• Aucun résultat trouvé

Measurement of the angular and lifetime parameters of the decays $B_{d}^{0}\to J/\psi K^{*0}$ and $B_{s}^{0}\to J/\psi\phi$

N/A
N/A
Protected

Academic year: 2021

Partager "Measurement of the angular and lifetime parameters of the decays $B_{d}^{0}\to J/\psi K^{*0}$ and $B_{s}^{0}\to J/\psi\phi$"

Copied!
7
0
0

Texte intégral

(1)

arXiv:0810.0037v1 [hep-ex] 30 Sep 2008

Measurement of the angular and lifetime parameters of the decays

B

0

d

J/ψK

∗0

and

B

0

s

J/ψφ

V.M. Abazov36, B. Abbott75, M. Abolins65, B.S. Acharya29, M. Adams51, T. Adams49, E. Aguilo6, M. Ahsan59,

G.D. Alexeev36, G. Alkhazov40, A. Alton64,a, G. Alverson63, G.A. Alves2, M. Anastasoaie35, L.S. Ancu35,

T. Andeen53, B. Andrieu17, M.S. Anzelc53, M. Aoki50, Y. Arnoud14, M. Arov60, M. Arthaud18, A. Askew49,

B. ˚Asman41, A.C.S. Assis Jesus3, O. Atramentov49, C. Avila8, F. Badaud13, L. Bagby50, B. Baldin50,

D.V. Bandurin59, P. Banerjee29, S. Banerjee29, E. Barberis63, A.-F. Barfuss15, P. Bargassa80, P. Baringer58,

J. Barreto2, J.F. Bartlett50, U. Bassler18, D. Bauer43, S. Beale6, A. Bean58, M. Begalli3, M. Begel73,

C. Belanger-Champagne41, L. Bellantoni50, A. Bellavance50, J.A. Benitez65, S.B. Beri27, G. Bernardi17,

R. Bernhard23, I. Bertram42, M. Besan¸con18, R. Beuselinck43, V.A. Bezzubov39, P.C. Bhat50, V. Bhatnagar27,

C. Biscarat20, G. Blazey52, F. Blekman43, S. Blessing49, K. Bloom67, A. Boehnlein50, D. Boline62, T.A. Bolton59,

E.E. Boos38, G. Borissov42, T. Bose77, A. Brandt78, R. Brock65, G. Brooijmans70, A. Bross50, D. Brown81,

X.B. Bu7, N.J. Buchanan49, D. Buchholz53, M. Buehler81, V. Buescher22, V. Bunichev38, S. Burdin42,b,

T.H. Burnett82, C.P. Buszello43, J.M. Butler62, P. Calfayan25, S. Calvet16, J. Cammin71, M.A. Carrasco-Lizarraga33,

E. Carrera49, W. Carvalho3, B.C.K. Casey50, H. Castilla-Valdez33, S. Chakrabarti18, D. Chakraborty52,

K.M. Chan55, A. Chandra48, E. Cheu45, F. Chevallier14, D.K. Cho62, S. Choi32, B. Choudhary28, L. Christofek77,

T. Christoudias43, S. Cihangir50, D. Claes67, J. Clutter58, M. Cooke50, W.E. Cooper50, M. Corcoran80,

F. Couderc18, M.-C. Cousinou15, S. Cr´ep´e-Renaudin14, V. Cuplov59, D. Cutts77, M. ´Cwiok30, H. da Motta2,

A. Das45, G. Davies43, K. De78, S.J. de Jong35, E. De La Cruz-Burelo33, C. De Oliveira Martins3, K. DeVaughan67,

F. D´eliot18, M. Demarteau50, R. Demina71, D. Denisov50, S.P. Denisov39, S. Desai50, H.T. Diehl50, M. Diesburg50,

A. Dominguez67, T. Dorland82, A. Dubey28, L.V. Dudko38, L. Duflot16, S.R. Dugad29, D. Duggan49, A. Duperrin15,

J. Dyer65, A. Dyshkant52, M. Eads67, D. Edmunds65, J. Ellison48, V.D. Elvira50, Y. Enari77, S. Eno61,

P. Ermolov38,‡, H. Evans54, A. Evdokimov73, V.N. Evdokimov39, A.V. Ferapontov59, T. Ferbel71, F. Fiedler24,

F. Filthaut35, W. Fisher50, H.E. Fisk50, M. Fortner52, H. Fox42, S. Fu50, S. Fuess50, T. Gadfort70, C.F. Galea35,

C. Garcia71, A. Garcia-Bellido71, G.A. Garcia-Guerra33, V. Gavrilov37, P. Gay13, W. Geist19, W. Geng15,65,

C.E. Gerber51, Y. Gershtein49,c, D. Gillberg6, G. Ginther71, B. G´omez8, A. Goussiou82, P.D. Grannis72,

