• Aucun résultat trouvé

HYDROXYANTHRAQUINONE DYES FROM PLANTS

N/A
N/A
Protected

Academic year: 2021

Partager "HYDROXYANTHRAQUINONE DYES FROM PLANTS"

Copied!
3
0
0

Texte intégral

(1)

HAL Id: hal-01518543

https://hal.archives-ouvertes.fr/hal-01518543

Submitted on 4 May 2017

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

HYDROXYANTHRAQUINONE DYES FROM

PLANTS

Yanis Caro, Thomas Petit, Isabelle Grondin, Mireille Fouillaud, Laurent

Dufossé

To cite this version:

Yanis Caro, Thomas Petit, Isabelle Grondin, Mireille Fouillaud, Laurent Dufossé.

HYDROXYAN-THRAQUINONE DYES FROM PLANTS. Symposium on natural colorants “Plants, Ecology and

Colours”, May 2017, Antananarivo, Madagascar. 2017. �hal-01518543�

(2)

skyrin  

H

YDROXYANTHRAQUINONE

 

DYES

 

FROM

 

PLANTS

   

Yanis  CARO

*,1

,  Thomas  PETIT

2

,  Isabelle  GRONDIN

1

 ,  Mireille  FOUILLAUD

1

 and  Laurent  DUFOSSE

1    

1  Laboratoire  LCSNSA,  Université  de  La  Réunion  (France);  2  UMR  Qualisud,  Université  de  La  Réunion  (France)  

Introduc)on

 

 In  the  plant  kingdom,  numerous  pigments  have  already  been  iden)fied,  but  only  a  minority  of  them  is   allowed   by   legal   regula)ons   for   texMle   dyeing,   food   coloring   or   cosmeMc   and   pharmaceuMcs’   manufacturing.  Anthraquinones,  produced  as  secondary  metabolites  in  plants,  cons)tute  a  large  structural   variety  of  compounds  among  the  quinone  family.  Anthraquinones  are  structurally  built  from  an  anthracene   ring  with  a  keto  group  on  posi)on  9,10  as  basic  core  and  different  func)onal  groups  such  as  -­‐OH,  -­‐CH3,  -­‐

COOH,  etc.  may  subs)tute  at  various  posi)ons.  Anthraquinones  and  their  deriva)ves  occur  either  in  a  free   form   (aglycone)   or   as   glycosides.   Hydroxyanthraquinone   dyes   usually   refers   to   hydroxylated   9,10-­‐ anthracenedione  (from  mono-­‐,  di-­‐,  tri-­‐,  up  to  octa-­‐).  They  absorb  visible  light  and  are  coloured  (red,  orange  

and  yellow).  This  work  gives  an  overview  on  hydroxyanthraquinone  dyes  described  in  plants.    

1)  Plant  sources  of  hydroxyanthraquinone  dyes  

 About  700  natural  hydroxyanthraquinone  pigments  have  already  been  iden)fied  from  insects,  lichens,  filamentous  fungi,  or  plants,  and  only  few  of  them  (f.i.   carminic  acid,  Arpink  red™,  and  alizarin  from  madder  color)  are  already  manufactured  as  natural  colorants  in  tex)le,  food,  cosme)c  or  pharmaceu)cs  industries.   For  example,  fiQeen  hydroxyanthraquinones’  deriva)ves  from  madder  roots  (Rubia  Anctorum  L.,  which  contains  2-­‐3.5  %  pigments  of  dry  weight)  (CI  Natural  Red   8)  play  an  important  role  in  tex)le  dyeing,  prin)ng,  and  cosme)cs;  but  not  in  food  in  Europe  or  USA,  even  if  it  seems  to  have  /  had  some  uses  in  food  in  Japan   (confec)onery,  boiled  fish,  soQ  drinks).  Alizarin  (Pigment  Red  83,  CI  Mordant  Red  11)  is  the  main  hydroxyanthraquinone  dye  in  madder  color.  It  is  naturally  bound   to   the   disaccharide   primeverose   to   build   up   the   pigment   ruberythric   acid   (yellow)   in   Rubiaceae.   Purpurin   (CI   Natural   Red   16)   is   a   minor   component   in   the   madder  color,  but  is  the  main  dye  in  addi)on  with  munjisMn  (orange-­‐red  crystals)  in  Indian  madder  (Rubia  cordifolia).  The  color  shades  of  madder  color  vary  from   scarlet,  pink  (high  content  of  pseudopurpurin  and/or  purpurin,  called  pink  madder  or  rose  madder),  carmine  red  (high  content  of  alizarin),  to  red  with  a  bluish  )nt   (alizarin  lakes).  Also  oxida)ve  coupling  of  two  single  hydroxyanthraquinones  to  form  dimers  (dianthrones)  was  found  in  plants,  like  the  pharmaceu)cally  used   pigment  hypericin  from  Hypericum  species  which  is  a  dianthrone  built  up  from  two  pigment  emodin  (yellow).  Several  other  plant  species,  although  producing   hydroxyanthraquinones  dyes  are  not  considered  viable  contributors  to  the  natural  red  dye  market.  This  is  the  case  of  Anchusa  )nctoria,  Carthamus  )nctoria,  

Lithospermum  spp.  and  Galium  spp.  Other  plant  species  well-­‐known  as  laxa)ves  can  produce  hydroxyanthraquinone  dyes  like  physcion,  and  they  include  senna  

pods  (Cassia  angusAfolia),  cascara  sagrada  (Rhamnus  purshiana),  frangula  (Rhamnus  frangula),  rhubarb  root  (Rheum  palmatum),  yellow  dock  (Rumex  crispus)   and  aloes  (Aloe  vera).    

