• Aucun résultat trouvé

Integrating fire resistance into infrastructure projects

N/A
N/A
Protected

Academic year: 2021

Partager "Integrating fire resistance into infrastructure projects"

Copied!
41
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

ISIS International Workshop on Innovative Bridge Deck Technologies [Proceedings], pp. 1-39, 2005-04-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=8e5c56de-715d-4372-9ec5-12d0179b3c44 https://publications-cnrc.canada.ca/fra/voir/objet/?id=8e5c56de-715d-4372-9ec5-12d0179b3c44 NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at Integrating fire resistance into infrastructure projects

(2)

http://irc.nrc-cnrc.gc.ca

I nt e grat ing fire re sist a nc e int o infra st ruc t ure proje c t s

K o d u r , V . K . R .

N R C C - 4 7 6 5 7

A version of this document is published in / Une version de ce document se trouve dans: ISIS International Workshop on Innovative Bridge Deck Technologies, Winnipeg, MB., April 14-15, 2005, pp. 1-39

(3)

Integrating Fire Resistance into

Infrastructure Projects

V.K.R. Kodur

(4)

Outline

• Background – Fire design

• Need for Fire Resistance in Infrastructure • Fire Performance of HPM - Complexities • Fire Resistance Assessment

• Integrating Fire into Design Design Guidelines

Case Studies

(5)

Fire Safety

• Fire Safety

Fire - Severe Conditions

Buildings - Design Requirements • loss of life and property

• Fire resistance - structural systems

safe evacuation - occupants & fire personnel minimize property damage

control spread of fire

• Current Requirements - Buildings

(6)

FR Requirements for

Infrastructure

• Fire and Infrastructure

Traditionally no specific fire resistance requirements Bridges, Tunnels, Open spaces

• Growing recognition on the need for FR requirements

Recent Incidents – Fire Accidents Use of (New) HPM Materials

Deteriorating Infrastructure/Decks Severe Environment Conditions Economical Impact and Safety Strategic Considerations

(7)

Fire Incidents

• Euro Tunnel Fire - Nov 96 Burned 10 h – 1000°C Severe damage • injuries (8), services (£50M) • thermal spelling • RC tunnel rings (100's m) • av. depth 10-20 cm Strength - 80~100 MPa Permeability - low

• Major repairs – damages

Fire-Induced Spalling of HSC Tunnel Lining & Buckling of reinforcement in

Channel Tunnel due to Fire on Nov 18, 1996

(8)

Fire Resistance

-Materials

• Fire Resistance of Systems Constituent materials

Traditional materials

• concrete, steel (protected) masonry • good FR properties

HPM

• FR properties - not good

(9)

High Performing Materials

• HPM - HSC, FRP, HPS Benefits • Superior performance – Strength, Durability – Corrosion resistance Applications

• Bridges, Infrastructure projects • Buildings, Parking garages

– FRP- Internal & External reinforcement

» Retrofitting – columns, beams » Rebars and prestressing rods

– HSC - replacing NSC

(10)

Fire Performance - FRP

Members

• Design Considerations Smaller c/s size

Min. cover - Corrosion free • Complexities - FRP

Various types, Resin-matrix composite Lower critical Temp

Combustible

(11)

Variation of Strength with

Temperature for Different

Materials

(12)

Fire Performance - HSC

• NSC - good fire resistance

• HSC - behaviour diff. from NSC

• Spalling

Pressure build-up - pore pressure • Moisture migration

Low permeability

Strong pressure gradients Explosive spalling

Loss of C/S – fire resistance Ext. damage – structure

Early spalling - safe evacuation Cover – temp in rebar/ties

(13)

Fire Resistance

Requirements

• Columns 1-3 hours Stability, no collapse • Steel columns – applied protection – limiting temperature • RC columns

– min cover to rebar – limiting temp. in rebar

(14)

Fire Resistance

Requirements

• Slabs 45 min to 2 hours Stability, Integrity • Steel decks – applied protection – limiting temperature • RC/PC slabs

– min cover to rebar, min. c/s size – limiting temp. in rebar/ tendon

(15)

• Fire load • Temp. rise • Ventilation • Design features • Location

Infrastructure – Fire

Scenarios

(16)

Integrating Fire in to

Infrastructure Design

• Design Guidelines – Fire Resistance • Case Studies

Concrete Slab with FRP Internal Reinforcement HSC Columns

(17)

Concrete Slab with FRP

Internal Reinforcement

• Fire resistance evaluation of an RC Slab

Based on temperature profile

• slab characteristics • critical temperature • Failure Criterion < Tcr in rebars T on unexp side • < 140°C (Av) • < 180°C (1 pt) no flames on • unexp side

(18)

Design Guidelines

• NRC-PWGSC JRP - FRP reinforced RC Slabs Strength properties of FRP at Elevated Temp.

