• Aucun résultat trouvé

10 2.1.2 Nonlinear optical response

N/A
N/A
Protected

Academic year: 2021

Partager "10 2.1.2 Nonlinear optical response"

Copied!
4
0
0

Texte intégral

(1)

Contents

Abstract ii

Acknowledgements iv

List of Figures x

List of Tables xiii

1 Introduction 1

Publication list. . . . 3

2 Theory 5 2.1 Basic concepts in optics and nonlinear optics . . . . 5

2.1.1 Material response to an electromagnetic radiation . . . . 5

2.1.1.1 Propagation equation . . . . 8

2.1.1.2 Birefringence and dichroism . . . . 9

2.1.1.3 Continuity of electromagnetic fields at an interface . . . . 10

2.1.2 Nonlinear optical response . . . . 12

2.1.2.1 Third-order nonlinear response . . . . 12

2.1.2.2 Third-order susceptibility. . . . 13

2.1.3 Nonlinear propagation. . . . 14

2.1.3.1 Nonlinear phase shift . . . . 14

2.1.3.2 Nonlinear refractive index . . . . 15

2.1.3.3 Nonlinear absorption . . . . 16

2.1.3.4 Full relation between third-order susceptibility and nonlinear refrac- tive index in materials with losses . . . . 17

2.1.4 Nonlinear phase shift in problems involving continuity at interface . . . . 17

2.1.5 Ultrafast lasers . . . . 19

2.1.6 Pump-probe measurements . . . . 19

2.2 Characterization of optical nonlinearities. . . . 20

2.3 Linear and nonlinear optical properties of graphene . . . . 22

2.3.1 Graphene: the wonder material . . . . 22

2.3.1.1 Production of graphene . . . . 22

2.3.1.2 Graphene structure . . . . 23

2.3.2 Electronic properties . . . . 24

2.3.3 Linear optical properties of graphene . . . . 25 vi

(2)

Contents vii

2.3.4 Nonlinear optical properties of graphene. . . . 27

2.3.4.1 Saturable absorption . . . . 27

2.3.4.2 Third-order nonlinearity / nonlinear refractive index of graphene . . 28

2.4 Modeling graphene for linear and nonlinear optics: 2D or not 2D? . . . . 31

2.4.1 Sheet conductivity model . . . . 32

2.4.2 Effective bulk model . . . . 33

2.4.3 Surface susceptibility model with non-zero out-of-plane components . . . . 37

3 Characterization of the nonlinear optical properties of graphene with Z-scan 40 3.1 Z-scan: the method. . . . 40

3.1.1 The Z-scan trace . . . . 41

3.1.2 Z-scan measurement in absorbing media. . . . 41

3.1.3 Retrieval of parameters . . . . 42

3.2 Advantages and disadvantages of the Z-scan technique . . . . 43

3.2.1 Simplicity . . . . 43

3.2.2 Quality of samples . . . . 43

3.2.3 Beam quality . . . . 44

3.2.4 Thermal effects . . . . 44

3.2.5 Multiple reflections. . . . 44

3.2.6 Relaxation dynamics . . . . 45

3.3 Experimental setup . . . . 45

3.4 Graphene samples . . . . 46

3.5 Open aperture measurements . . . . 46

3.6 Alternative I-scan measurement . . . . 48

3.7 Closed aperture measurements. . . . 50

3.8 Z-scan experiment with Ti:Sapphire laser at 780 nm . . . . 52

3.9 Simulations . . . . 53

3.9.1 Alternative Z-scan experiment with image processing . . . . 53

3.10 Discussion . . . . 54

4 Characterization of the third-order optical nonlinearity of graphene with the OHD-OKE method 56 4.1 OHD-OKE: the method . . . . 56

