• Aucun résultat trouvé

Capacitary representations of positive solutions of semilinear parabolic equations

N/A
N/A
Protected

Academic year: 2021

Partager "Capacitary representations of positive solutions of semilinear parabolic equations"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: hal-00281630

https://hal.archives-ouvertes.fr/hal-00281630

Submitted on 23 May 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Capacitary representations of positive solutions of semilinear parabolic equations

Moshe Marcus, Laurent Veron

To cite this version:

Moshe Marcus, Laurent Veron. Capacitary representations of positive solutions of semilinear parabolic

equations. C. R. Acad. Sci. Paris Ser. I Paris, 2006, 342, pp.655-660. �hal-00281630�

(2)

hal-00281630, version 1 - 23 May 2008

OF SEMILINEAR PARABOLIC EQUATIONS

MOSHE MARCUS AND LAURENT VERON

Abstract. We give a global bilateral estimate on the maximal solution ¯ u

F

of ∂

t

u − ∆u + u

q

= 0 in R

N

× (0, ∞), q > 1, N ≥ 1, which vanishes at t = 0 on the complement of a closed subset F ⊂ R

N

. This estimate is expressed by a Wiener test involving the Bessel capacity C

2/q,q

. We deduce from this estimate that ¯ u

F

is σ-moderate in Dynkin’s sense.

Repr´ esentation capacitaire des solutions positives d’´ equations paraboliques semi-lin´ eaires

R´ esum´ e. Nous donnons une estimation bilat´ erale pr´ ecise de la solution max- imale ¯ u

F

de ∂

t

u − ∆u + u

q

= 0 dans R

N

× (0,∞), q > 1, N ≥ 1, qui s’annulle en t = 0 sur le compl´ ementaire d’un sous-ensemble ferm´ e F ⊂ R

N

. Cette estimation s’exprime par un test de Wiener impliquant la capacit´ e de Bessel C

2/q,q

. Nous d´ eduisons de cette estimation que ¯ u

F

est σ-moder´ ee au sens de Dynkin.

Version franc ¸aise abr´ eg´ ee Soit q > 1. Si u est une solution positive de

(1) ∂ t u − ∆u + | u | q

1 u = 0

dans R N × (0, ∞ ), nous avons d´emontr´e dans [6] qu’elle admet une trace initiale, not´ee T r(u), dans la classe des mesures de Borel positives et r´eguli`eres, mais pas n´ecessairement localement born´ees. Si F est un sous-ensemble ferm´e de R N , nous d´esignons par ¯ u F la solution maximale de (1) dont le support de la trace initiale est inclus dans F. Si 1 < q < q c := (N + 2)/N , il est montr´e dans [5] que les in´egalit´es suivantes sont v´erifi´ees

t

1/(q

1) f ( | x − a | / √

t) ≤ u ¯ F (x, t) ≤ ((q − 1)t)

1/(q

1) ∀ a ∈ F, o` u f est l’unique fonction positive v´erifiant

∆f + 1

2 y · Df + 1

q − 1 f − | f | q

1 f = 0 dans R N et lim

|

y

|→∞

| y | 2/(q

1) f (y) = 0.

Ces in´egalit´es jouent un rˆole fondamental dans la d´emonstration du caract`ere biu- nivoque de la correspondance, par l’op´erateur de trace initiale, entre l’ensemble des solutions positives de (1) et l’ensemble des mesures de Borel positives r´eguli`eres.

Quand q ≥ q c la fonction f est identiquement nulle car les singularit´es isol´ees de (1) sont ´eliminables [4].

1

(3)

2 MOSHE MARCUS AND LAURENT VERON

D´ efinition. Soit N ≥ 1, q ≥ q c et F un sous-ensemble ferm´ e de R N . On d´ efinit le potentiel (2/q, q

)-capacitaire W F de F par

(2) W F (x, t) = t

1/(q

1) X

n=0

(n + 1) N/2

1/(q

1) e

n/4 C 2/q,q

F n

p (n + 1)t

! ,

∀ (x, t) ∈ R N × [0, ∞ ), o` u F n = F n (x, t) = n

y ∈ F : √

nt ≤ | x − y | < p

(n + 1)t o . Notre r´esultat principal est l’estimation bilat´erale.

