• Aucun résultat trouvé

Experimental study of the maximum upstream location of premixed CH4/air and CH4/O2-He flames with repetitive extinction and ignition in a quartz micro flow reactor.

N/A
N/A
Protected

Academic year: 2021

Partager "Experimental study of the maximum upstream location of premixed CH4/air and CH4/O2-He flames with repetitive extinction and ignition in a quartz micro flow reactor."

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-02111425

https://hal.archives-ouvertes.fr/hal-02111425

Submitted on 26 Apr 2019

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Experimental study of the maximum upstream location of premixed CH4/air and CH4/O2-He flames with repetitive extinction and ignition in a quartz micro flow

reactor.

H Chouraqui, C Chauveau, P. Dagaut, F. Halter, G. Dayma

To cite this version:

H Chouraqui, C Chauveau, P. Dagaut, F. Halter, G. Dayma. Experimental study of the maximum upstream location of premixed CH4/air and CH4/O2-He flames with repetitive extinction and ignition in a quartz micro flow reactor.. 9th European Combustion Meeting (ECM2019), Apr 2019, Lisboa, Portugal. �hal-02111425�

(2)

1. Goal of the study

2. Experimental set-up

H. CHOURAQUI

1, 2

, C. CHAUVEAU

2

, P. DAGAUT

2

, F. HALTER

1, 2

, G. DAYMA

1, 2

1

University of Orleans, 1 rue de Chartres, 45067 Orléans cedex 2, France

2

CNRS – INSIS, 1C avenue de la Recherche Scientifique, 45071 Orléans cedex 2, France

Experimental study of the maximum upstream location of premixed

CH

4

/air and CH

4

/O

2

-He flames with repetitive extinction and ignition in

a quartz micro flow reactor

• Growing need to improve knowledge in the field of small-scale combustion and take advantage of high energy density of fuel [1] in different applications such as portable power device [2], micro-satellite thrusters [3], heat sources [4].

• Previous studies have been done with fuel/air mixtures. Combustion of a CH4/O2 mixture with different diluents can improve the understanding of flame behaviour in micro-scale reactor by changing physical properties of the environment. Hence, be able to point out physico-chemical properties that play an important role in micro-scale combustion.

• Cylindrical quartz tube heated by 3 hydrogen/oxygen blowtorches.

• The temperature profile on the outer side is measured by a infrared camera A655sc.

• A spectroscopy EMCCD camera ProEM 1600 and a Phantom v1611 camera coupled with a High-Speed IRO intensifier with a CH* band-pass filter (20BPF1_430) is used to detect the flame positions.

• CH4/diluent mixture is supplied in a reactor with an internal diameter smaller than the quenching distance. (Quenching distance of CH4/air is 2.50 mm

)

3. Flame with Repetitive Extinction and Ignition (FREI)

• The ignition in FREI occurs at the hot wall temperature region near blowtorches. Then the flame front propagates upstream toward fresh gases, reaching a maximum upstream location, until it is finally quenched downstream in colder wall region.

[1] A. C. Fernandez-Pello, “Micropower generation using combustion: Issues and approaches,” Proc. Combust. Inst., vol. 29, no. 1, pp. 883–899, (2002) [2] K. H. Lee and O. C. Kwon, “Studies on a heat-recirculating microemitter for a micro thermophotovoltaic system,” Combust. Flame., vol. 153, no. 1,

pp. 161–172, (2008).

[3] P. Galie, B. Xu, and Y. Ju, “Kinetic Enhancement of Mesoscale Combustion by Using a Novel Nested Doll Combustor”, 45th AIAA aerospace sciences

meeting and exhibit, (2007).

[4] T. A. Wierzbicki, I. C. Lee, and A. K. Gupta, “Rh assisted catalytic oxidation of jet fuel surrogates in a meso-scale combustor,” Appl, Energy, vol. 145, pp. 1–7, (2015).