H. Greenlee50, Z.D. Greenwood60, E.M. Gregores4, G. Grenier20, Ph. Gris13, J.-F. Grivaz16, A. Grohsjean25, S. Gr¨unendahl50, M.W. Gr¨unewald30, F. Guo72, J. Guo72, G. Gutierrez50, P. Gutierrez75, A. Haas70, N.J. Hadley61,

P. Haefner25, S. Hagopian49, J. Haley68, I. Hall65, R.E. Hall47, L. Han7, K. Harder44, A. Harel71, J.M. Hauptman57,

J. Hays43, T. Hebbeker21, D. Hedin52, J.G. Hegeman34, A.P. Heinson48, U. Heintz62, C. Hensel22,d,

K. Herner72, G. Hesketh63, M.D. Hildreth55, R. Hirosky81, J.D. Hobbs72, B. Hoeneisen12, M. Hohlfeld22,

S. Hossain75, P. Houben34, Y. Hu72, Z. Hubacek10, V. Hynek9, I. Iashvili69, R. Illingworth50, A.S. Ito50,

S. Jabeen62, M. Jaffr´e16, S. Jain75, K. Jakobs23, C. Jarvis61, R. Jesik43, K. Johns45, C. Johnson70, M. Johnson50,

D. Johnston67, A. Jonckheere50, P. Jonsson43, A. Juste50, E. Kajfasz15, D. Karmanov38, P.A. Kasper50,

I. Katsanos70, D. Kau49, V. Kaushik78, R. Kehoe79, S. Kermiche15, N. Khalatyan50, A. Khanov76,

A. Kharchilava69, Y.M. Kharzheev36, D. Khatidze70, T.J. Kim31, M.H. Kirby53, M. Kirsch21, B. Klima50,

J.M. Kohli27, E.V. Komissarov36,‡, J.-P. Konrath23, A.V. Kozelov39, J. Kraus65, T. Kuhl24, A. Kumar69,

A. Kupco11, T. Kurˇca20, V.A. Kuzmin38, J. Kvita9, F. Lacroix13, D. Lam55, S. Lammers70, G. Landsberg77,

P. Lebrun20, W.M. Lee50, A. Leflat38, J. Lellouch17, J. Li78,‡, L. Li48, Q.Z. Li50, S.M. Lietti5, J.K. Lim31,

J.G.R. Lima52, D. Lincoln50, J. Linnemann65, V.V. Lipaev39, R. Lipton50, Y. Liu7, Z. Liu6, A. Lobodenko40,

M. Lokajicek11, P. Love42, H.J. Lubatti82, R. Luna-Garcia33,e, A.L. Lyon50, A.K.A. Maciel2, D. Mackin80, R.J. Madaras46, P. M¨attig26, C. Magass21, A. Magerkurth64, P.K. Mal82, H.B. Malbouisson3, S. Malik67,

V.L. Malyshev36, Y. Maravin59, B. Martin14, R. McCarthy72, M.M. Meijer35, A. Melnitchouk66, L. Mendoza8,

P.G. Mercadante5, M. Merkin38, K.W. Merritt50, A. Meyer21, J. Meyer22,d, J. Mitrevski70, R.K. Mommsen44,

N.K. Mondal29, R.W. Moore6, T. Moulik58, G.S. Muanza15, M. Mulhearn70, O. Mundal22, L. Mundim3,

E. Nagy15, M. Naimuddin50, M. Narain77, N.A. Naumann35, H.A. Neal64, J.P. Negret8, P. Neustroev40, H. Nilsen23, H. Nogima3, S.F. Novaes5, T. Nunnemann25, V. O’Dell50, D.C. O’Neil6, G. Obrant40, C. Ochando16,

D. Onoprienko59, N. Oshima50, N. Osman43, J. Osta55, R. Otec10, G.J. Otero y Garz´on50, M. Owen44, P. Padley80,

(2)

G. Pawloski80, B. Penning23, M. Perfilov38, K. Peters44, Y. Peters26, P. P´etroff16, M. Petteni43, R. Piegaia1,

J. Piper65, M.-A. Pleier22, P.L.M. Podesta-Lerma33,f, V.M. Podstavkov50, Y. Pogorelov55, M.-E. Pol2, P. Polozov37,

B.G. Pope65, A.V. Popov39, C. Potter6, W.L. Prado da Silva3, H.B. Prosper49, S. Protopopescu73, J. Qian64,

