• Aucun résultat trouvé

Partie A. Optique

N/A
N/A
Protected

Academic year: 2021

Partager "Partie A. Optique "

Copied!
4
0
0

Texte intégral

(1)

c Éditions H&K Publié dans lesAnnales des Concours 1/27

CCP Physique 2 MP 2008 — Corrigé

Ce corrigé est proposé par Vincent Freulon (ENS Ulm) ; il a été relu par Georges Rolland (Professeur agrégé) et Emmanuel Loyer (Professeur en CPGE).

Ce sujet est constitué de deux problèmes indépendants ; le premier porte sur l’optique géométrique, le second sur l’électromagnétisme.

• Le problème A est composé de deux parties largement indépendantes. La pre- mière présente différentes méthodes utilisées en travaux pratiques de focomé- trie : on y aborde l’autocollimation, les méthodes de Descartes, Bessel, Silber- mann et Badal. Dans chaque cas, il s’agit d’établir la formule permettant de calculer la distance focale de la lentille à partir de mesures expérimentales et d’évaluer l’incertitude sur cette mesure.

Dans la seconde partie, on établit des conditions pour qu’un assemblage de deux lentilles puisse être achromatique. On commence par utiliser notamment la for- mule de Cauchy pour établir des propriétés des lentilles à différentes longueurs d’onde. On cherche ensuite des relations entre les coefficients de la formule de Cauchy pour concevoir un objectif et un oculaire achromatiques.

• Le problème B est composé de trois parties indépendantes. Dans la première, on établit quelques résultats de cours sur la loi de Biot et Savart et le théorème d’Ampère.

Dans la deuxième, on démontre, tout d’abord, une relation simple entre un potentiel vecteur et le champ magnétique dans un cas particulier ; puis, indé- pendamment du résultat précédent, on cherche à relier champ magnétique et potentiel vecteur dans deux situations différentes : un fil et un solénoïde infi- nis. Pour chaque situation, on examine la concordance des deux expressions du potentiel vecteur.

La troisième partie porte sur l’induction. Après quelques rappels sur les lois de Faraday et de Lenz, on étudie le fonctionnement d’une roue de Barlow montée dans un circuitRC.

Ce sujet, assez long, comporte beaucoup d’applications numériques peu aisées.

De plus, selon le rapport du jury, « la formulation des résultats n’était pas toujours cohérente avec le nombre de chiffres significatifs attendu ». Peu classiques, les calculs de potentiel vecteur ont souvent été erronés. Dans la partie traitant de la roue de Barlow, qui contient une erreur d’énoncé, on se perd facilement dans les orientations.

Néanmoins, ce sujet se prête bien à des révisions globales pour les écrits.

La partie focométrie constitue également un excellent support de révision pour les TP.

Par ailleurs, la partie sur l’induction peut tout aussi bien être utilisée en cours d’année durant la phase d’apprentissage.

Téléchargé gratuitement surwww.Doc-Solus.fr.

(2)

c Éditions H&K Publié dans lesAnnales des Concours 2/27

Indications

Partie A

1.1.2.2 Utiliser la dérivée logarithmique, séparer dO1A et dO1A puis passer à la valeur absolue pour chaque terme.

1.1.3.1 Utiliser la formule de Descartes pour relierf1 à D et p. Faire apparaître un polynôme du second degré enpet chercher à quelle condition il admet deux racines réelles distinctes.

1.1.3.2 Calculerp1−p2.

1.1.3.3 Procéder comme en 1.1.2.2.

1.1.4.2 Procéder comme en 1.1.2.2.

1.1.4.3 Que donne la méthode de Bessel s’il n’existe qu’une seule position pour(L)? 1.2.1.1 Remarquer que l’on est dans le cas de la méthode de Silbermann.

1.2.2.1 ExprimerO2Aet O2A en fonction de Det x.

1.2.3.1 ExprimerO2A et O2A en fonction de D, f0 et f2. Faire un dessin précis et y reporter toutes les valeurs.

2.2.2.1 Exprimerν en fonction des focales.

2.2.2.2 Montrer que la tache de taille minimale est autour deFD et utiliser le théo- rème de Thalès pour calculerAT.

2.4.4 Exprimer V en fonction de V2 etd. 2.5.1 Introduire une image intermédiaire.

Partie B

1.1.2 Donner l’expression générale sous forme intégrale.

2.1.1 Utiliser les coordonnées cartésiennes et calculer −→ rot (−→

B ∧−→ r).

2.1.2 Utiliser les coordonnées cartésiennes pour calculer−→ rot−→

r puis s’aider du for- mulaire pour calculerdiv −→

A. 2.2.3 Écrire−→

B =−→ rot−→

A dans la base des coordonnées cylindriques en s’aidant du formulaire.

2.2.4 Décomposer−→

r sur la base des coordonnées cylindriques. Montrer que−→ B∧−→

r contient une composante selon−→

eρ. 2.3.1.3 Utiliser la formule donnant −→

A en magnétostatique, analogue de celle don- nantVpour une distribution linéique de charges en électrostatique.