Fig.1:  Main  hydroxyanthraquinone  natural  dyes  from  plants    

2)  Nega)ve  effects  of  hydroxyanthraquinone  dyes  

  As   hydroxyanthraquinone   dyes   are   not   yet   widely   applied,   research   work   need   to   extend   the   knowledge   concerning   their   potenMal   roles   on  

human   health.   Their   posi)ve   and/or   nega)ve   effects   due   to   the   9,10-­‐ anthracenedione   structure   and   its   subs)tuents   are   s)ll   not   clearly  

understood  and  their  poten)al  role  or  effect  on  human  health  is  currently   being  discussed  by  scien)sts.    

 For  example,  the  roots  of  the  european  madder  are  rich  in  the  highly   colored,   naturally   occurring,   glycosidic   anthraquinoid   compounds   ruberythric   acid,   and   lucidin-­‐primeveroside.   An   intrinsic   problem   is   the   simultaneous   hydrolysis   of   the   glycoside   lucidin-­‐primeveroside   to   the  

unwanted   lucidin   and   rubiadin   aglycones.   Indeed,     several   toxicological  

studies  have  concluded  that  rubiadin,  lucidin,  and  more  generally  madder   color,  can  induce  carcinogenicity  in  rat  kidney  and  liver,  and  they  should  be   dealt  carefully  as  a  significant  carcinogen  against  human  (no  data  available   for  humans).  Aloin  from  Aloe  spp.  also  presents  nega)ve  effects  on  human   diet.    

References

 

1. Y Caro et al (2012), Natural hydroxyanthraquinoid pigments as potent food grade colorants: an overview. Natural Products & Bioprospecting, 2, p174-193. 2. N Sutthiwong et al (2013) Production of biocolours. In: Biotechnology in agriculture and food processing: opportunities and challenges, PS Panesar, SS Marwaha (Eds) 3. L Dufossé (2014), Anthraquinones, the Dr Jekyll and Mr Hyde of the food pigment family. Food Research International, 65, p.132-136

4. Y Caro et al (2015), Pigments and colorants from filamentous fungi. In: Fungal Metabolites (J-M Mérillon & KG Ramawat Eds.)

3)  Posi)ve  effects:    

AnAtumor  AcAvity  and  Cytotoxicity

 

  Other   well-­‐known   hydroxyanthraquinone   dyes   of   natural   origin   and   used  as  natural  colorants  (like  carminic  acid)  are  neither  toxic  nor  known  to   be   carcinogenic.   Furthermore,   numerous   pharmacological   studies   have   proved   that   some   hydroxyanthraquinone   dyes   have   biological   posiMve  

effects.   Examples   including   emodin,   aloe-­‐emodin,   rhein,   physcion,   purpurin,   damnacanthal,   which   can   inhibit   the   growth   and   proliferaMon   of   various   cancer   cells,   such   as   lung   adenocarcinoma,   myelogenous  

leukemia,   neuroblastoma,   hepatocellular   carcinoma,   bladder   cancer,   and   others  through  cell  death  and  survival’s  modula)on.    

Fig.2:  Mutagen  lucidin  and  rubiadin  pigments  from  madder  color  

Conclusion

 

 Finally,  all  these  findings  clearly  indicate  that  hydroxyanthraquinone  dyes  of  natural  origin,  such  as  from  higher  plants,  might  be  considered  as  potent  sources   of   novel   an)cancer   drugs   and,   at   least,   promising   an)-­‐leukemic   agents,   an)-­‐invasive   agents   for   human   pancrea)c   and   gastric   cancers   chemotherapy,   and   an)tumor  agents  for  hepatocellular  carcinoma,  bladder  cancer,  and  others.  However,  the  cytotoxicity  caused  by  quinones  in  general  is  very  complex  and  seems  to   occur  through  several  mechanisms.  Thus,  due  to  differences  in  structures  and  characteris)cs  among  hydroxyanthraquinone  dyes,  and  to  the  dose-­‐dependant   responses  observed,  the  molecular  mechanism  of  the  toxicity  of  each  pigment  remains  to  be  fully  elucidated.  

hypericin   ruberythric  acid   emodin   physcion   rhein   chrysophanol   purpurin   damnacanthal  

(3)

Symposium/Festival on natural colorants “Plants, Ecology and Colours”

Antananarivo, Madagascar, 15 - 21 may 2017

H

YDROXYANTHRAQUINONE DYES FROM PLANTS

Yanis CARO

*,1

, Thomas PETIT

2

, Isabelle GRONDIN

1

,

Mireille FOUILLAUD

1

and Laurent DUFOSSE

1

1

Affiliation: Université de La Réunion, Laboratoire de Chimie des Substances Naturelles et des

