• Aucun résultat trouvé

INTERPRETATION OF DATA OBTAINED FROM MÖSSBAUER, ESR, SUSCEPTIBILITY, OPTICAL AND XPS MEASUREMENTS

N/A
N/A
Protected

Academic year: 2021

Partager "INTERPRETATION OF DATA OBTAINED FROM MÖSSBAUER, ESR, SUSCEPTIBILITY, OPTICAL AND XPS MEASUREMENTS"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: jpa-00219646

https://hal.archives-ouvertes.fr/jpa-00219646

Submitted on 1 Jan 1980

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INTERPRETATION OF DATA OBTAINED FROM MÖSSBAUER, ESR, SUSCEPTIBILITY, OPTICAL

AND XPS MEASUREMENTS

A. Trautwein

To cite this version:

A. Trautwein. INTERPRETATION OF DATA OBTAINED FROM MÖSSBAUER, ESR, SUSCEP-

TIBILITY, OPTICAL AND XPS MEASUREMENTS. Journal de Physique Colloques, 1980, 41 (C1),

pp.C1-95-C1-102. �10.1051/jphyscol:1980116�. �jpa-00219646�

(2)

JOURNAL DE PHYSIQUE Colloque Cl, suppl6ment au no 1, Tome 41, janvier 1980, page C1-95

INTERPRETATION OF DATA OBTAINED FROM M~SSBAUER, ESR, SUSCEPTIBI LITYr OPTICAL AND XPS MEASURWNTS

A. Trautwein

Fachbereich Angewcmdte Physik, UniversitZEt des SaarZandes, 6600 SaarbrUcken 11, W-Germany.

A b s t r a c t . - Molecular o r b i t a l c a l c u l a t i o n s a r e d e s i g n e d t o c a l c u l a t e t h e e l e c - t r o n i c and magnetic s t r u c t u r e f o r m o l e c u l e s o r c l u s t e r s . With t h e c a l c u l a t e d e l e c t r o n i c s t r u c t u r e ( e i g e n v a l u e s & and e i g e n v e c t o r s y o f t h e r e l e v a n t e l e c t r o - n i c Hamiltonian) i t i s i n p r i n c i p l e p o s s i b l e t o e v a l u a t e s p e c t r o s c o p i c d a t a from c o r r e s p o n d i n g e x p e c t a t i o n v a l u e s

<yil

8 1

?gf> ,

where

Ti

r e p r e s e n t s t h e i n i t i a l and ?gf t h e f i n a l e l e c t r o n i c s t a t e , and 1s t h e a p p r o r i a t e o p e r a t o r

(i .e.

d(P)

f o r d e r i v i n g e l e c t r o n and s p i n d e n s i t i e s , ( 3 1 q

-

-T"$+/T' f o r e l e c t r i c f i e l d g r a d i e n t s , $ f o r d i p o l e moments and t r a n s i t i o n s , ~ + 2 g f o r magnetic mom- m e n t s ) . I n c l u d i n g e n e r g y s p a c i n g and Boltzmann p o p u l a t i o n o f e l e c t r o n i c s t a t e s i n t h e c a l c u l a t i o n l e a d t o t e m p e r a t u r e dependent d a t a . E x p e r i m e n t a l d a t a o b t a i - ned from Mijssbauer, ESR, s u s c e p t i b i l i t y , o p t i c a l and XPS measurements a r e r e l a - t e d t o t h e e x p e c t a t i o n v a l u e s mentioned above. The c a l c u l a t i o n a l p r o c e d u r e w i l l be d e s c r i b e d , and comparison o f c a l c u l a t e d and measured d a t a w i l l be p r e s e n t e d .

1. I n t r o d u c t i o n . - The mutual i n f l u e n c e o f motion i s j u s t a s it would b e i f t h e nu- e l e c t r o n i c s t r u c t u r e c a l c u l a t i o n s and c l e i were a t r e s t a t t h e p o s i t i o n t h e y oc- s p e c t r o s c o p i c measurements h e l p s t h e t h e o - cupy a t t h a t same i n s t a n t (Born-Oppenhei- r e t i c i a n t o t e s t t h e r e l i a b i l i t y o f t h e mer a p p r o x i m a t i o n ) . Then t h e e l e c t r o n i c v a r i o u s a p p r o x i m a t i o n s u s u a l l y i n v o l v e d i n system i s d e s c r i b e d by t h e Hamiltonian ( i n h i s c a l c u l a t i o n s and t h e e x p e r i m e n t a l i s t a . u . )

t o i n t e r p r e t h i s d a t a . Molecular o r b i t a l

H

A =

~ ( - f v ? - ; & , ) + ~ -

n N

"

4 1

(MO) c a l c u a l t i o n s a r e d e s i g n e d t o c a l c u l a - r.4 ;>j 1;

- 51 (1)

t e t h e e l e c t r o n i c and magnetic s t r u c t u r e o f m o l e c u l e s o r c l u s t e r s . I n t h e p r e s e n t communication t h e b a s i c p r i n c i p l e of t h e c a l c u l a t i o n a l p r o c e d u r e ( s e c t i o n 2 ) i s d e s c r i b e d , some common approximate methods a r e mentioned ( s e c t i o n 3 ) , m o l e c u l a r ex- p e c t a t i o n v a l u e s a r e d e f i n e d ( s e c t i o n 4 ) , and c a l c u l a t e d e l e c t r i c f i e l d g r a d i e n t s

( s e c t i o n 5 )

,

e l e c t r o n c h a r g e d e n s i t i e s a t t h e n u c l e u s ( s e c t i o n 6 )

,

i n t e r n a l magnetic f i e l d c o n t r i b u t i o n s ( s e c t i o n 71, magnetic s u s c e p t i b i l i t y and g - f a c t o r s ( s e c t i o n 81, e n e r g i e s ( s e c t i o n 9 ) , d i p o l e moments and XPS i n t e n s i t i e s ( s e c t i o n l o ) a r e p r e s e n t e d f o r some compounds and compared w i t h expe- r i m e n t a l d a t a .