[5] A. Di Stazio, C. Chauveau, G. Dayma, and P. Dagaut, “Oscillating flames in micro-combustion”, Combust. Flame, vol. 167, pp 392-394, (2016). [6] A. Di Stazio, “Caractérisation expérimentale de la dynamique de la combustion à micro-échelle”, Thesis, Orléans, (2016).

Acknowledgements

Authors thank the Ministry of Research en Higher Education (MESRI) for a PhD grant. Support from the CAPRYSSES project (ANR- 11-LABX-006–01) funded by ANR through the PIA (Programme d’Investissement d’Avenir) is gratefully acknowledged

.

Temporal evolution of CH* intensity obtained during FREI progression of premixed stoichiometric CH4/air flame with an inlet flow velocity of 0.4 m.s-1 in a 1.85 mm inner

diameter reactor [5]

Image from FLIR camera of the external temperature for a stoichiometric mixture of CH4/air, a flow velocity of 0.7 m/s, in a 1.85 mm internal diameter tube

3.2 cm

373 K

1500 K

Flow

Schematic of the temperature profile along the channel (test section represented in red has a length of 0.032 m).

Schematic of the experimental set-up

Diluent O2 N2 He Ar

Air [5-6] 21.0 % 79.0 % 0 % 0 %

O2/N2/He 21.2 % 39.6 % 39.2 % 0 %

O2/He 21.7 % 0 % 78.3 % 0 %

O2/Ar 21.6 % 0 % 0 % 78.4 %

Compositions of diluents used in this study in molar fraction

Diluent Laminar burning

velocity (cm/s) Adiabatic flame temperature (K) Air [5-6] 30 2221 O2/N2/He 61 2367 O2/He 119 2541 O2/Ar 77 2537 Xe 56 2513

Laminar burning velocity and adiabatic flame temperature of a stoichiometric mixture CH4/diluent

Diluent Thermal conductivity

(10-2 W.m-1.K-1)

Specific heat capacity

(J.kg-1K-1) Dynamic viscosity (10-5 Pa.s) Density (kg.m-3) CH4 Mass diffusivity (10-5 m2.s-1) Air [5-6] 2.65 1075 2.18 1.12 2.34 O2/N2/He 5.48 1401 2.41 0.78 3.11 O2/He 9.08 2240 2.80 0.43 4.54 O2/Ar 2.03 661 2.70 1.47 2.32 Xe 0.97 235 2.40 4.12 1.76

5. Conclusions

Temperature location of stoichiometric CH4 maximum

upstream location in FREI as a function of mixture inlet mean velocities for different diluents

Comparison between the predicted position (solid line) with experimental results (dashed lines) for different diluent and inner diameters of the reactor

4. Diluent Influence on FREI

Diluent influence on characteristic experimental FREI points position evolution with the inlet mixture velocity

Maximum upstream modified temperature location plotted as a function of the modified inlet mixture velocity

CH4/diluent mixture thermodynamics and transport properties at 300 K

O2/Ar (1.00 mm) Air (1.85 mm) O2/N2/He (1.85 mm) O2/He (1.85 mm)

Experimental

results

Correlation using

thermodynamics and

transport properties of

the fresh mixture

Prediction of flame

front location

• Difference between turning point and extinction point increases with the inlet mixture velocity • A new method is used to establish a correlation between turning point and its location