Th´ eor` eme 1. Soit N ≥ 1, q ≥ q c . Il existe deux constantes C 1 > C 2 > 0, ne d´ ependant que de N et q, telles que pour tout sous-ensemble ferm´ e F de R N (3) C 2 W F (x, t) ≤ u ¯ F (x, t) ≤ C 1 W F (x, t) ∀ (x, t) ∈ R N × (0, ∞ ).

Si µ ∈ M b ( R N ) (l’espace des mesures de Radon born´ees dans R N ) appartient `a W

2/q,q ( R N ), il existe une unique solution u = u µ de (1) dont la trace initiale est µ [3]. On d´efinit alors

(4) u F = sup { u µ : µ ∈ M b

+ ( R N ) ∩ W

2/q,q ( R N ) : µ(F c ) = 0 } .

Cette solution est σ-mod´er´ee au sens de Dynkin, c’est ` a dire qu’il existe une suite croissante de mesures positives µ n ∈ M b + ( R N ) ∩ W

2/q,q ( R N ) telles que u µ

n

↑ u F .

La clef de la d´emonstration du Th´eor`eme 1 est l’estimation inf´erieure de u F . Th´ eor` eme 2. Soit N ≥ 1, q ≥ q c . Il existe une constante C = C(N, q) > 0 telle que pour tout sous-ensemble ferm´ e F de R N ,

(5) u F (x, t) ≥ CW F (x, t) ∀ (x, t) ∈ R N × (0, ∞ ).

Une cons´equence importante des estimations pr´ec´edentes est la suivante:

Th´ eor` eme 3. Soit N ≥ 1, q > 1. Pour tout sous-ensemble ferm´ e F de R N ,

¯

u F = u F .

1. Main results Let u be a nonnegative solution of

(1) ∂ t u − ∆u + | u | q

1 u = 0, q > 1

in R N × (0, ∞ ). It was proved in [6] that u admits an initial trace, denoted by T r(u), in the class of outer regular positive Borel measures, not necessarily locally bounded. If F is a closed subset of R N , we denote by ¯ u F the maximal solution of (1) which belongs to C(F c × [0, ∞ )) and vanishes on F c × { 0 } , where F c := R N \ F .

If 1 < q < (N + 2)/N, the following inequalities are verified (2) t

1/(q

1) f ( | x − a | / √

t) ≤ u ¯ F (x, t) ≤ ((q − 1)t)

1/(q

1) ∀ a ∈ F, where f is the unique positive solution [5] of

(3) ∆f + 1

2 y · Df + 1

q − 1 f − | f | q

1 f = 0 in R N s. t. lim

|

y

|→∞

| y | 2/(q

1) f (y) = 0.

These inequalities play a fundamental role in proving that (in the subcritical case)

any positive solution is uniquely determined by its initial trace [6].

(4)

Definition 1. Let (4)

B

nt (x) = { y ∈ R N : | x − y | < √ nt } T n (x, t) = ¯ B √

(n+1)t (x) \ B

nt (x).

For every q ≥ q c and every closed subset F ⊂ R N , we define the (2/q, q

)-capacitary potential W F of F by

(5) W F (x, t) = t

1/(q

1) X

n=0

(n + 1) N/2

1/(q

1) e

n/4 C 2/q,q

F ∩ T n (x, t) p (n + 1)t

,

∀ (x, t) ∈ R N × [0, ∞ ).

Our main result is the following bilateral estimate

Theorem 1. Let N ≥ 1, q ≥ q c . There exist two positive constants C 1 and C 2 , depending on N and q such that for any closed subset F of R N ,

(6) C 2 W F (x, t) ≤ u ¯ F (x, t) ≤ C 1 W F (x, t) ∀ (x, t) ∈ R N × (0, ∞ ).

Remark. It is important to notice that although W F is not a solution of (1), it is in- variant with respect to the similarity transformation associated with this equation:

(7) k 1/(q

1) W F ( √

kx, kt) = W F/

k (x, t) ∀ (x, t) ∈ R N × (0, ∞ ), ∀ k > 0.

Clearly ¯ u F is also self similar, i.e., invariant with respect to the above transforma- tion.

If µ is a bounded Borel measure such that | µ | ∈ W

2/q,q ( R N ) then, there exists a unique solution u = u µ of (1) with initial trace µ. We define

u F = sup { u µ : µ ∈ W +

2/q,q ( R N ), µ(F c ) = 0 } .