2 . B a s i c P r i n c i p l e . - A m o l e c u l a r system c o n s i s t i n g o f N n u c l e i and n e l e c t r o n s i s d e s c r i b e d by t h e t o t a l H a m i l t o n i a n , which i n c l u d e s motion and i n t e r a c t i o n o f n u c l e i and e l e c t r o n s . However, we c a n r e s t r i c t o u r s e l v e s t o t h e e l e c t r o n i c p a r t of

Htota3

t h i s assumes t h a t t h e e l e c t r o n s a d j u s t themselves t o new n u c l e a r p o s i t i o n s s o r a - p i d l y , t h a t a t any i n s t a n t t h e e l e c t r o n

where Z k and a Rk a r e t h e c h a r g e and t h e po-

s i t i o n v e c t o r of n u c l e u s k , and

gi

i s t h e p o s i t i o n v e c t o r o f e l e c t r o n i. Each o f t h e n e l e c t r o n s may be a s s o c i a t e d w i t h a one- e l e c t r o n f u n c t i o n

yi,

N c a l l e d s p i n o r b i t a l , which i s a p r o d u c t o f a spa_tial and a s p i n p a r t :

G i ( ? , $ )

=

%(;I X ; ( S > .

The t o t a l n - e l e c t r o n wavefunction i s now b u i l t up a s an a n t i s y m m e t r i z e d p r o d u c t o f m o l e c u l a r s p i n o r b i t a l s

Such a n a r r a y o f s p i n o r b i t a l s , known a s S l a t e r d e t e r m i n a n t , i s t h e s i m p l e s t wave- f u n c t i o n which s a t i s f i e s t h e antisymmetry p r i n c i p l e . The e l e c t r o n i c p a r t o f t h e t o - t a l e n e r g y of t h e system i s d e r i v e d from e q s . ( 1 ) and ( 2 ) by

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1980116

(3)

C1-96 JOURNAL DE PHYSIQUE

According to the variational principle,the best molecular orbitals are obtained by va- rying the one-electron functions

yi

until E achieves its minimum value.The condition for the minimum of energy leads to the dif- ferential equations, also termed Hartree- Fock (HF) equations

where

- Ei

are orbital energies, and where A J . is the Coulomb operator and K is the

I j

exchange operator. The orbitals

yi

obtai- ned from the solution of these equations

(4) are referred to as HF-MO's.

For molecular systems the direct solution of eq. (4) is impracticable. It is more convenient to approximate the HF-MO's by a linear combination of atomic basis orbi- tals

qP

(LCAO)

where the (&may be Slater type orbitals (STO' s ) or Gaussian type orbitals (GTO' s) or linear combinations of STO's or GTO's.

The coefficients cp; are now optimized so as to give minimum energy. This procedure leads to a set of equations, which are al- gebraic (Roothan equations) l and for any molecular size much easier to handle than the HF equations which are differential equations :

with the Fock matrix

the overlap matrix between AO's

(P,,

and

$,

the bond order or density matrix

the one-electron energy matrix

and the four-center Coulomb and exchange integrals J( P V

, A 6

) and K( P A , v b ) .

The Roothan equations (6) can be transfor- med to a standard eigenvalue problem,which yields MO energies E i as well as LCAO-MO

coefficients c Ai. Since the Fock matrix depends on the LCAO-MO coefficients c i

,

c5i through PAC

,

the solutions of (6) can achieve selfconsistency by stepwiseim- provement of c ~ ; : with an initial guess of cai the Fock matrix Fp, is evaluated and the Roothan equations are solved; this leads to a new set of coefficients ca;

,

and so on.

3. Approximations.- Eq. (6) describes clo- sed-shell cases. A generalization of Root- han's equations for open-shell cases Is gi- ven by separate representation of exchange

-

L

interaction for or and R spins in eq. (6)

.

Calculations in which all integrals are worked out explicitly using Roothan's pro- cedure are termed ab initio calculations.

The amount of computation time requiredfor such accurate calculations, especially for large systems, can became extremely high.

Thus, for many chemical and physical pro- blems, where qualitative or semiquantitati- ve knowledge of the MO's is sufficient to extract the necessary information, approxi- mations to the Roothan's equations may be considered. A number of approximate MO the- ories have been developed, as for example Hfickel methods3-' (nonextended

,

extended,

extended and iterative), zero differential overlap methods6-' (CNDO,INDO,NDDO,NINDO)

,

pseudo-potential methods lo-' (one-elec- .tron approximation of two-electron contri-

butions by model potentials such as in the X, method).