A. Quadt22,d, B. Quinn66, A. Rakitine42, M.S. Rangel2, K. Ranjan28, P.N. Ratoff42, P. Renkel79, P. Rich44,

M. Rijssenbeek72, I. Ripp-Baudot19, F. Rizatdinova76, S. Robinson43, R.F. Rodrigues3, M. Rominsky75, C. Royon18,

P. Rubinov50, R. Ruchti55, G. Safronov37, G. Sajot14, A. S´anchez-Hern´andez33, M.P. Sanders17, B. Sanghi50,

G. Savage50, L. Sawyer60, T. Scanlon43, D. Schaile25, R.D. Schamberger72, Y. Scheglov40, H. Schellman53,

T. Schliephake26, S. Schlobohm82, C. Schwanenberger44, A. Schwartzman68, R. Schwienhorst65, J. Sekaric49,

H. Severini75, E. Shabalina51, M. Shamim59, V. Shary18, A.A. Shchukin39, R.K. Shivpuri28, V. Siccardi19,

V. Simak10, V. Sirotenko50, P. Skubic75, P. Slattery71, D. Smirnov55, G.R. Snow67, J. Snow74, S. Snyder73,

S. S¨oldner-Rembold44, L. Sonnenschein17, A. Sopczak42, M. Sosebee78, K. Soustruznik9, B. Spurlock78, J. Stark14,

V. Stolin37, D.A. Stoyanova39, J. Strandberg64, S. Strandberg41, M.A. Strang69, E. Strauss72, M. Strauss75, R. Str¨ohmer25, D. Strom53, L. Stutte50, S. Sumowidagdo49, P. Svoisky35, A. Sznajder3, A. Tanasijczuk1,

W. Taylor6, B. Tiller25, F. Tissandier13, M. Titov18, V.V. Tokmenin36, I. Torchiani23, D. Tsybychev72,

B. Tuchming18, C. Tully68, P.M. Tuts70, R. Unalan65, L. Uvarov40, S. Uvarov40, S. Uzunyan52, B. Vachon6,

P.J. van den Berg34, R. Van Kooten54, W.M. van Leeuwen34, N. Varelas51, E.W. Varnes45, I.A. Vasilyev39,

P. Verdier20, L.S. Vertogradov36, M. Verzocchi50, D. Vilanova18, F. Villeneuve-Seguier43, P. Vint43,

P. Vokac10, M. Voutilainen67,g, R. Wagner68, H.D. Wahl49, M.H.L.S. Wang50, J. Warchol55, G. Watts82,

M. Wayne55, G. Weber24, M. Weber50,h, L. Welty-Rieger54, A. Wenger23,i, N. Wermes22, M. Wetstein61,

A. White78, D. Wicke26, M. Williams42, G.W. Wilson58, S.J. Wimpenny48, M. Wobisch60, D.R. Wood63,

T.R. Wyatt44, Y. Xie77, C. Xu64, S. Yacoob53, R. Yamada50, W.-C. Yang44, T. Yasuda50, Y.A. Yatsunenko36,

H. Yin7, K. Yip73, H.D. Yoo77, S.W. Youn53, J. Yu78, C. Zeitnitz26, S. Zelitch81, T. Zhao82, B. Zhou64,

J. Zhu72, M. Zielinski71, D. Zieminska54, A. Zieminski54,‡, L. Zivkovic70, V. Zutshi52, and E.G. Zverev38

(The DØ Collaboration)

1Universidad de Buenos Aires, Buenos Aires, Argentina

2

LAFEX, Centro Brasileiro de Pesquisas F´ısicas, Rio de Janeiro, Brazil

3

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

4Universidade Federal do ABC, Santo Andr´e, Brazil

5

Instituto de F´ısica Te´orica, Universidade Estadual Paulista, S˜ao Paulo, Brazil

6

University of Alberta, Edmonton, Alberta, Canada, Simon Fraser University, Burnaby, British Columbia, Canada, York University, Toronto, Ontario, Canada, and McGill University, Montreal, Quebec, Canada

7

University of Science and Technology of China, Hefei, People’s Republic of China

8Universidad de los Andes, Bogot´a, Colombia

9

Center for Particle Physics, Charles University, Prague, Czech Republic

10

Czech Technical University, Prague, Czech Republic

11Center for Particle Physics, Institute of Physics,

Academy of Sciences of the Czech Republic, Prague, Czech Republic

12

Universidad San Francisco de Quito, Quito, Ecuador

13LPC, Universit´e Blaise Pascal, CNRS/IN2P3, Clermont, France

14

LPSC, Universit´e Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble, France

15CPPM, Aix-Marseille Universit´e, CNRS/IN2P3, Marseille, France

16

LAL, Universit´e Paris-Sud, IN2P3/CNRS, Orsay, France

17

LPNHE, IN2P3/CNRS, Universit´es Paris VI and VII, Paris, France

18

CEA, Irfu, SPP, Saclay, France

19IPHC, Universit´e Louis Pasteur, CNRS/IN2P3, Strasbourg, France

20

IPNL, Universit´e Lyon 1, CNRS/IN2P3, Villeurbanne, France and Universit´e de Lyon, Lyon, France