This solution is σ-moderate in the sense of Dynkin, which means that there exists an increasing sequence of positive measures µ n ∈ W +

2/q,q ( R N ) such that u µ

n

↑ u F . Clearly u F ≤ u ¯ F . Therefore the next result implies the lower estimate in Theorem 1.

Theorem 2. Let N ≥ 1, q ≥ q c . There exists a positive C = C(N, q), such that for any closed subset F of R N ,

(8) u F (x, t) ≥ CW F (x, t) ∀ (x, t) ∈ R N × (0, ∞ ).

As a consequence of Theorems 1 and 2 we find that ¯ u F ≤ cu F . Using this fact we obtain the following result (already known [6] in the case 1 < q < q c ),

Theorem 3. Let N ≥ 1, q > 1. For any closed subset F of R N one has ¯ u F = u F . In particular u ¯ F is σ-moderate.

2. Proof of the upper estimate in Theorem 1

In the sequel we denote by c a positive constant which depends only on N and q; its value may change from one occurrence to another. Without loss of generality, we assume that F is compact. Denote B r (x) = { y : | x − y | < r } and B r = B r (0).

Let r > 0 be a positive number such that F ⊂ B r . We start by deriving an upper

estimate depending on r. Let ρ > 0 be a positive number, to be later determined

(5)

4 MOSHE MARCUS AND LAURENT VERON

as a function of r, t. Let η ∈ C 0

(B r+ρ ) be such that η = 1 on F and 0 ≤ η ≤ 1.

Put η

= 1 − η and choose ζ := e t∆

] 2q

as a test function. Then (9)

Z 1

0

Z

RN

u(∂ t − ∆)ζdxdt + Z 1

0

Z

RN

u q ζdxdt = − Z

RN

u(x, 1)dx.

A straightforward computation yields Z

Q

r+ρ

u q dxdt + Z

RN

u(x, 1)dx ≤ Z 1

0

Z

RN

(R(η)) q

dx dt, R(η) :=

De t∆ [η]

2 +

∂ t e t∆ [η] + ∆e t∆ [η]

, Q r := { (x, t) : t > 0, | x | 2 + t ≥ r 2 } . Using interpolation inequalities [8] one obtains,

(10)

Z 1

0

Z

RN

(R(η)) q

dx dt ≤ C 1 k η k q W

2/q,q′

. This implies

Z

RN

u(x, 1) dx + Z

Q

r+ρ

u q dx dt ≤ cC 2/q,q B

r+ρ

(F ).

Further it can be shown that, for 0 < s < 1, (11)

Z

RN

u(x, 1) dx + Z 1

s

Z

RN

u q dx dt = Z

RN

u(x, s) dx.

Clearly u(x, t + s) < w s (x, t) := e t∆ [u( · , s)] for t > 0. Therefore, by (10) and (11),

(12) u(x, (r + 2ρ) 2 ) ≤ c

2 + rρ) N/2 C 2/q,q B

r+ρ

(F ).

Let v be the solution of the initial-boundary value problem

∂ t v − ∆v = 0 in Q

r,ρ := ( ¯ B r+ρ ) c × (0, (r + 2ρ) 2 ), v(x, 0) = 0 ∀ x ∈ B r+ρ c , v = u ∀ (x, t) ∈ ∂B r+ρ × (0, (r + 2ρ) 2 ).

Using the fact that u < v in Q

r,ρ and (12) we obtain, Lemma 4. If F ⊂ B r , there exists c > 0 such that (13) u ¯ F (x, t) ≤ c

1 + r

ρ N/2

e

(

|

x

|−

r

3ρ)

2

/4t

t N/2 C 2/q,q B

r+ρ

(F), for any (x, t) ∈ R N × [(r + 3ρ) 2 , ∞ ).

The upper estimate in (6) is obtained by slicing F , relative to a given point (x, t) ∈ R N × (0, ∞ ), in such a way that each slice satisfies the assumption of Lemma 4 for an appropriate value of r depending on the point. Put

T n (x, t) = B √

(n+1)t (x) \ B

nt (x), F n (x, t) = F ∩ T n (x, t) ∀ n ∈ N . Since a sum of positive solutions of (1) is a super-solution,

¯ u F ≤

X

n=0

¯ u F

n

(x,t) . Using this fact and Lemma 4 we show that

(14) u ¯ F (x, t) ≤ cW F (x, t)

(6)

for every (x, t) ∈ R N × (0, ∞ ). In view of the fact that both sides of this inequality are invariant with respect to the similarity transformation (7), it is sufficient to prove it in the case (x, t) = (0, 1). We denote F n = F n (0, 1) and T n = T n (0, 1).