In the present contribution the electronic structure and expectation values for mole- cules and clusters have been derived on the basis of the iterative extended Huckel theory (IEHT), in some cases including a li- mited configuration interaction calculati- on' ; and for some smaller molecules a mo- del potential method12 was used.

4. Expectation Values.- In order to compa- re experimental data with calculated va- lues we define the expectation value of a spatial one-electron operator 8

[= d '

($1 for electron charge and spin density, ( 3pq-r2&) / r 5 for electric field gradient,

2

for di-

pole manent)

4 0 ) =

5,

n;

Ilyie(;)

yi(;) d ;

,

(11)

(4)

where ni i s t h e number of e l e c t r o n s i n MO

Yi.

S u b s t i t u t i n g t h e LCAO s o l u t i o n ( 5 ) i n - t o (11) y i e l d s

From eq. ( 1 2 ) it i s o b v i o u s t h a t a l l mole- c u l a r e x p e c t a t i o n v a l u e s c o n s i s t of a mole- c u l a r p a r t Ppu

,

which i s d i r e c t l y d e r i v e d from t h e M O ' s

Yi

( s e e e q . ( 5 ) and ( 9 ) ) , and of a n atomic p a r t t o > a t , which can b e e v a l u a t e d from t h e b a s i s A O ' s

<p,

and

(P, .

I n Mdssbauer s p e c t r o s c o p y where we measure a t a s p e c i f i c s i t e k w i t h i n a m o l e c u l a r sy- stem we may d i s t i n g u i s h t h r e e d i f f e r e n t c o n t r i b u t i o n s t o

<

o

>

at

,

depending on

( i ) whether b o t h

+,,

and

qy

b e l o n g t o s i - t e k ( d i r e c t o r v a l e n c e c o n t r i b u t i o n ) ( i i ) whether o n l y

9,

b l o n g s t o s i t e k , b u t

+,

t o a l i g a n d o n ) , and

-

(iii) whether b o t h ,

qp

and &t b e l o n g t o l i g a n d s ( l a t t i c e o r l i g a n d c o n t r i b u t i - o n ) .

-

5 . E l e c t r i c F i e l d G r a d i e n t and Quadrupole S p l i t t i n g . - A s a f i r s t example f o r c a l c u l a - t i n g e x p e c t a t i o n v a l u e s a c c o r d i n g t o eq.

( 1 2 ) we d e r i v e e l e c t r i c f i e l d g r a d i e n t s ( E FG). The c o r r e s p o n d i n g t e n s o r o p e r a t o r f o r a l l n e l e c t r o n s and N n u c l e i i n t h e mole- c u l e i s

I n c a s e t h a t c o r e e l e c t r o n s of t h e Msssbau- e r i s o t o p e a r e e x c l u d e d from t h e LCAO ba- s i s s e t i n o r d e r t o save computer t i m e ( i . e .

2 6

f o r 5 7 ~ e : I s

...

3p ) , e q . ( 1 3 ) h a s t o b e m o d i f i e d by t h e a p p r o p r i a t e S t e r n h e i m e r

s h i e l d i n g f u n c t i o n y ( r )

Case ( i ) and (iii) of s e c t i o n 4 r e d u c e s t o t h e well-known e x p r e s s i o n s

and

I t i s worth n o t i n g a t t h i s p o i n t t h a t R f o r i r o n i s n o t 0 . 3 2 , which i s v e r y o f t e n used i n t h e l i t e r a t u r e , b u t 0.12 i f 3d 5 b e l o n g s

t o t h e c o r e I 4 , I 5 , and 0.08 i f a l l 3d e l e c - t r o n s a r e i n c l u d e d i n t h e LCAO b a s i s s e t 15

.

For heavy Mtjssbauer i s o t o p e s ( i o d i n e ) it

,.

V

might even happen t h a t w i t h i n a b o u t 2 A

~ ( r ) h a s n o t y e t r e a c h e d i t s a s y m p t o t i c v a l u e 'jr,. R- and *-values f o r s e v e r a l e l e m e n t s and i o n s have been e v a l u a t e d un- d e r v a r i o u s a p p r o x i m a t i o n s i n o u r group 15

.

The e v a l u a t i o n of t h e o v e r l a p c o n t r i b u t i o n t o t h e EFG, c a s e ( i i ) i n s e c t i o n 4 , r e q u i - r e s t h e knowledge o f

r ( r ) .

F i g u r e 1 shows t h e S t e r n h e i m e r s h i e l d i n g f u n c t i o n f o r Fe 2+

w i t h ( w i t h o u t ) 3d 6 e l e c t r o n s

.

F o r t h e p r e s e n t c a l c u l a t i o n s , o f c o u r s e , t h e ( r ) c u r v e r e p r e s e n t e d by t h e broken l i n e h 8 s t o be c o n s i d e r e d , b e c a u s e t h e 3d e l e c t r o n s a r e a l r e a d y i n c l u d e d i n o u r LCAO b a s i s s e t . The c o n t r i b u t i o n ( i i ) i s f i n a l l y d e r i v e d

1 6 from a n u m e r i c a l i n t e g r a t i o n p r o c e d u r e

.

I n T a b l e 1 we l i s t t h e v a r i o u s c o n t r i b u t i - ons t o V z z f o r f e r r o c e n e , Fe (C5H5) 2,and the iron-pentacyanide-derivatc , \ f e ( C N ) 5 ~ ~ 3 ] 3-

,

and compare V z z (

q

=0) w i t h

A

E~ (exp. )

.