• Mass diffusivity of the CH4 and thermal conductivity seems to play a significant role • There no simple relations between fluid properties and FREI behavior

u = 4.586E-03*T - 2.847E+00 u = 7.625E-03*T - 5.471E+00 u = 3.831E-03*T - 2.612E+00 u = 1.341E-03*T - 8.234E-01 0 0.2 0.4 0.6 0.8 1 1.2 1.4 550 650 750 850 950 1050 Mixt ur e in le t vel oci ty ( m/ s) Wall temperature (K) Ar 1 mm He 1,85 mm O2/N2/He O2/Ar O2/He Air O2/N2/He O2/Ar O2/He Air y = 4.807E+30x - 5.787E+33 y = 4.829E+30x - 5.727E+33 y = 4.797E+30x - 5.787E+33 y = 4.873E+30x - 5.614E+33 0.0E+00 5.0E+32 1.0E+33 1.5E+33 2.0E+33 2.5E+33 3.0E+33 3.5E+33 1200 1300 1400 1500 1600 1700 D-0.030Cp-0.034λ-0.058d-0.053T (SI) D -5 .7 2 Cp 2 .5 λ 0.0 17 d 0 .0 7 7 u ( SI ) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 550 650 750 850 950 1050 Mixt ur e in le t vel oci ty ( m/ s) Wall temperature (K) Air 1.00 mm Air 1.00 mm Air 2.15 mm Air 2.15 mm Air 2.50 mm Air 2.50 mm Xe 1.85 mm u = 7.625E-03*T - 5.471E+00 u = 3.831E-03*T - 2.612E+00 u = 1.341E-03*T - 8.234E-01 0 0.2 0.4 0.6 0.8 1 1.2 1.4 550 650 750 850 950 1050 Mixt ur e in le t vel oci ty ( m/ s) Wall temperature (K) He 1,85 mm N2 He 1,85 mm O2/N2/He O2/Ar O2/He Air O2/N2/He O2/Ar O2/He Air (1.85 mm) O2/N2/He (1.85 mm) O2/He (1.85 mm) y = 5.576E-02x - 6.879E+01 y = 5.705E-02x - 6.584E+01 y = 5.705E-02x - 6.951E+01 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 1100 1300 1500 1700 1900 D −0 .5 3 Cp −0 .3 3 𝜌 1 .2 5 µ −0 .0 3 λ −0 .1 4 u (SI ) D0.17 Cp0.18 𝜌−0.18µ0.03 λ−0.44T (SI) Air (1.85 mm) O2/N2/He (1.85 mm) O2/He (1.85 mm) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 500 700 900 1100 Mixt ur e in le t vel oci ty ( m/ s) Wall temperature (K) Air 1.00 mm Air 1.00 mm Air 2.15 mm Air 2.15 mm Air 2.50 mm Air 2.50 mm Ar 1.00 mm Ar 1.00 mm Xe 1.85 mm O2/Ar (1.00 mm) O2/N2/He (1.85 mm) O2/Ar (1.00 mm) O2/N2/He (1.85 mm) O2/He (1.85 mm) Air (1.85 mm) O2/He (1.85 mm) Air (1.85 mm) 0.1 0.3 0.5 0.7 0.9 1.1 1.3 600 800 1000 1200 1400 1600 Mixtur e inl et velo city (m /s) Wall temperature (K)

Références

Documents relatifs

This paper presents the bedibe project, which regroups a software for “BEnchmarking DIstributed Bandwidth Estimation”, and a set of available bandwidth measurements performed on

Comparison of heat flux measurements by IR thermography and probes in the Alcator C-Mod

To investigate the effect of muscle fatigue, ankle mechanical impedance should be measured under consistent muscle activation levels across pre- and post- fatigue

To illustrate the differences between the diffractive dijet ex- clusive events with ∆ > 0.85, where the calorimeter has little energy deposition outside the central region, and

Serge Hercberg et Chantal Julia décrivent la mise en œuvre du programme national Nutrition-santé (PNNS) pour une meilleure alimentation et un meilleur état

More important, Just Culture acknowledges fallibility as part of human nature, rightly identifies information flows as instrumental for enhancing safety in organizations

Assessment of Baroreflex Control of Heart Rate During General Anesthesia Using a Point Process Method.. Zhe Chen,

The improvement in the mechanical properties of TLCP nanocomposites resulted from the enhanced interfacial adhesion between modified CNT and TLCP as well as uniform dispersion