If N = 1, each of the sets F n satisfies the condition of Lemma 4 with r = √ n.

But this is not the case when N ≥ 2. Therefore, if N ≥ 2, a secondary slicing is needed.

For every n ∈ N there exists a set of points Θ n = { a j,n } J j=1

n

on the sphere

| y | = ( √

n + 1 + √

n)/2 such that

| a n,j − a n,k | ≥ 1/ p

2(n + 1) for j 6 = k, T n ⊂ [

1

j

J

n

B √

1/(n+1) (a n,j ).

Clearly J n ≤ ( √

2(n + 1)) N

1 < (4n) N

1 . If F n,j := F n ∩ B √

1/(n+1) (a n,j ),

(15) u ¯ F (0, 1) ≤

X

n=0

X

1

j

J

n

¯

u F

n,j

(0, 1).

It is not difficult to verify that

C 2/q,q B

2/n+1

(a

n,j

) (F n,j ) ≈ (n + 1) N/2

1/(q

1) C 2/q,q

√ n + 1 F n,j

where the capacity on the right hand side (resp. left hand side) is the Bessel capacity relative to R N (resp. relative to B 2/

n+1 (a n,j )). The symbol ≈ stands for two-sided inequalities with constants c = c(N, q). Further, the quasi-additivity of Bessel capacities [2] implies

(16) X

1

j

J

n

C 2/q,q

( √

n + 1 F n,j ) ≤ c(N, q) C 2/q,q

( √

n + 1 F n ).

Each set F n,j satisfies the condition of Lemma 4 with r = √ n. Therefore, estimating

¯

u F

n,j

(0, 1) as in (13) and using (15) and (16) we obtain (14) for (x, t) = (0, 1).

3. Proof of Theorem 2

As in the elliptic case [7], for each (x, t) ∈ R N × (0, ∞ ), we construct a measure µ = µ x,t ∈ W +

2/q,q ( R N ), concentrated on F , such that

(17) u µ (x, t) ≥ cW F (x, t).

Since u F > u µ , (17) implies (8).

For every measure µ ∈ W +

2/q,q ( R N ), 0 ≤ u µ ≤ e t∆ [µ]. Therefore

(18) u µ ≥ e t∆ [µ] −

Z t

0

e (t

s)∆ [(e s∆ [µ]) q ]ds.

Let ν n be the capacitary measure of F n (x, t)/ p

t(n + 1) (see [1]) and define the measure µ n by

µ n (A) = (t(n + 1)) N/2

1/(q

1) ν n (A/ p

t(n + 1)),

for every Borel set A. Thus µ n is concentrated on F n . Finally put µ := µ x,t = P

n µ n . With this choice of µ it is not difficult to show that (19)

e t∆ [µ](x, t) ≥ 1 (4πt) N/2

X

n=0

( p

(n + 1)t) N

2/(q

1) e

(n+1)/4 C 2/q,q

F n (x, t) p (n + 1)t

.

(7)

6 MOSHE MARCUS AND LAURENT VERON

We have to derive a corresponding upper estimate for the nonlinear term in (18).

To this end we employ a partitioning {T n : n ∈ Z } of R N × (0, t) defined by, T n =

( { (y, s) : tn ≤ | x − y | 2 + t − s ≤ t(n + 1), 0 < s < t } , if n ∈ N

, { (y, s) : tα

n ≤ | x − y | 2 + t − s ≤ tα

n

1 , 0 < s < t } , if n ≤ 0,

where α ∈ (0, 1) must be appropriately chosen. If G(ξ, τ ) := (4π | τ | )

N/2 exp( − | ξ | 2 /4τ)) then

Z t

0

e

(t

s)∆ (e s∆ [µ]) q ds = C X

p

∈Z

Z Z

Tp

G(y − x, s − t) X

n=0

Z

RN

G(z − y, s)dµ n (z) q

dyds.