-12

0 1 2 3 L 5 r in ou.

F i g . 1 : S t e r n h e i m e r s h i e l d i n g f u n c t i o n

r ( r )

f o r ~ e * + w i t h 3 d 6 e l e c t r o n s ( s o l i d l i n e ) a n d w i t h o u t 3 d e l e c t r o n s ( b r o k e n l i n e ) . Ta- k e n f r o m r e f . 1 5

T a b l e 1: V a r i o u s c o n t r i b u t i o n s t o t h e EFG c o m p o n e n t V Z z ( i n mms-l) f o r F e ( C g H g ) 2 and [ ~( C N ) C ~ N H ~ ] e 3 - ; f o r Fe (CgHg) 2 t h e asymme- t r y p a r a m e t e r q i s z e r o , f o r [ ~( C N ) e ~ , N H ~ ] 3-

t a k e s t h e v a l u e s 0 . 1 4

zrc con~lbyrlen.

I

r . ( ~ ~ ~ ~ l ~

1

~ . ( C N I ~ S ! J ~ J ~ - v ~ ~ l a n c * , t r a Pa36 I+ 4.29 w.35

--.~--- Crm 1lg.d

COX..

th. tot.1 vz= I. to.24.

lbl COod, M.L., Butt4n.. J . , Poyt, 0 . . m, W.Y. Aced. Soi. 1)9 119741 193.

(01 U f l * ~ , U., W.vwlrthr w., Pluck, E . , xuhn. PI, ~I-I.uN(, 8 . . Physik 2 (1963) 311

from .-.41 119- fson P e 4 p 1igand cram li9.na- ll',.nd W t.1 V=,

r14.67 r7.70

+ 0.34 + 1.43

- 5.01

+ 1.66"~

-0.05 -0.22 Q.15 Q . 6 9

(5)

C1-98 JOURNAL DE PHYSIQUE

Further examples for EFG calculations as described above, which are included inthis volume, are on garnets (see G. Amthauer et al)

,

and on Fe (alkyl-dithiocarbamate) 2C1, I

(see V.R. Marathe et al).

Also in this volume Lauer et a1 present a contribution, which describes the evalua- tion of Sternheimer factors and functions of various elements and ions.

6. Electron Density at the Mossbauer Nu- cleus and Isomer Shift.- From eq. (1 2) we derive the electron charge density at the nuclear site of a Mossbauer isotope as

It turns out that the overlap and ligand contributions to

9

(0)

,

case (ii) and (iii) in section 4 , are in most cases negligible

T a b l e 2 : R e l a t i v i s t i c e l e c t r o n c h a r g e d e n s i t i e s

1

-

i n a;3 f o r Fe 3d5 a n d Fe 3d6 c o n f i g u r a - t i o n . Taken from r e f . 1 8

o r b i t a l ,U Fe 3d 5 Fe 3d 6

1 s 6798.7 6798.9

2 s 644.1 644.1

3 s 90.1 88.4

Post et all have derived

3

(of values for ocbahedral FeF6- and Fe(CN)6-clusters from ab initio MO calculations. Fig. 2 shows the linear proportionality between their calculated

9

(0) values and experimental isomer shift

( 6 )

data according to the relation

with a mean shape of 0( = -0.24ko.02 a.3

-

1

rnms

.

because of the relatively steep decay of the ligand wavefunctions. However, consi- derable influence upon ?(o) comes from Ppp and

I$),

(0)

1 ,

case (i)

.

Taking 5 7 ~ e again as an example, we consider p = Is,

2s, 3s, 4s. (Relativistic contributions from p-electrons are minor, additionally they are absolutely negligible with re- spect to differences in ?(o) between two compounds) 7. Rewriting eq. ( 16) approxi- mately by

we distinguish three contributions to

(3

(0) :

(i) I5qp(o)

1

values, given in Table 2 for Fe 3d and 3d6 configuration, indicate the amount of potential shielding of nuclear potential, and its influence upon

9

(0)

by adding one 3d electron to Fe 3d (poten- 5 tial contribution to

9

(0) )

.

(ii) The de- viation of the elements Pw ( p = I s, 2s, 3s) from 2 describes the amount of inter- action of core orbitals with ligand orbi- tals (overlap distortion contribution to

9

(0) )

.

Due to the extremely large number for

1 el

(0)

I

even very small deviations

Of Pls,ls from 2 may have influence upon

y

(0) to a considerable extend. (iii) The bond order matrix element P4s,4s is a measure of the valence contribution to

cj (0)

.

F i g . 2 : C a l c u l a t e d r e l a t i v i s t i c e l e c t r o n c h a r g e d e n s i t i e s v e r s u s measured isomer s h i f t s . Taken from r e f . 19

In MO calculations with limited basis set (i.e. without Fe Is, 2s, 3s) the overlap distortion contribution to

7

(0) is evalu- ated from a separate reorthonormalization procedure l 7 18. For FeF2 which was repre- sented in the IEHT-MO calculations by a [ F ~ F ~ ] 4- cluster, we calculated pressure dependent charge densities

9

(01, the va- rious contributions of which are shown in Fig, 3 together with the calculated change of Fe 3d and 4s population with pressure?O In Fig. 4 we finally compare pressure de- pendent isomer shifts with total charge

(6)

d e n s i t i e s (3 ( 0 ) . The l i n e a r dependence ac- c o r d i n g t o eq. ( 1 8 ) i s w e l l r e p r e s e n t e d i n Fig. 4 ; u t a k e s a v a l u e of -0.22+0.02 a. 3

-

1 mms

.

