• Aucun résultat trouvé

Observations on evaporation from snow and ice surfaces in a small wind tunnel

N/A
N/A
Protected

Academic year: 2021

Partager "Observations on evaporation from snow and ice surfaces in a small wind tunnel"

Copied!
21
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Internal Report (National Research Council of Canada. Division of Building Research), 1959-04-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=1c97ce5e-34eb-4636-b5c2-f2f2815a17ed https://publications-cnrc.canada.ca/fra/voir/objet/?id=1c97ce5e-34eb-4636-b5c2-f2f2815a17ed

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20338126

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at Observations on evaporation from snow and ice surfaces in a small wind tunnel

(2)

NATIONAL RESEARCH C O U N C I L CANADA

D I V I S I O N O F B U I L D I N G RESEARCH

OBSERVATIONS ON EVAPORATION FROM

SNOW AND I C E S U R F A C E S I N A SMALL

WIND TUNNEL

by

G.P. W i l l i a m s

DBR I n t e r n a l R e p o r t N o .

174

O t t a w a A p r i l

1959

(3)

PREFACE

This

r e p o r t c o n t a i n s t h e r e s u l t s o f a n i n v e s t i g a t i o n of e v a p o r a t i o n from snow and i c e s u r f a c e s i n s i d e a a o l d room. The e f f e c t s of

vapour p r e s s u r e d i f f e r e n c e s , wind v e l o o i t y , s u r f a c e roughness, and changing approach c o n d i t i o n s on

e v a p o r a t i o n r a t e s were i n v e s t i g a t e d , It was found t h a t t h e g e n e r a l form of t h e e v a p o r a t i o n e q u a t i o n developed by Sverdrup was s a t i s f a a t o r y f o r t h e s e c o n t r o l l e d experiments.

T h i s s t u d y of e v a p o r a t i o n from snow and

ice

s u r f a c e s i n s i d e a wind t u n n e l i s a p r e l i m i n a r y one. I n o r d e r t o i n v e s t i g a t e t h e t h e o r y of evapora- t i o n from t h e s e s u r f a c e s , many a d d i t i o n a l experiments would be r e q u i r e d . Such a s t u d y , . i n v o l v i n g t h e

p h y a i o s of boundary l a y e r phenomena, i s beyond t h e i n s t r u m e n t a t i o n and f a c i l i t i e s a t p r e s e n t a v a i l a b l e i n t h e Snow and I o e S e c t i o n of DBR, b u t f u r t h e r work may be done i n t h e f u t u r e .

The a u t h o r of t h i s r e p o r t i s a r e s e a r o h o f f i c e r i n t h e Snow and I a e S e c t i o n . Hia s p e c i a l i n t e r e s t s i n c l u d e phenomena r e l a t i n g t o snow and i o e cover.

R.F.

Legget D i r e c t o r

(4)

OBSERVATIONS ON EVAPORATION FROM

SNOW AND ICE SURFACES I N A SMALL WIND TUNNEL

G.P. Williams

AB STRAC T

Evaporation r a t e s from plane snow and i c e s u r f a c e s were measured under c o n t r o l l e d c o n d i t i o n s i n s i d e a c o l d room. The e f f e c t s of vapour p r e s s u r e d i f f e r e n c e s , wind v e l o c i t y , s u r f a c e roughness and changing approach c o n d i t i o n s on e v a p o r a t i o n r a t e a were i n v e s t i g a t e d . I t was found t h a t t h e Sverdrup formula

checked r e a s o n a b l y w e l l under t h e s t a b l e a i r c o n d i t i o n s encoun- t e r e d i n t h e s e experiments.

Although t h e r e have been many i n v e s t i g a t i o n s , u s i n g wind t u n n e l t e c h n i q u e s , of t h e f a c t o r s t h a t a f f e c t t h e r a t e of evapora- t i o n from a water s u r f a c e , t h e r e have been few s t u d i e s of t h e

e f f e c t of s u r f a c e roughness d u r i n g such experiments. The purpose of t h e work d e s c r i b e d i n t h i s paper i s t o determine t h e e f f e c t of s u r f a c e roughness on e v a p o r a t i o n from snow and i c e s u r f a c e s i n s i d e a wind t u n n e l . Snow and i c e s u r f a c e s have a n advantage over w a t e r s u r f a c e s i n t h a t g r a i n s i z e o r degree of roughness can be r e a d i l y determined and, f o r i c e s u r f a c e s , t h e i n v e s t i g a t i o n c a n be extended

i n t o the r e g i o n of v e r y l a r g e wind speeds w i t h o u t d i s t u r b i n g t h e s u r f a c e .