21

III. Physikalisches Institut A, RWTH Aachen University, Aachen, Germany

22Physikalisches Institut, Universit¨at Bonn, Bonn, Germany

23

Physikalisches Institut, Universit¨at Freiburg, Freiburg, Germany

24

Institut f¨ur Physik, Universit¨at Mainz, Mainz, Germany

25Ludwig-Maximilians-Universit¨at M¨unchen, M¨unchen, Germany

26

Fachbereich Physik, University of Wuppertal, Wuppertal, Germany

27

Panjab University, Chandigarh, India

(3)

29

Tata Institute of Fundamental Research, Mumbai, India

30

University College Dublin, Dublin, Ireland

31Korea Detector Laboratory, Korea University, Seoul, Korea

32

SungKyunKwan University, Suwon, Korea

33

CINVESTAV, Mexico City, Mexico

34FOM-Institute NIKHEF and University of Amsterdam/NIKHEF, Amsterdam, The Netherlands

35

Radboud University Nijmegen/NIKHEF, Nijmegen, The Netherlands

36

Joint Institute for Nuclear Research, Dubna, Russia

37Institute for Theoretical and Experimental Physics, Moscow, Russia

38Moscow State University, Moscow, Russia

39

Institute for High Energy Physics, Protvino, Russia

40

Petersburg Nuclear Physics Institute, St. Petersburg, Russia

41Lund University, Lund, Sweden, Royal Institute of Technology and Stockholm University,

Stockholm, Sweden, and Uppsala University, Uppsala, Sweden

42

Lancaster University, Lancaster, United Kingdom

43Imperial College, London, United Kingdom

44

University of Manchester, Manchester, United Kingdom

45

University of Arizona, Tucson, Arizona 85721, USA

46Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA

47

California State University, Fresno, California 93740, USA

48

University of California, Riverside, California 92521, USA

49

Florida State University, Tallahassee, Florida 32306, USA

50

Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

51

University of Illinois at Chicago, Chicago, Illinois 60607, USA

52

Northern Illinois University, DeKalb, Illinois 60115, USA

53Northwestern University, Evanston, Illinois 60208, USA

54

Indiana University, Bloomington, Indiana 47405, USA

55

University of Notre Dame, Notre Dame, Indiana 46556, USA

56Purdue University Calumet, Hammond, Indiana 46323, USA

57

Iowa State University, Ames, Iowa 50011, USA

58

University of Kansas, Lawrence, Kansas 66045, USA

59Kansas State University, Manhattan, Kansas 66506, USA

60

Louisiana Tech University, Ruston, Louisiana 71272, USA

61

University of Maryland, College Park, Maryland 20742, USA

62Boston University, Boston, Massachusetts 02215, USA

63

Northeastern University, Boston, Massachusetts 02115, USA

64

University of Michigan, Ann Arbor, Michigan 48109, USA

65Michigan State University, East Lansing, Michigan 48824, USA

66University of Mississippi, University, Mississippi 38677, USA

67

University of Nebraska, Lincoln, Nebraska 68588, USA

68

Princeton University, Princeton, New Jersey 08544, USA

69State University of New York, Buffalo, New York 14260, USA

70

Columbia University, New York, New York 10027, USA

71

University of Rochester, Rochester, New York 14627, USA

72State University of New York, Stony Brook, New York 11794, USA

73

Brookhaven National Laboratory, Upton, New York 11973, USA

74

Langston University, Langston, Oklahoma 73050, USA

75University of Oklahoma, Norman, Oklahoma 73019, USA

76Oklahoma State University, Stillwater, Oklahoma 74078, USA

77

Brown University, Providence, Rhode Island 02912, USA

78

University of Texas, Arlington, Texas 76019, USA

79Southern Methodist University, Dallas, Texas 75275, USA

80

Rice University, Houston, Texas 77005, USA

81

University of Virginia, Charlottesville, Virginia 22901, USA and

82University of Washington, Seattle, Washington 98195, USA

(Dated: September 30, 2008)

We present measurements of the linear polarization amplitudes and the strong relative phases

that describe the flavor-untagged decays B0

d→ J/ψK

∗0 and B0

s → J/ψφ in the transversity basis.

We also measure the mean lifetime ¯τs of the Bs0 mass eigenstates and the lifetime ratio ¯τs/τd. The

analyses are based on approximately 2.8 fb−1 of data recorded with the D0 detector. From our

measurements of the angular parameters we conclude that there is no evidence for a deviation from flavor SU(3) symmetry for these decays and that the factorization assumption is not valid for the

B0

(4)

PACS numbers: 14.20.Mr, 14.40.Nd, 13.30.Eg, 13.25.Hw

B mesons are fertile ground to study CP violation and search for evidence of new physics. There are elements, in addition to CP violation, involved in the theoretical de-scription of B meson decays, such as flavor SU(3) symme-try, factorization and final-state strong interactions. To understand the role CP violation plays in these decays, it is essential to understand and isolate the effect of each of these elements in the B meson decays.