2.3.3.4 Écrire−→ B =−→

rot −→

A et intégrer sur la section droite du solénoïde. Remplacer l’intégrale contenant−→

rot−→

A par une intégrale de contour.

2.3.3.5 Que donne−→ B∧−→

r à l’extérieur du solénoïde ?

3.1.2 Chercher le lien entre le signe deiet la variation deI.

3.1.4.1 Établir l’équation différentielle dontIest solution.

3.1.4.2 Comment−→

B doit-il tourner pour que la spire « voie » un flux constant ? 3.2.2.1 Dériver l’équation électrique, éliminer la dérivée de−→

ω à l’aide de l’équation mécanique.

3.2.4.1 L’énoncé comporte une erreur :−→ B et−→

ω0sont tels que−→ B·−→

ω0>0.

3.2.4.2 Chercher l’instant où la puissance change de signe.

Téléchargé gratuitement surwww.Doc-Solus.fr.

(3)

c Éditions H&K Publié dans lesAnnales des Concours 3/27

Partie A. Optique

1. Focométrie

1.1.1.1 Pour cette méthode, on a besoin de la lentille dont on souhaite déterminer la distance focale, d’un miroir, d’un objet (et éventuellement d’un écran que l’on place à côté de l’objet).

On place l’objet et la lentille sur le banc d’optique et on accole le miroir derrière la lentille. On translate l’ensemble lentille- miroir et on observe l’image (éventuellement à l’aide de l’écran) réfléchie vers l’objet par ce système. Lorsque l’image est nette et de la même taille que l’objet, la distance objet- lentille est égale à la distance focale.

x x

A A

F

f

(L)

D’après le rapport, moins de la moitié des candidats a traité cette question.

Comme il s’agit de détailler un protocole expérimental, le jury précise que la rédaction doit être soignée : des phrases trop imprécises telles que « on bouge le miroir pour voir l’objet » ou bien « on suit l’image pour qu’elle soit claire » ne sont pas satisfaisantes.

1.1.1.2 De ce qui précède, on déduit

f1 = 20,2 cm Exprimons l’incertitude ; commef1 = O1A

∆f1 = ∆O1A = 0,5 cm 1.1.2.1 Utilisons la formule de Descartes pour les lentilles

1

O1A − 1 O1A = 1

f1

d’où f1 = O1AO1A

O1A−O1A = 20,0 cm

1.1.2.2 Pour obtenir les incertitudes, calculons le logarithme de cette expression lnf1 = ln O1A+ ln O1A−ln O1A−O1A

que l’on différentie df1

f1

= dO1A

O1A +dO1A

O1A −dO1A−dO1A O1A−O1A

= O1A dO1A

O1A O1A−O1A− O1AdO1A O1A O1A−O1A d’où ∆f1

f1

= O1A O1A

O1A−O1A

∆O1A+ O1A O1A

O1A−O1A

∆O1A On obtient finalement ∆f1 = 0,3 cm

Téléchargé gratuitement surwww.Doc-Solus.fr.

(4)

c Éditions H&K Publié dans lesAnnales des Concours 4/27

1.1.3.1 Remarquons que

O1A= O1A + AA =p+ D et utilisons de nouveau la formule de Descartes

1 D +p−1

p= 1 f1

x x

O1

D p A

A

En multipliant les deux membres par(D +p)p, on obtient :

−D = (D +p)p f1

d’où p2+ Dp+ Df1 = 0

qui est un polynôme du second degré en p de discriminant ∆ = D2 −4 Df1. Cette équation admet deux solutions réelles distinctes si et seulement si ∆ > 0, c’est-à-dire pour

D>4f1 = Dmin et dans ce cas, les racines sont

p1=−D−p

D2−4 Df1

2 et p2=−D +p

D2−4 Df1

2

x x

(L)

O F

F A

A

d D

x x

(L) F

F O

A A

Téléchargé gratuitement surwww.Doc-Solus.fr.

Références

Documents relatifs

III.D - Le mouvement de l'électron apparaît donc comme la superposition de trois mouvements : (1) un mouvement circulaire à la pulsation dans le plan ; (2) un second

Il s’agit de la propriété fondamentale

•utilisation d'un MOSFET de puissance et d'une diode zener ajustement d'un rapport cyclique pour modifier le

Un segment de courant ne peut en aucun cas être considéré comme enlacé : il est impossible de définir un parcours sur lequel le théorème d’Ampère puisse s’appliquer. b)

dans la condition de jauge de Coulomb en écrivant que la circulation du potentiel vecteur le long d’un parcours fermé est égale au flux du champ d’induction

En l'absence de toute source de champ magnétique extérieure, une boussole indique les pôles magnétiques terrestre..

En application des resultats precedents, on peut envisager une m6thode de compensation « naturelle » des composantes transversales du champ magn6tique. Il

En plaçant la main droite le long du fil de façon que les doigts soient dirigés dans le sens du courant électrique, la paume de la main orientée vers le point M, le pouce tendu