We denote J 1 = X

p

∈Z

Z Z

Tp

G(y − x, s − t)

p+2

X

n=0

Z

RN

G(z − y, s)s N/2 dµ n (z) q dyds,

J 2 = X

p

∈Z

Z Z

Tp

G(x − y, s − t) X

n=p+3

Z

RN

G(z − y, s)s N/2 dµ n (z) q

dyds.

J 1 is estimated using H¨ older’s inequality and the following inequalities [8]

(20) 1

C k λ k W

−2/q,q

e t∆ [λ]

L

q

(

RN×

(0,1)) ≤ C k λ k W

−2/q,q

,

valid for any λ ∈ W

2/q,q . The estimate of J 2 , in the case N > 1, requires a more delicate argument using the secondary slicing introduced in the previous section and the quasi-additivity of Bessel capacities. For a suitable choice of α one obtains

(21) J 1 + J 2 ≤ C t N/2

X

n=0

( p

(n + 1)t) N

2/(q

1) e

(n+1)/4 C 2/q,q

F n

p (n + 1)t . The inequalities (18), (19) and (21) imply (17), with µ replaced by ǫµ, provided that ǫ > 0 is sufficiently small, depending on q and the constants in (19) and (21).

This in turn implies (8).

It follows that

u F (x, t) ≤ u ¯ F (x, t) ≤ cu F (x, t).

By the uniqueness argument used in [6] we conclude that ¯ u F (x, t) = u F (x, t).

Acknowledgment. The authors are partially sponsored by an E.C. grant through the RTN program ’Front Singularities’ HPRN-CT-2002-00274.

References

[1] Adams D. R. and Hedberg L. I., Function Spaces and Potential Theory, Grundlehren Math.

Wissen. 314 , Springer (1996).

[2] Aikawa H. and Borichev A. A., Quasiadditivity and measure property of capacity and the tangential boundary behaviour of harmonic functions, Trans. Amer. Math. Soc. 348 , 1013- 1030 (1996).

[3] Baras P. and Pierre M., Probl´ emes paraboliques semi-lin´ eaires avec donn´ ees mesures, Appli- cable Anal. 18 (1984), 111-149.

[4] Brezis H. and Friedman A., Nonlinear parabolic equations involving measures as initial data, J. Math. Pures Appl. 62 , 73-97 (1983).

[5] Brezis H., Peletier L. A. and Terman D., A very singular equation of the heat equation with

absorption, Arch. Rat. Mech. Anal. 95 , 185-209 (1986).

(8)

[6] Marcus M. and V´ eron L., The initial trace of positive solutions of semilinear parabolic equa- tions, Comm. in P.D.E. 24 , 1445-1499 (1999).

[7] Marcus M. and V´ eron L., Capacitary estimates of positive solutions of semilinear elliptic equations with absorption, J. Eur. Math. Soc. 6 , 483-527 (2004).

[8] Triebel H., Interpolation Theory, Function Spaces, Differential Operators, North-Holland Amsterdam (1978).

Department of Mathematics, Technion, Haifa, ISRAEL

Laboratoire de Math´ ematiques, Facult´ e des Sciences, Parc de Grandmont, 37200

Tours, FRANCE

Références

Documents relatifs

A similar result holds if the Neumann boundary conditions in (1.6) are replaced by homogeneous Dirichlet condition, without the assumption that b is essentially positive near ∂Ω..

In order to obtain Schauder esti- mates on solutions at this particular point we need to derive a priori estimates.. on asymptotic polynomials and error

differential equations of parabolic type. One of the main results is the fact that every non-negative solution of the Cauchy problem is uniquely deter-.. mined by its

Frehse, Bellman Systems of Stochastic Differential Games with three Players in Optimal Control and Partial Differ- ential Equations, edited by J.L. Hildebrandt

In the present paper we study the stability and the asymptotic stability of the solutions of impulsive nonlinear parabolic équations via the method of differential

• nonlinear diffusions: [Carrillo, Toscani], [Del Pino, J.D.], [Otto], [Juen- gel, Markowich, Toscani], [Carrillo, Juengel, Markowich, Toscani, Unterre- iter], [Biler, J.D.,

In this subcritical case Le Gall and Marcus and V´eron proved that the boundary trace establishes a one to one correspondence between positive solutions of (1.7) in Ω and outer

The aim of this paper is to investigate the time vanishing properties of generalized (energy) solutions of initial-boundary problem to a wide class of quasilinear parabolic