Factorization states that the decay amplitude of B meson decays can be expressed as the product of two single current matrix elements [1] and this implies that the relative strong phases are 0 (mod π) [2]. A different measured value for the strong phases would indicate the presence of final-state strong interactions. The B0

dmeson

can be formed by replacing the s quark with the d quark in the B0

s meson. From flavor SU(3) symmetry applied

to the B0

d-Bs0 system one expects that the theoretical

description is similar; in particular the B0

d → J/ψK∗0

and B0

s → J/ψφ [3] decays, can be described in the

transversity basis [2] by the linear polarization ampli-tudes, A0, Ak, and A⊥, and the relative strong phases δ1

and δ2. Flavor SU(3) symmetry requires that the

ampli-tudes and phases characterizing these decays should have the same values.

Other observables of these decays are the lifetimes of both mesons, which allow us to compare with theoretical predictions of the lifetime ratio. Phenomenological mod-els predict differences of about 1% [4, 5] between the Bd0

and Bs0 lifetimes. Previous B meson lifetime

measure-ments [6] are consistent with these predictions.

In this Letter we report the measurements of the pa-rameters that describe the time-dependent angular dis-tributions of the decays B0

d → J/ψK∗0and Bs0→ J/ψφ

in the transversity basis, where the initial B meson fla-vor is not determined (“untagged”). We study the B0 d

and B0

s mesons to verify the validity of the factorization

assumption [2] and to check if flavor SU(3) symmetry [2] holds for these decays. We also report the lifetime ra-tio ¯τs/τd for these mesons and the width difference ∆Γs

between the light and heavy B0

s mass eigenstates. The

analyses were performed using data collected with the D0 detector [7] in Run II of the Fermilab Tevatron Collider during 2003 − 2007 with an integrated luminosity of ap-proximately 2.8 fb−1 of p¯p collisions at a center-of-mass energy of 1.96 TeV. In contrast with the flavor-tagged analysis reported in Ref. [8], in this Letter we report a simultaneous analysis of both the B0

d and Bs0 meson

de-cays, carried out in such a way that a straightforward comparison between their angular and lifetime parame-ters can be performed.

We use the B0

s → J/ψφ, J/ψ → µ+µ−, φ → K+K−

selection described in Ref. [9]. The decay B0

d→ J/ψK∗0,

J/ψ → µ+µ, K∗0 → K±πis reconstructed using

similar selection criteria and algorithms as the B0 s

chan-nel because they have the same four-track topology in the final state. The differences are the requirement that the transverse momentum of the pion be greater than 0.7 GeV/c, the invariant mass for the (J/ψ, K∗0(892))

pair be in the range 4.93 − 5.61 GeV/c2, and the

se-lection of the K∗0(892) candidates by demanding the

two-particle invariant mass between 850 MeV/c2 and

930 MeV/c2. Due to lack of charged particle

identifi-cation, we assign the mass of the pion and kaon to the latter two tracks and use the combination with invariant mass closest to the K∗0mass.

The proper decay length (PDL), defined as in Refs. [10, 11], for a given B0

dor Bs0candidate is determined by

mea-suring the distance traveled by each b-hadron candidate in a plane transverse to the beam direction, and then applying a Lorentz boost correction. In the B0

d and B0s

final selection, we require a PDL uncertainty of less than 60 µm. We find 334199 and 41691 candidates that pass the B0

d and Bs0selection criteria, respectively (see Fig. 1).

We denote the set of the angular variables defined in the transversity basis, where the decays B0

d → J/ψK∗0

and B0

s → J/ψφ are studied, as ω = {ϕ, cos θ, cos ψ}.

The description of these decays in this basis gives us ac-cess to the three linear polarization amplitudes at pro-duction time, t = 0, |A0(0)|, |Ak(0)|, and |A⊥(0)|,

satisfy-ing |A0|2+ |Ak|2+ |A⊥|2= 1 [12]; and the CP-conserving

strong phases δ1 ≡ arg[A∗kA⊥], and δ2 ≡ arg[A∗0A⊥].

Since only the relative phases of the amplitudes can enter physics observables, we are free to fix the phase of one of them, and we choose to fix δ0≡ arg(A0) = 0.

According to the standard model, CP-violation effects in the B0

s system are very small [13]. In this analysis,

we assume CP conservation and express the differential decay rate for the untagged decay B0

s→ J/ψφ as [2]:

d4P/ (dω dt) ∝ e−ΓLt|A

0|2f1(ω) + Re(A∗0Ak)f5(ω)

+ |Ak|2f2(ω) + e−ΓHt|A⊥|2f3(ω), (1)

where ΓL(H)≡ 1/τL(H)is the inverse of the lifetime

corre-sponding to the light (heavy) mass eigenstate. The mea-sured parameters, the width difference ∆Γs≡ ΓL− ΓH

and the mean lifetime ¯τs ≡ 1/¯Γ = 2/ (ΓL+ ΓH), are

given in terms of these inverse lifetimes. The angular functions fi(ω) are defined in Ref. [2]. In this decay, we

have access to the phase δk= arg(A∗0Ak), which is related

to δ1 and δ2by δk= δ2− δ1.