4.1.1 Simple OKE . . . . 57

4.1.2 Optical Heterodyne detection. . . . 61

4.1.2.1 OHD: the principle. . . . 61

4.1.2.2 OHD: example . . . . 62

4.2 Experimental procedure . . . . 65

4.2.1 Description of the experimental setup . . . . 65

4.2.2 Building the setup . . . . 66

4.2.3 SNR study . . . . 66

4.2.4 Lock-in amplifier . . . . 69

4.2.4.1 Lock-in detection process. . . . 69

4.2.4.2 Lock-in detection in optics . . . . 70

4.2.5 Preparing the OHD-OKE experiment . . . . 71

4.2.6 Challenges . . . . 73

(3)

Contents viii

4.3 Experimental Results . . . . 76

4.3.1 Real part: nonlinear refraction . . . . 76

4.3.2 Imaginary part: nonlinear absorption . . . . 78

4.3.3 Relaxation dynamics . . . . 80

4.3.4 Temperature controlled measurements . . . . 81

4.4 OHD-OKE with controlled Fermi energy of graphene . . . . 82

4.4.1 Gating method . . . . 82

4.4.1.1 The sample . . . . 83

4.4.1.2 The experimental setup . . . . 83

4.4.2 Electrostatic gating measurements . . . . 84

4.4.3 OHD-OKE with applied electrostatic gating . . . . 85

4.5 OHD-OKE and nonlinear susceptibility tensor . . . . 87

4.5.1 Tensor susceptibility of graphene . . . . 87

4.5.2 Vectorial model of the nonlinear response . . . . 87

4.5.3 Enhanced OHD-OKE method: 2D-OHD-OKE . . . . 89

4.5.4 In-plane component measurements. . . . 92

4.5.5 Out-of-plane component measurements . . . . 93

4.6 Discussion . . . . 95

5 Nonlinear integrated photonics with graphene 97 5.1 Integrated photonics and graphene . . . . 97

5.2 Silicon nitride waveguide structures covered with graphene. . . . 98

5.2.1 The platform. . . . 98

5.2.2 Parameters of the waveguides . . . . 99

5.2.2.1 Mode profile . . . 100

5.2.2.2 Dispersion. . . 102

5.2.2.3 Simulation of graphene-covered waveguide . . . 102

5.2.2.4 Nonlinearity. . . 103

5.2.2.5 Summary of parameters. . . 103

5.3 Silicon nitride waveguide structures: Simulations and design . . . 104

5.3.1 Directional Couplers . . . 104

5.3.2 Waveguide arrays . . . 106

5.3.3 Rectangular structure . . . 107

5.3.4 Multimode interference (MMI) coupler . . . 109

5.4 Measurements: linear regime . . . 111

5.4.1 Simple waveguides . . . 112

5.4.2 Directional Couplers . . . 113

5.4.3 Waveguide arrays . . . 114

5.4.4 Rectangular structure . . . 114

5.4.5 Multimode interference (MMI) coupler . . . 115

5.5 Measurements: nonlinear regime . . . 117

5.5.1 Simple waveguides . . . 117

5.5.2 Directional Couplers . . . 118

5.5.3 Waveguide arrays . . . 120

5.5.4 Rectangular structure . . . 120

5.5.5 Multimode interference (MMI) coupler . . . 121

5.6 Discussion . . . 123

(4)

Contents ix

6 Conclusions and Outlook 124

A Microscope images from the graphene-covered chip 128

Bibliography 131

Références

Documents relatifs

In summary, we have found the analytical solution of the propagation distance and the phase shift inside the nonlinear medium versus the output intensity in the case of third-

[r]

sont de même longueur (une rotation est une isométrie : elle onserve les longueurs). De façon évidente AP

[r]

3)Montrer que le triangle OAB est rectangle isocèle en O. 4)Montrer que le quadrilatère OACB est un

b) Montrer que ABC est un triangle rectangle et isocèle en B. c) Déterminer l’affixe du point D pour que ABCD soit un carré.. a) Montrer que OANB est un carré. En déduire que le

Soient Z et W deux points dans le demi-plan de Poincaré dont les abscisses sont dié- rentes.. En déduire la formule dans le

La règle de décision de ce test est la suivante : si pour l’échantillon, la fréquence mesurée f est inférieure à 0, 616, on décide de ne pas lancer le nouveau produit (on accepte