• critical temperature

Experimental Studies - FRP-RC slabs Numerical Studies

Design Guidelines

• CSA S806 for FRP in buildings

(19)
(20)

Numerical studies Rebar type • Steel, FRP Concrete type Slab thickness Cover thickness Time-Temp Graph • Slab charact. • Critical temp • CSA-S806 0 100 200 300 400 500 600 700 800 900 1000 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 Time (min) T e m p erat u re at R e in fo rcem en t D e p th ( o C ) 20 mm-(Slab C1) 30 mm-(Slab C2) 50 mm-(Slab C4) 40 mm-(Slab C3)

Critical Temperature Limit for Steel (593oC)

Critical Temperature Limit for FRP (250oC)

60 mm-(Slab C5)

Effect of concrete cover thickness on FR of FRP-RC slabs

Design Chart - FRP-RC

Slabs

(21)

Critical Temperature of

FRP Rebars

(22)

Slab Characteristics ƒ t = 120 mm

ƒtc= varying

ƒAgg. = Carbonate ƒ Exp - ASTM E119

ƒtc= 20 mm ƒS = 95 m ƒG = 30 ƒC = 20

Design Charts - FRP-RC

Slabs

(23)

Slab Characteristics ƒ t = 180 mm

ƒtc= varying

ƒAgg. = Carbonate ƒ Exp - ASTM E119

ƒtc= 40 mm ƒS = 240 m ƒG = 65 m ƒC = 45 m

Design Charts - FRP-RC

Slabs

(24)

HSC Columns - Design

Guidelines

• HSC columns • Reinf. detailing tie configuration bending ties @ 135° tie spacing - closer cross ties

minimizes spalling enhances FR

(25)

Design Guidelines

• Carbonate aggregate (limestone) • Normal density aggregate

• Minimum dimensions

1h - 12” 2h-16” 3h-24”

• Concrete cover thickness

(26)

View of HSC after Fire

Test

(27)
(28)

Current Fire Research

• ISIS-NRC-Industry Research Project Fire Resistance of FRP-RC Systems

• FRP wrapped columns • FRP Strengthened beams

• FRP Strengthened beam-slab assemblies

Partners

• National Research Council • ISIS Canada

• Queen’s University • Industry Partners

(29)

Project Elements

• Experimental Studies 16 full-scale fire tests 12 small-scale fire tests • Numerical Studies

develop computer programs evaluate fire protection

• Develop design procedures • Outcome

computer models design procedures

design provisions for standards

FULL-SC A LE FIRE TESTS

Pha se 1: Fa ll 2 0 02

Te st Se tup fo r C o lum n Fire Te sts

Re stra ine d Ag a inst Ro ta tio n (b o th e nds)

Ste e l End-Pla te

FRP-Wra ppe d Re info rc e d C o nc re te C o lum n (instrum e nte d w/ the rm o c o uple s a nd stra in g a ug e s)

Lo a d Applie d fro m Be lo w

C AN/ ULC S-10 1 Sta nda rd Fire

NRC C o lum n Furna c e

A A

FRP she e t a nd va rio us fire p ro te c tio n sc he m e s to b e te ste d Pha se 2: Winte r 2 0 03 Applie d Lo a d FRP-Stre ng the ne d Re info rc e d C o nc re te Be a m

(Instrume nte d with the rmo c o uple s & strain gauge s)

A

A

Se c tio n A-A

C AN/ ULC S - 101 Sta nda rd Fire

Te st Se tup fo r Be a m -Sla b Fire Te sts

FULL-SC A LE FIRE TESTS

Pha se 1

Te st Se tup fo r C o lum n Fire Te sts

Re stra ine d Ag a inst Ro ta tio n (b o th e nds)

Ste e l End-Pla te

FRP-Wra ppe d Re info rc e d C o nc re te C o lum n (instrum e nte d w/ the rm o c o uple s a nd stra in g a ug e s)