In the Bd0system, there is evidence of interference

be-tween the P - and S-wave Kπ amplitudes [14], which is taken into account in this analysis. The differential de-cay rate for the untagged dede-cay B0

d → J/ψK∗0 is given

by [2, 14]:

d4P/ (dω dt) ∝ e−Γdtcos2λ|A

(5)

+ |A⊥|2f3(ω) − ζ Im(A∗kA⊥)f4(ω) + Re(A∗0Ak)f5(ω) + ζ Im(A∗0A⊥)f6(ω) + sin2λ · f7(ω) + 1 2sin 2λf8(ω) cos δk− δs |Ak| + f9(ω) sin (δ⊥− δs) |A⊥| + f10(ω) cos δs· |A0|]} , (2)

where Γd ≡ 1/τd is the inverse of the Bd0 lifetime, ζ =

+1(ζ = −1) for K+(K−); λ, δs, and fi(ω) are defined in

Refs. [2, 14]. For the B0

d, ∆Γdis expected to be zero [13].

An unbinned likelihood fit is performed to extract all the B0

d and Bs0 parameters. For the jth B meson

can-didate, the inputs for the fit are the mass mj, PDL

ctj, PDL uncertainty σctj, and the angular variables ωj. The likelihood function L for the untagged decays

B0 d → J/ψK∗0and B0s→ J/ψφ, is defined by L = QN j=1 h fsFsj+ (1 − fs)Fbj i , (3)

where N is the total number of selected events and fs is

the fraction of signal events in the sample, a free param-eter in the fit.

Fsis the product of the signal probability distribution

functions (PDF) of mass, PDL, and transversity angles, and the angular acceptances, which are determined via Monte Carlo simulations. The mass and PDL signal dis-tributions are modeled for both decays in the same way. The mass distribution is modeled by a Gaussian func-tion with free mean and width. The PDL distribufunc-tion is described [10] by the convolution of an exponential, whose decay constant is one of the fit parameters with a resolution function represented by two weighted Gaus-sian functions centered at zero. The widths siσctj of each Gaussian with scale factors si(i = 1, 2) are free

param-eters in the fit to allow for a possible misestimate of the PDL uncertainty. The transversity angular distributions are modeled by the corresponding normalized Eqs. (1) and (2). The contribution where the mass of the K and π are misassigned in our data is estimated by using Monte Carlo studies to be about 13% and is taken into account. Fb is the product of the background PDF of the same

variables and the angular acceptance as in the signal. We separate the background contributions into two types. The prompt background accounts for directly produced J/ψ mesons combined with random tracks. Non-prompt background is due to J/ψ mesons produced by a b hadron decay combined with tracks that come from either a multibody decay of the same b hadron or from hadroniza-tion. The mass distribution for the background is mod-eled by two independent normalized negative-slope ex-ponentials, one for the prompt and one for the non-prompt contributions. The PDL distribution for the prompt background is parameterized by the resolution function described above. The PDL distribution for the

non-prompt background is modeled by a sum of two ex-ponential components for positive ct and one for negative ct that account for a mix of heavy flavor meson decays and their possible misreconstruction. The angular distri-butions for the background components are modeled by a shape similar to that of the signal, but with an inde-pendent set of amplitudes and phases.

The results of our measurements are summarized in Table I. Figures 1 and 2 show the mass and the PDL distributions for the B0

d and Bs0candidates, respectively,

with the projected results of the fits. The parameters with the strongest correlations are the linear amplitudes for the B0

d, and the width difference and the mean lifetime

for the B0 s.

TABLE I: Summary of measurements for the decays B0

d →

J/ψK∗0 and B0

s → J/ψφ. The uncertainties are only

statis-tical. Parameter B0 d B 0 s Units |A0|2 0.587 ± 0.011 0.555 ± 0.027 − |Ak|2 0.230 ± 0.013 0.244 ± 0.032 − δ1 −0.38 ± 0.06 − rad δ2 3.21 ± 0.06 − rad δk − 2.72+1.12−0.27 rad τ 1.414 ± 0.018 1.487 ± 0.060 ps ∆Γs − 0.085+0.072−0.078 ps−1 Nsig 11195 ± 167 1926 ± 62 −