15066.5J Y , , ,

0 LO 80 120 3.6

p In kbar

Fig. 3: C a l c u l a t e d (IEHT-MO) p r e s s u r e dependences f o r FeF2 of a ) Fe 3d and Fe 4 s p o p u l a t i o n , b) t h e o v e r l a p c o n t r i b u t i o n s t o

9

(01 from Fe I s , 2s and 3s o r b i t a l s , c ) t h e t o t a l o v e r l a p c o n t r i b u t i o n

9

O V ( ~ )

,

t h e p o t e n t i a l c o n t r i b u t i o n

y2'

(0)

,

t h e valence c o n t r i b u t i o n

gvai

to)

,

and t h e t o t a l e l e c - t r o n charge d e n s i t y

?

O ) A l l

p

( 0 ) v a l u e s i n a,?

Taken from r e f . 20

p in kbar

7 5

F i g . 4: Linear dependence between experimental pressure-dependent isomer s h i f t s and c a l c u l a t e d r e l a t i v i s t i c e l e c t r o n charge d e n s i t i e s o f FeF2.

Taken from r e f . 20. Experimental isomer s h i f t s a t 300 K r e l a t i v e t o m e t a l l i c i r o n a r e taken from r e f . 21

7. I n t e r n a l Magnetic F i e l d . - The v a r i o u s

A

c o n t r i b u t i o n s t o t h e i n t e r n a l f i e l d , H i n t ,

measured a t a Mossbauer n u c l e u s , c o n s i s t

A

of t h e c o n t a c t f i e l d H', t h e o r b i t a l f i e l d

GL,

t h e s p i n - d i p o l a r f i e l d

;;SD,

and t h e -'ST

s u p e r t r a n s f e r r e d f i e l d H

-.

The c o n t a c t f i e l d H' a r i s e s from t h e con- t r i b u t i o n of t h e s p i n d e n s i t y a t t h e nu- c l e u s 2 2

I n c a s e t h a t t h e s p i n d e n s i t y o r i g i n a t e s from s - e l e c t r o n s ( w h i c h have f i n i t e c h a r g e d e n s i t y

9

( 0 ) a t t h e n u c l e u s ), eq. ( 2 0 ) c a n be r e p r e s e n t e d by 2 3

w h e r e < S s > i s t h e e f f e c t i v e s p i n produced by t h e s e s - e l e c t r o n s . On t h e o t h e r hand, i f t h e s p i n d e n s i t y o r i g i n a t e s from p- o r d - e l e c t r o n s , t h e s p i n - p a i r e d c o r e - s - e l e c - t r o n s may become s p i n - p o l a r i z e d due t o ex- change i n t e r a c t i o n w i t h t h e p- o r d - e l e c - t r o n s . F o l l o w i n g a g a i n Watson and F r e e - man23, H~ t h e n i s r e p r e s e n t e d by

HC

=

2

~ ' ' ' ~ 4 sP,d>

+ 2 H'*'

4 sp,d> ) (22) where H c o r e

and Elva1 r e p r e s e n t t h e amount of s p i n - p o l a r i z a t i o n o f c o r e - and valence-

s - e l e c t r o n s of t h e Mossbauer i s o t o p e . Both, H~~~~ and Hval, have t o b e a d j u s t e d t o t h e a c t u a l number o f d- and p-elec- t r o n s , b e c a u s e p o t e n t i a l s h i e l d i n g e f f e c t s have c o n s i d e r a b l y i n f l u e n c e upon t h e s p i n - p o l a r i z a t i o n of t h e c o r e - and v a l e n c e - s - e l e c t r o n s 2 3 . From MO c a l c u l a t i o n s t h e d- and p - p o p u l a t i o n and t h e e f f e c t i v e s p i n - d e n s i t i e s (Ss) and<S

>

a r e e ~ t r a c t e 2 : ' ~ ~

p , d

t h u s making t h e c a l c u l a t i o n o f H~ straight-

forward. 4

The o r b i t a l f i e l d H~ a r i s e s from t h e orbi- t a l motion o f t h e e l e c t r o n s

The t o t a l o r b i t a l a n g u l a r momentum Lp o f t h e e l e c t r o n s around t h e MBssbauer nu- c l e u s i s d e r i v e d a c c o r d i n g t o eq. ( 1 2), w i t h u s u a l l y n e g l e c t i n g c a s e s (ii) and (iii) i n s e c t i o n 4 .

The s p i n - d i p o l a r f i e l d

csD

i s t h e c o n t r i -

(7)

c1-100 JOURNAL DE PHYSIQUE

b u t i o n from t h e magnetic moment, which i s a s s o c i a t e d w i t h t h e s p i n o f t h e e l e c t r o n s o u t s i d e t h e n u c l e u s

Comparing e q s . (24) and ( 1 3 ) it i s o b v i o u s t h a t t h e s p i n - d i p o l a r f i e l d i s d e r i v e d i n a s i m i l a r f a s h i o n a s t h e EFG.

