by 70

+

X

i n o u r a p p r o x i m a t e model, we o b t a i n t h e c u r v e s b , i n b e t t e r a g r e e m e n t w i t h t h e ex- p e r i m e n t a l o b s e r v a t i o n s .

CONCLUSION.

I n t h e i r domain, i m p o r t a n t d i s t o r t i o n s i n t h e r e s o n a n c e c u r v e s a r i s e from t h e an- g u l a r apertures, w h i l e t h e i n f l u e n c e o f AX r e m a i n s n e g l i g i b l e . These d i s t o r t i o n s l n v o l v e a n e g a t i v e s y s t e m a t i c e r r o r 6 " ~ which a c c o u n t s f o r t h e anomalous d e c r e a s e o f t h e measured t h i c k n e s s a s a f u n c t i o n o f A . Moreover a n i m p o r t a n t p o s i t i v e s y s - t e m a t i c e r r o r &'E i s i n d u c e d when D > Dopt, w h i l e i t i s o f minor i m p o r t a n c e i n t h e case where D

:

Dopt.

REFERENCES :

/1/ E . KRETSCHMANN, Z. P h y s i k , 241, (19711, 313.

/2/ E. KRETSCHMANN a n d H. RAETER, Z. N a t u r f o r s c h A 23 (1968) 2135.

/3/ G. HINCELIN, Phys. Rev. B 2 4 (1981) 787.

/4/ I . POCKRAND, S u r f . S c i . 7 2 (1978) 577.

Références

Documents relatifs

In practice, for retrieving the rate constant k 1 , the HO 2 and DO 2 absorption profiles for a series of experiments at different Cl 2 concentrations (typically 6 at each

Second, because of the longitudinal periodicities of the appendages carried by the ODPs (dynein arms, nexin links and radial spokes) and the cylindrical organization of the

The delays in producing the Target Tracker signal including the scintillator response, the propagation of the signals in the WLS fibres, the transit time of the photomultiplier

insulation thickness between the coil and cylinder is expected to be less than 1 mm, by using the internal winding method. The design parameters of the TOPAZ solenoid are shown

The whole facility can be functionally divided into two sections: (1) a front end consisting of the polarized ion source, the 20 keV beam transport, the RFQ linear accelerator,

Then, the fraction of energy dissipated by the skins and the core was calculated for different frequencies and for every sandwich con fi guration. The results are presented in Fig.

2014 A method for obtaining the optical constants by employing the correlation between the characteristic electron energy absorption spectrum of a substance with its

We present a detailed analysis of the convergence properties of the finite cell method which is a fictitious domain approach based on high order finite elements.. It is proved