Lo a d Applie d fro m Be lo w

C AN/ ULC S-10 1 Sta nda rd Fire

NRC C o lum n Furna c e

A A

FRP she e t a nd va rio us fire p ro te c tio n sc he m e s to b e te ste d Pha se 2 Applie d Lo a d FRP-Stre ng the ne d Re info rc e d C o nc re te Be a m

(Instrume nte d with the rmo c o uple s & strain gauge s)

A

A

Se c tio n A-A

C AN/ ULC S - 101 Sta nda rd Fire

(30)

Column 2

Immediately After Failure

Column 2

Immediately Before Testing

FRP-strengthened RC

Column : Before and After

Fire Test

(31)

Preliminary Guidelines for

FRP’s under Fire

• Unlike conventional reinforced concrete

members,FRP-strengthened structural systems require suitable fire protection to achieve fire endurance ratings under increased service loads. • The performance of protected FWRC columns at high

temperatures can be similar to, or better than, that of conventional RC columns.

• Insulation properties (thermal conductivity, specific heat and

thickness) are the key parameters to consider in the selection of insulation schemes for FRP- strengthened structural systems. • Further studies proposed in Phase II, will result in fire guidelines

(32)

Numerical Studies

• Numerical Model

predicting the behaviour of HSC column • Numerical Procedure fire temperature • ASTM curve C/S temperature • thermal properties strength • mechanical properties

(33)

Numerical procedure for

fire resistance

(34)

Fire Performance

Requirements

• Codes - UBC/NBC

Fire Resistance Ratings Flame Spread Ratings

• Smoke developed classifications

Non-Combustibility Classifications • Fire Resistance

(35)

Slab Characteristics ƒ t = 150 mm

ƒtc= varying

ƒAgg. = Carbonate ƒ Exp - ASTM E119 ƒtc= mm ƒS = m ƒG = m ƒC = m

Design Charts - FRP-RC

Slabs

(36)

Slab Characteristics ƒ t = 120 mm

ƒtc= varying

ƒAgg. = Siliceous ƒ Exp - ASTM E119 ƒtc= mm ƒS = m ƒG = m ƒC = m

Design Charts - FRP-RC

Slabs

(37)

Slab Characteristics ƒ t = 150 mm

ƒtc= varying

ƒAgg. = Siliceous ƒ Exp - ASTM E119 ƒtc= mm ƒS = m ƒG = m ƒC = m

Design Charts - FRP-RC

Slabs

(38)

Slab Characteristics ƒ t = 150 mm

ƒtc= varying

ƒAgg. = Siliceous ƒ Exp - ASTM E119 ƒtc= mm ƒS = m ƒG = m ƒC = m

Design Charts - FRP-RC

Slabs

(39)

View of HSC Columns

With and Without PP

Fibres

(40)

Summary

• By adopting design guidelines, such as the addition of fibres and an improved tie configuration, spalling in HSC members can be minimized to a significant extent and fire endurance can be enhanced.

• The polypropylene fibers are much more effective in minimising spalling in HSC under hydrocarbon fires.

• The fire endurance of HSC columns with equivalent levels of confinement is lower than that of NSC columns. However, fire endurance up to 4 hours can be obtained with HSC columns if the guidelines are adopted in design.

(41)

Complexities - FP of HSC

• NSC - good fire resistance

• HSC - behaviour diff. from NSC • Spalling

low porosity, high density pore pressure

• No guidelines for fire

ACI 318/216, CSA-A23.3, NBCC • Solution - eliminate fire protection

Références

Documents relatifs

Using data collected by the ANTARES neutrino telescope from mid 2008 to 2017, the time evolution of the photon detection efficiency of optical modules is studied.. A modest loss of

From statistical analysis of experimental data, it was found that the most relevant single variable to IM threshold is the product of separation between localizer

En effet, la quantité de paille dispo- nible peut à la fois définir une «offre», si l’on envisage le développement de filières avec exportation de paille, mais peut également

Therefore, the present study aimed at investigating the existence of dilemmas between health and environ- mental motives when purchasing meat, fish and dairy products, at

Each CS was tested with and without cover crops (CC) during the fallow period. Thus, six CS were designed covering an agroecological gradient of reduced inputs use and

Mecanum wheels can do this, or at least, can manipulate the performance of the Omniwheel. Suppose these rollers were instead mounted parallel to the motor

We argue that despite the different structuration and history of climate and biodiversity regime complexes, the notion of ecosystem services (ES), in developing specific

These ratios indi- cate that the trend of the centrality dependent baryon enhancement, apparent in the jet-associated conditional yields, is similar to that observed for the