The s u p e r t r a n s f e r r e d f i e l d

ZsT

may b e eva- l u a t e d a l o n g t h e l i n e s d e s c r i b e d by Sa-

A -

watzky e t a l Z b , however, w a s found t o be n e g l i g i b l e f o r t h e a p p l i c a t i o n s p r e s e n t e d h e r e .

I n T a b l e 3 we summarize t h e v a r i o u s con- t r i b u t i o n s t o

~i~~

f o r i r o n - d i t h i o c a r b a m a - t e compounds27. The comparison w i t h expe- r i m e n t a l v a l u e s a t t h e i r o n n u c l e u s 28,29

I

H i n t ( ~ e ( d t c ) 2 ~ 1 ) =32.9f 1 .O T, Hint ( ~ e ( d t c )

I ) = 1 7.2-1 2.4 T

,

and a t t h e i o d i n e nucleus3?

(Fe ( d t c ) 21) =5.3-6.7 T , i n d i c a t e s t h a t -

- t h e agreement between c a l c u l a t e d and mea- s u r e d magnetic d a t a i s q u i t e s a t i s f a c o t r y .

( F u r t h e r d e t a i l s o f t h e c a l c u l a t i o n con- c e r n i n g t h e e l e c t r o n i c and magnetic s t r u c - t u r e o f F e ( d t ~ ) ~ C l , I i s p r e s e n t e d i n V.R.

M a r a t h e ' s e t a 1 c o n t r i b u t i o n i n t h i s vo- lume. )

Table 3: C a l c u l a t e d magnetic d a t a ( s e e t e x t ) f o r Fe (dtcf 2X ( w i t h X=C1, I ) a t t h e i r o n and i o d i n e nu- c l e u s , r e s p e c t i v e l y . Values of H a r e g i v e n i n T e s l a . Taken from r e f . 27

I r o n i n . Fe ( d t c ) 2X i o d i n e i n F e ( d t c I 2 I

H i n t

36.7 19.6

( a ) T h e a c t u a l v a l u e f o r <SZ> w h i c h i s u s e d i n t h e c a l c u l a t i o n o f H i n t c o n t r i b u t i o n s i s 1 . 1 4

-

$ , s i n c e a t 1 . 4 K , w h e r e m e a s u r e m e n t s

h a v e b e e n p e r f o r m e d , o n l y t h e

?L

2 K r a m e r s d o u b l e t i s p o p u l a t e d .

(b) C a l c u l a t e d w i t h b o n d o r d e r m a t r i x e l e - m e n t s i n s t e a d o f o r b i t a l c h a r g e s q 3 d a n d 9 4 s .

( c ) C a l c u l a t e d f r o m t h e LCAO c o e f f i c i e n t s o f t h e s i n g l y o c c u p i e d M O s . ( I n c l u d e s f a c - t o r

:-;

s e e ( a ) )

.

( d ) O v e r l a p c o n t r i b u t i o n w h i c h c o m e s f r o m a M u l l i k e n p o p u l a t i o n a n a l y s i s o f s i n g l y o c - c u p i e d M O s . ( I n c l u d e s f a c t o r

4;

s e e ( a ) )

.

( e ) C o r e p o l a r i z a t i o n c o n t r i b u t i o n . ( f ) D i r e c t 5 s c o n t r i b u t i o n .

( g ) A l l H$ c o n t r i b u t i o n s a r e n e g l i g i b l e . 8 . Magnetic S u s c e p t i b i l i t y and Gyromagne- t i c Tensors.- Magnetic s u s c e p t i b i l i t y and gyromagnetic t e n s o r s ( X and G ) d e s -

Pq Pq

c r i b e t h e i n t e r a c t i o n o f t h e m a g n e t i c ho- ment o f an e l e c t r o n i c system w i t h an e x t e r -

a

n a l l y a p p l i e d magnetic f i e l d H.

The t e m p e r a t u r e dependence o f X i s d e r i - ved from t h e e x p e c t a t i o n v a l u e

;R~S> ,

which i s a Boltzmann a v e r a g e o v e r a l l e l e c t r o n i c s t a t e s .

a A

The G-tensor i s d e r i v e d from tL+2S> by r e - w r i t i n g t h e i n t e r a c t i o n

i n t e r m s o f a n e f f e c t i v e s p i n . 5

-

i n gene- r a l can be asymmetric; i n t h i s c a s e a sym- m e t r i c t e n s o r i s c o n s t r u c t e d by 3 1

D i a g o n a l i z a t i o n o f G c o r r e s p o n d s t o an o p e r a t i o n i n

R

3 , whlch t r a n s f o r m s t h e used Pq b a s i s s e t i n t o t h e main a x e s system o f G From t h e main components G,,G2,G3 t h e n t h e pq'

well-known g - f a c t o r s a r e d e r i v e d

(From t h i s p r o c e d u r e t h e s i g n of gi c a n n o t b e d e t e r m i n e d . )

F o r K3Fe(CN)6, f o r which a l s o K6ssbauer p a r a m e t e r s have been d e r i v e d a l o n g t h e p r o - c e d u r e d e s c r i b e d s ~ f a r ~ ~ , t h e powder s u s -

-

1

c e p t i b i l i t y

?!