Table II summarizes the systematic uncertainties in our measurements for B0

d and Bs0 decays. To study the

systematic uncertainty due to the model for the mass dis-tributions, we vary the shapes of the mass distributions for background by using two normalized first-order poly-nomials instead of the nominal two negative exponentials. We estimate the systematic uncertainty due to the res-olution on the PDL by using one Gaussian function for the resolution model. The fitting code is tested for the presence of biases by generating 1300 pseudo-experiments for B0

d and 1000 for Bs0, each with the same statistics as

our data samples. We generated the events following the PDL, mass, and transversity angular distributions de-scribed above. The differences between the input and output values are quoted as the systematic uncertainty due to the fitting. The systematic uncertainty for δk

re-ported for this source is due to an intrinsic ambiguity for this parameter in Eq. (1). The pseudo-experiments produced also cover the other solution for δk. The

contri-bution from the detector alignment uncertainty is taken from Ref. [11]. Other potential sources of systematic uncertainties have been investigated and found to give negligible variations in the measured parameters. The systematic uncertainties for the ratio ¯τs/τd are obtained

by finding the ratio of the lifetimes for each systematic variation on Table II and taking the difference between this value and the nominal ratio.

(6)

TABLE II: Summary of systematic uncertainties in the measurement of angular and lifetime parameters. The total uncertainties are given combining individual uncertainties in quadrature.

B0

d B

0 s

Source |A0|2 |Ak|2 δ1 (rad) δ2 (rad) τd(ps) |A0|2 |Ak|2 δk(rad) ∆Γs (ps−1) τ¯s (ps) ¯τs/τd

Mass background − 0.024 0.09 0.05 0.030 0.004 0.002 0.02 − 0.021 0.009 PDL resolution 0.013 0.008 0.02 0.03 0.013 0.005 0.003 − − 0.016 0.012 Fitting code 0.001 − − − 0.004 0.004 0.014 0.26 0.001 0.008 0.003 Alignment − − − − 0.007 − − − − 0.007 − Total 0.013 0.025 0.09 0.06 0.034 0.006 0.014 0.26 0.001 0.028 0.015 ) 2 Mass (GeV/c 5 5.1 5.2 5.3 5.4 5.5 5.6 2

Events per 9 MeV/c

0 1000 2000 3000 4000 5000 ) 2 Mass (GeV/c 5 5.1 5.2 5.3 5.4 5.5 5.6 2

Events per 9 MeV/c

0 1000 2000 3000 4000 5000 Total fit Prompt background Non prompt background

-1 D0, 2.8 fb (a) ) 2 Mass (GeV/c 5.1 5.2 5.3 5.4 5.5 5.6 5.7 2

Events per 9 MeV/c

0 100 200 300 400 500 600 700 800 ) 2 Mass (GeV/c 5.1 5.2 5.3 5.4 5.5 5.6 5.7 2

Events per 9 MeV/c

0 100 200 300 400 500 600 700 800 -1 D0, 2.8 fb Total Fit Prompt background Non prompt background (b)

FIG. 1: Invariant mass distribution for selected (a) B0

d and

(b) B0

scandidate events. The points with error bars represent

the data, and the curves represent the fit projections for the total and the background components.

In conclusion, we have measured the angular and lifetime parameters for the time-dependent angular un-tagged decays B0

d → J/ψK∗0 and Bs0 → J/ψφ, the

lifetime ratio of both B mesons, and the width differ-ence ∆Γs for the Bs0 meson. From the measured

life-time parameters ¯τs and τd we obtain the ratio ¯τs/τd =

1.052 ± 0.061 (stat) ± 0.015 (syst) which is consistent with the theoretical prediction [5] and previous mea-surements [6]. The measurement of the width difference ∆Γs= 0.085+0.072−0.078(stat) ± 0.006 (syst) ps−1is consistent

with the theoretical prediction [5, 13] and with the value reported in Refs. [6, 16]. D0 also has a measurement of ∆Γsin a flavor-tagged analysis of B0s→ J/ψφ in Ref. [8].

Our measurements for the linear polarization

am-ct (cm) -0.1-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Events per 0.007 cm 1 10 2 10 3 10 4 10 5 10 ct (cm) -0.1-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Events per 0.007 cm 1 10 2 10 3 10 4 10 5 10 -1 D0, 2.8 fb (a) Total fit Signal Background ct (cm) -0.1-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Events per 0.005 cm 1 10 2 10 3 10 4 10 ct (cm) -0.1-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Events per 0.005 cm 1 10 2 10 3 10 4 10 Total fit L τ c H τ c Background -1 D0, 2.8 fb (b)

FIG. 2: PDL distribution for selected (a) B0

d and (b) B

0 s

candidate events. The points with error bars represent the data, and the curves represent the fit projections for the total, signal, and background components.

plitudes for the B0

d, taking into account the

inter-ference between the Kπ S-wave and P -wave, are |A0|2 = 0.587 ± 0.011 (stat) ± 0.013 (syst) and |Ak|2 =

0.230 ± 0.013 (stat) ± 0.025 (syst); and for B0

s: |A0|2 =

0.555 ± 0.027 (stat) ± 0.006 (syst), and |Ak|2 = 0.244 ±

0.032 (stat) ± 0.014 (syst) are consistent and competitive with those reported in the literature [6, 14, 15]. Our mea-surement of the strong phases δ1 and δ2 indicates the

presence of final-state interactions for the decay B0

d →

J/ψK∗0[2] since δ

1= −0.38±0.06 (stat)±0.09 (syst) rad

is 3.5σ away from zero, where σ is the total uncertainty. From the comparison of the measured amplitudes and strong phases [17] for both decays we conclude that they are consistent with being equal for B0

(7)

there is no evidence for a deviation from flavor SU(3) symmetry. In our sample we find that the Kπ S-wave intensity, as described in Ref. [14], is (4.0 ± 1.0)%.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt Foundation (Ger-many).