Sciences des Aliments (LCSNSA), Réunion (France)

2

Affiliation: UMR Qualisud, Démarche intégrée pour l’obtention d’aliments de qualité, Université

de La Réunion, Réunion (France)

* email of corresponding author(s): yanis.caro@univ-reunion.fr

Abstract

In the plant kingdom, numerous pigments have already been identified, but only a

minority of them is allowed by legal regulations for textile dyeing, food coloring or

cosmetic and pharmaceutics’ manufacturing. Anthraquinones, produced as secondary

metabolites in plants, constitute a large structural variety of compounds among the

quinone family. Derivatives that contain hydroxyl groups, namely

hydroxy-anthraquinones, are colored. They have attracted the attention of many researchers due

to their large spectrum of possible applications especially in the fields of dyeing. These

dyes produce a wide range of nuances in shades (red, orange and yellow). Fifteen

anthraquinones’ derivatives from madder color roots (Rubia tinctorium L.) play an

important role in dyeing (CI Natural Red 8). Purpurin (CI Natural Red 16) is a minor

component in the madder color, but is the main dye in addition with munjistin in Indian

madder (Rubia cordifolia). Alizarin (Pigment Red 83, CI Mordant Red 11) is the main red

dye in madder color. Several other species, although producing hydroxyanthraquinones

dyes, are not considered viable contributors to the natural red dye market. This is the

case of Anchusa tinctoria, Lithospermum spp., Carthamus tinctoria or Galium species.

Some hydroxyanthraquinone dyes, either extracted from insects (carminic acid),

microbes (Arpink red) or plants (alizarin from European madder roots), are already

manufactured and marketed as natural colorants in textile, food, cosmetic or

pharmaceutics industries. As these dyes are not yet widely applied, research work need

to extend the knowledge concerning their potential roles on human health. Their positive

and/or negative effects due to the 9,10-anthracenedione structure and its substituents

are still not clearly understood and their potential role or effect on human health is

currently being discussed by scientists. For example, rubiadin, lucidin, and more

generally madder color, can induce carcinogenicity and should be dealt carefully as a

significant carcinogen. In contrast, numerous pharmacological studies have proved that

some hydroxyanthraquinones have positive effects. Examples including emodin, rhein,

physcion, damnacanthal, purpurin, which can inhibit proliferation of various cancer cells.

This work gives an overview on hydroxyanthraquinone dyes described in plants.

Keywords: natural colorants; pigments; dyeing plants; anthraquinones; madder

References:

[1] Y Caro et al (2012), Natural hydroxyanthraquinoid pigments as potent food grade colorants:

an overview. Natural Products & Bioprospecting, 2, p174-193.

[2] N Sutthiwong et al (2013) Production of biocolours. In: Biotechnology in agriculture and food

processing: opportunities and challenges, PS Panesar, SS Marwaha (Eds)

[3] L Dufossé (2014), Anthraquinones, the Dr Jekyll and Mr Hyde of the food pigment family.

Food Research International, 65, p.132-136

[4] Y Caro et al (2015), Pigments and colorants from filamentous fungi. In: Fungal Metabolites

(J-M Mérillon & KG Ramawat Eds.)

Références

Documents relatifs

GC-MS analysis - Gas  Chromatographic  analysis  were  car-

and Stachnik, R., editors, Working on the Fringe: Optical and IR Interferometry from Ground and Space, volume 194 of Astronomical Society of the Pacific Conference Series, page

د( - ﺔﻳﺮﺑﺮﺒﻟﺎﺑ ﻰﺤﺼﻔﻟا ﻞﺧاﺪﺗ : ﺎﻤﻬﻣ ﻪﻧﻷ ،ﻢﻠﻌﺘﻟا اﺬﻫ ﻪﻴﻓ ﻢﺘﻳ يﺬﻟا ﱐﺎﺴﻠﻟا ﻂﻴﶈﺎﺑ ﺎﻐﻟﺎﺑ اﺮﺛﺄﺗ ﺮﺛﺄﺘﻳ ﺎﻣ ﻢﻠﻌﺗ نإ ﻢﻠﻌﺘﳌا ىﺪﻟ ﺲﻳرﺪﺘﻟا ﻦﻣز لﺎﻃ ﻲﻌﻴﺒﻄﻟاو يﻮﻐﻠﻟا

Our findings regarding oxidative stress, plasma lipoprotein distribution, vascular reactivity and endothelial function and their correlation to the phenolic composition of

/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur. For

Significant Fo¨rster resonance energy transfer (FRET) from donor (D) amido- naphthalimide to acceptor (A) amino-naphthalimide chromophores as well as photoinduced electron

The physicochemical and catalytic behaviors of multi-iron Wells-Dawson sandwich-type polyoxometalates were studied, when NMRP and Infrared spectra of heteropolyanions (POMs)were used

Indeed, the findings on bumble bees could be described as an increase in appetitive motivation due to an unexpected sucrose reward, which would lead the bees to accept more