=3(

X I

+ X2+

X3)

h a s been eva- l u a t e d a s f u n c t i o n of t e m p e r a t u r e , and was compared w i t h e x p e r i m e n t a l r e s u l t s ( F i g . 5 ) . The c a l c u l a t e d and measured g - f a c t o r s f o r K3Fe(CN)6 a r e l i s t e d i n T a b l e 4 . From i n - s p e c t i o n of F i g . 5 and T a b l e 4 one r e a l i - z e s t h a t t h e o r e t i c a l and e x p e r i m e n t a l da- t a a r e i n r e a s o n a b l e agreement.

(8)

Fig.5: C a l c u l a t e d (IEHT-MO-CI) powder s u s c e p t i b i l i - t y ( s o l i d l i n e ) of K ~ F ~ ( C N ) ~ a s a f u n c t i o n of tem- p e r a t u r e . Taken from r e f . 32. The e x t r a p o l a t i o n

(broken l i n e ) l e a d s t o a Weiss c o n s t a n t h = 40 K , which i s comparable with t h e v a l u e eexp = 56 K from t h e d a t a o f F i g g i s e t a 1 ( r e f . 33)

Table 4 : g - f a c t o r s ( s e e t e x t ) f o r K3Fe (CN) 6. Taken from r e f . 32

c a l c . r e s u l t s exp. ESR r e s u l t s ( a )

Fel Fe

2 Fe

1 Fe2

Y1: 2.39 2.30 2.36 2.31

( a ) Baker, J . M . , Bleaney, B . , Bowers, K.D., Proc.

Roy. Soc. (1956) 1205

9 . Energies.- The orbital energies which

were derived using the IEHT approximation are in qualitative agreement with those re- ported from experimental work (see Table 51

Table 5: O r b i t a l e n e r g i e s ( i n cm-l) a s d e r i v e d from IEHT c a l c u l a t i o n s and o p t i c a l experiments. Taken from r e f s . 20, 32

compound IEHT exp.

K7Fe (CN) 32000 3 5000

1 loo 9300

Table 6 : C a l c u l a t e d and experimental i o n i z a t i o n po- t e n t i a l s ( i n ~y = 109737.3 cm-l) .Taken from r e f .36 molecule o r b i t a l exp. ( a ) c a l c .

H2° a 1 -2.37 -2.31

-0.93 -0.92

C H ~ O H ' 3 a ' -1.38 -1.27 l a " -1.29 -1.11

4 a ' -1.12 -1.11

5 a ' -0.95 -0.96

2a" -0.82 -0.84

( a ) Siegbahn, K . , e t a 1 i n "ESCA Applied t o Free Molecules", North-Holland, Amsterdam (1969)

More accuracy has been achieved with our

-

compared to the IEHT method

-

more elabo- rate model-potential MO calculations 12,34

A s an example we present energies for H20

and CH30H in Table 6.

lo. Dipole moments and XPS intensities.- Dipole moments are derived according to eq. (12) with the operator

a=?.

XPS inten- sities result from 34

where fjrrare XPS cross-sections taken from Gelius and siegbahn3'. For the two com- pounds from above, again using the model- potential MO method1 2, the calculated and measured dipole moments and XPS intensi- ties are summarized in Table 7.

Table 7: C a l c u l a t e d and experimental XPS i n t e n s i - t i e s and d i p o l e moments (Debye) .Taken from r e f . 36.

molecule o r b i t a l X P S ( ~ )

exp XPScalc <;

>

H,O a , 44 .o 44 .o

l a " 3.2 3 .o

2.00 (c)

4 a ' 2 .o 1.7

5 a ' 3.3 1.7

2a" 1 . 6 5.5

( a ) s e e r e f . (a) of Table 6. ( b ) exp. ( c ) c a l c . 1 1 . Summary.- On the basis of the IEHT me- thod, with a fixed set of parameters ( ! )

,

electric field gradients, electron densi- ties at the Mossbauer nucleus, internal magnetic fields, suscepitibility, g-fac- tors and energies have been derived, which are in reasonable agreement with experi- ment. This shows that even a relatively simple MO method is able to reproduce sat-

isfactorily experimental results, and thus leads to a deeper understanding of the electronic and magnetic structure of the compounds under study.

The more sophisticated model-potential cak culations require much more computer space and time; it is still questionable whether the results justify the effort.

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft. The author grate- fully acknowledges the fruitful coopera-

(9)

c1-102 JOURNAL DE PHYSIQUE

t i o n over several y e a r s , w h i c h l e d t o m a n y of t h e r e s u l t s presented here, w i t h Pro- f e s s o r s I . D 6 z s i , A.J. F r e e m a n , U . G o n s e r , F . E . H a r r i s , D r s . S . K . D a t e , J . P . D e s c l a u x , J . M . F r i e d t , M. G r o d z i c k i , A . K o s t i k a s , Y.

M a e d a , V . R . M a r a t h e , R. R e s c h k e , R . Z i m - m e r m a n n , and t o M r . R. B l a s and M r . S

..

Iau-

e r .

References

1. Roothan, C.C.J.

Rev. Mod. Phys.

2

(1951) 69 2. Pople, J . A . , Nesbet, R.K.,

J . Chem. Phys.

22

(1954) 571 3. Huckel, E.

2. Physik

2

(1931) 204 4. Hof fmann

,

R

.

,

J. Chem. Phys.

2

(1963) 1397

5. Rein, R . , Fukuda, N . , Win, H . , Clarke, G.A., H a r r i s , F.E.,

J . Chem. Phys.

fll

(1966) 4743

6. Pople, J . A . , S a n t r y , D.P.,

Mol. Phys. (1964) 269;

2

(1965) 301 7. P a r r , R . G . ,

J . Chem. Phys.