[a] Visitor from Augustana College, Sioux Falls, SD, USA. [b] Visitor from The University of Liverpool, Liverpool, UK.

[c] Visitor from Rutgers University, Piscataway, NJ, USA. [d] Visitor from II. Physikalisches Institut,

Georg-August-University, G¨ottingen, Germany.

[e] Visitor from Centro de Investigacion en Computacion -IPN, Mexico City, Mexico.

[f] Visitor from ECFM, Universidad Autonoma de Sinaloa,

Culiac´an, Mexico.

[g] Visitor from Helsinki Institute of Physics, Helsinki, Fin-land.

[h] Visitor from Universit¨at Bern, Bern, Switzerland.

[i] Visitor from Universit¨at Z¨urich, Z¨urich, Switzerland.

[‡] Deceased.

[1] T.E. Browder, K. Honscheid, and D. Pedrini, Annu. Rev. Nucl. Part. Sci. 46, 395 (1996).

[2] A.S. Dighe, I. Dunietz, and R. Fleischer, Eur. Phys. J.

C6, 647 (1999), and references therein.

[3] Unless explicitly stated, the appearance of a specific charge state will also imply its charge conjugate through-out the paper.

[4] E. Franco et al., Nucl. Phys. B633, 212 (2002). [5] A. Lenz, arXiv:0802.0977 [hep-ph] (2008).

[6] W.-M. Yao et al. (Particle Data Group), J. Phys. G 33, 1 (2006) and 2007 partial update for the 2008 edition. [7] V. Abazov et al. [D0 Collaboration], Nucl. Instr. and

Meth. Phys. Res. A 565, 463 (2006).

[8] V. Abazov et al. [D0 Collaboration], arXiv:0802.2255 [hep-ex] (2008), submitted to Phys. Rev. Lett.

[9] V. Abazov et al. [D0 Collaboration], Phys. Rev. Let. 98, 121801 (2007).

[10] V. Abazov et al. [D0 Collaboration], Phys. Rev. Lett. 94, 102001 (2005).

[11] V. Abazov et al. [D0 Collaboration], Phys. Rev. Lett. 94, 042001 (2005).

[12] Throughout the paper, if not explicit dependence on time

is stated, we denote Ai(0) ≡ Aifor i = {0, k, ⊥}.

[13] A. Lenz and U. Nierste, JHEP 06, 072 (2007).

[14] B. Aubert et al. [BaBar Collaboration], Phys. Rev. D 71, 032005 (2005).

[15] K. Abe et al. [Belle Collaboration], Phys. Rev. Lett. 95, 091601 (2005).

[16] T. Aaltonen et al., [CDF Collaboration], Phys. Rev. Lett.

100, 121803 (2008).

[17] Using the relation between these phases we obtain

δk,B0

Figure

TABLE I: Summary of measurements for the decays B 0 d → J/ψK ∗0 and B s 0 → J/ψφ. The uncertainties are only  statis-tical
TABLE II: Summary of systematic uncertainties in the measurement of angular and lifetime parameters

Références

Documents relatifs

To develop a sense of how important this distinction could be, we simulate the effects of an absolute cap and an intensity cap on carbon emissions for European Union (EU)

exploited the broad substrate tolerance of vicenisami- nyltransferase VinC from Streptomyces halstedii HC 34 in the discovery of 22 novel glycosides from 50 sets of

Cependant leurs teneurs dans les eaux usées non traitées sont faibles (UNEP/MAP/MEDPOL, 2004). Mais pour le retenta la quantité de ces ions est plus élevée par rapport à celles

New contexts for reuse for these models were : (i) to complete a rice FSPM model that lacked of 3D geometric representation and 3D light computation (Ecomeristem, Luquet et al,

pestis, in fleas collected in Ituri (Linga and Rethy health zone) and Kinshasa in the Democratic Republic of the Congo, the Lushoto district in the United Republic of Tanzania and

on daily social practices which show what type of regulations and order African societies may produce as they incorporate and adapt non negotiable techniques of governance tailored

As explained above, uncertainty related to variability of farming systems and management practices is addressed by building a functional typology of farming systems

The final part of this study is devoted to the simulation of outfalls in realistic ap- plications in coastal water regions. The general procedure described above