0

(1952) 239

8. Pople, J . A . , S a n t r y , D.P., S e g a l , G . A . , J. Chem. Phys.

43

(1965) S129

9. Pople, J . A . ,

Trans. Faraday Soc.

49

(1953) 1373 10. Johnson, K.-H., Smith, F.C.,

Chem. Phys. L e t t .

1

(1970) 541 11. Durand, H.P., B a r t h e l a t , J . ,

Mol. phys. 33 (1977) 159; 33 (1977) 181;

Theoret. Chim. Acta

38

(1975) 283 12. Grodzicki, M . ,

J. ~ h y s

.

0 , submitted t o 13. Trautwein, A , , H a r r i s , F.E.,

Theoret. Chim. Acta

30

(1973) 45 14. Sternheimer, R.M.,

Phys. Rev.

A6

(1972) 1702

15. Lauer, S . , Marathe, V.R., Trautwein, A . , Phys. Rev.

A19

(197911852

16. Reschke, R . , Trautwein, A,, Theoret. Chim. Acta

41

(1978) 85

17. Trautwein, A . , H a r r i s , F.E., Freeman, A . J . , Desclaux, J.P.,

Phys. Rev. (1975) 1401

18. Reschke, R . , Trautwein, A . , Desclaux, J . P . , J. .Phys. Chem. S o l i d s

38

(1977) 837

19. P o s t , D., van Duinen, P.Th., Niavpoart, W.C., p r e p r i n t 1975

20. Reschke, R., Trautwein, A., H a r r i s , F.E., Phys. Rev. (1977) 2708

21. Champion, A . R . , Vaughan, R.W., Drickamer, H.G., J . Chem. Phys.

5

(1967) 2583

23. Watson, R.E., Freeman, A . J . , Phys. Rev.

123

(1961) 2027

24. Sanchez, J . P . , F r i e d t , J . M . , Trautwein, A . , Reschke, R . ,

Phys. Rev. (1979) 365

25. G i i t l i c h , P., Link, R., Trautwein, A.,

i n "Mossbauer Spectroscopy and T r a n s i t i o n Me- t a l Chemistry", Inorg. Chem. Concepts, Vol. 3, Chapt. V I (1978)

26. Sawatzky, G.A., van d e r Woude, F . , J. Phys. ( P a r i s )

12

(1974) C6-47

27. V.R. Marathe, Trautwein, A . , K o s t i k a s , A . , unpublished d a t a

28. Wickman, H.H., Trozzolo, A.M., Williams, H . J . , H a l l , G.W., M e r r i t t , F.R.,

Phys. Rev.

155

(1967) 563

29. P e t r i d i s , D., Simopoulos, A . , K o s t i k a s , A . , P a s t e r n a k , M.

,

J. Chem. Phys.

65

(1976) 3139

30. Healy, P.C., White, A . H . , Hoskins, B.F., J. Chem. Soc. (Dalton) (1972) 1369 31. Abragam, A . , Bleaney, B.,

i n " E l e c t r o n Paramagnetic Resonance of Tran- s i t i o n I o n s " , Clarendan P r e s s , Oxford (1970) 32. Reschke, R., Trautwein, A . , H a r r i s , F.E., Da-

t e , S.K.,

J. Magnetism Magn. M a t e r i a l s ( i n p r e s s ) 33. F i g g i s , B.N., G e r l a c h , M., Mason, B.,

Proc. Roy. Soc. A x (1969) 91

34. Blgs, R., Grodzicki, M., Marathe, V.R., Traut- wein, A . ,

J. Phys. 8, submitted to 35. G e l i u s , U . , Siegbahn, K . ,

R e p r i n t , Uppsala U n i v e r s i t y , I n s t i t u t e of P h y s i c s WIP-794 (1972)

36. Blas, R . ,

Diplomarbeit, Angewandte Physik, U n i v e r s i t g t des S a a r l a n d e s , Saabrucken, W-Germany (1979)

22. Abragam, A . , Horowitz, J . , Pryce, M.H.L., Proc. Roy. Soc. (London)

A230

(1955) 169

Références

Documents relatifs

Abstract : Zinc oxide (ZnO) thin film and nanostructures have great potential for applications in the fields of optoelec-tronic, sensor devices and solar cells (photovoltaic).. In

Cette étude nous montre que la Dimedone et l’ortho-phénylènediamine deux produits commerciaux et bon marché, réagissent pour donner l’intermédiaire

In particular, using the same approach as Tsunogai of replacing the higher genus mapping class groups with their higher genus braid subgroups, Enriquez in [En] was able to extend

The study of microstructures and crystallographic fabrics in a granulite-facies shear zone of the Hidaka Metamorphic Belt showed that the strong shearing localized within

We have suggested [28] that crystal field parameter values can be slightly different for ground state levels due to a possible influence of the electron-phonon

Boltzmann equation for the determination of the thermal conductivity of a crystal, such as a crystal of solid argon, where only the phonons are transporting the heat.. The

Following this idea and based on Kim's critical state model [7], a method t o determine the transport critical current density has been developed [8]. - Temperature dependence

Although a part of the deviations of the mag- netic hf parameters from the values for the corresponding crystalline substances can be explained by a distribution in the