Most of t h e e a r l y work on s t u d y i n g e v a p o r a t i o n w i t h wind t u n n e l t e c h n i q u e s d i d not t a k e i n t o account t h e v a r i a t i o n of e v a p o r a t i o n r a t e s w i t h eometry, o r a t t e m p t t o a n a l y s e t h e aero- dynamics of t h e problem

'i

Rohwer,

1931

,

Hinchley and Himus, 1924). Powell and G r l f f i t h s

(1936)

p o i n t e d out t h a t t h e r a t e of e v a p o r a t i o n depends on t h e dimension of t h e s u r f a c e . Powell

( 1 9 4 0 ) ~

i n one of h i s l a t e r experiments, has shown t h a t t h e r a t e of e v a p o r a t i o n c a n be i n c r e a s e d by t h e use of r i d g e s , M i l l a r

(1937)

a t t a c k e d t h e problem f r o m a more complete p h y s i c a l s t a n d p o i n t and a t t e m p t e d t o account f o r t h e e f f e c t s of i n s t a b i l i t y . He was l l m i t e d t o low wind

(5)

s p e e d s b e c a u s e , a t h i g h e r wind s p e e d s , s p r a y would come o f f t h e w a t e r s u r f a c e . Yamamoto ( 1 9 5 0 ) i n v e s t i g a t e d t h e r a t e of e v a p o r a - t i o n a t h i g h e r wind s p e e d s by u s i n g an e x p e r i m e n t a l s u r f a c e

c o n s i s t i r l g of b l o t t i n g p a p e r . P a s q u - i l l

(1943)

was ono of t h e f i r s t t o a t t e m p t t o a n a l y s e t h e aerodynamics of t h e problani and

t o p o i n t o u t some of the 1 i m i t ; a t i o n s t o t h e s t u d y o f e v a p o r a t i o n from s m a l l pans i n wind t u n n e l s . An u n p u b l i s h e d r z p o r t by Hay

(1956),

c o i n c i d i n g w i t h t h e e x p e r i r i e n t s d e s c r i b e d i n t h i s p a p e r , e x t e n d e d t h e work of P a s q u i l l t o s a t u r a t e d r o ~ g h s u r f a c e s . From a s t u d y of t h e s e p r e v i o u s i n v e . g t i g a t . i o n s i t i s apparent; t h a t any a t t e m 2 t t o r e l a t e t h e r e s u l t s o f l a b o r a t o r y s t u d i e s i n a wind t u n n e l t.o a t m o s p h e r i c c o n d i t i o n s h a s s e v e r a l l i m i t a t i o n s . A s e v a p o r a t i o n r a t e v a r i e s w i t h t h e geometry of t h e pan c o n t a i n i n g t h e evaporo t i n g m a t e r i a l , t h e r e s u l t s c a n n o t be a p p l i e d immediately t o f l e l d c o n d i t i o n s . F u r t h e r m o r e , i t i s d i f f i c u l t t o r e p r o d u c e e x a c t 1 7 i n a wind t u n n e l t h o c o n d i t i o n s a t t h e e v a p o r a t i n g s u r f a c e r e a l i z e d

i n

the f i e l d , p a r t i c u l a r l y a t m o s p h e r i c i n s t a b i l i t y and v e l o c i t y d i s t r i b u t i o n p r o f i l e ( S u t t o n ,

1953

The c h i e f a d v a n t a g e of l a b o r a t o r y i n v e s t i g a t i o n s i s t h a t v a r i a b l e s l i k e wind speed, a i r 1,empera t u r e , r e l a t i v e h w n i d i t y and s u r f a c e r o u g h n e s s c a n be c a r e f u l l y c o n t r o l l e d , Wind t u n n e l s t u d i e s a r e v a l u a b l e , t h e r e f o r e , f o r u . n d e r n t a n d i n ~ how t h e s e c o n t r o l l e d f a c t o r s i n f l u e n c e e v a p o r a t i o n and f o r e v a l u a t i n g t h e v a r i o u s e v a p o r a t i o n f o r m u l a e p r e v i o u s l y developed. EXPERIKENTAL APPARATUS

A

s m a l l c l o s e d - t y p e wind t u n n e l was b u i l t t o f i t i n s i d e

t h e cold room of t h e Snow and I c e S e c t i o n of t h e D i v i s i o n of B u i l d i n g R e s e a r c h

o old,

1956

). Viith l i m i t e d s p a c e a v a i l . a b l e , t h e t u n n e l

c o u l d n o t b e made l a r g e enough t o s i m u l a t e a t m o s p h e r i c f l o w c o n d i t i o n s . The t u n n e l was a p p r o x i m a t e l y 1 2 f t long,

4

f t h i g h , w i t h 1 - f t s q u a r e c r o s s - s e c t i o n s , and w i t h s p e c i a l vane g u i d e s b u i l t i n t o t h e elbows. The t u n n e l was t h e c l o s e d t y p e t o p e r m i t t h e a i r i n s i d e t o be of d i f f e r e n t t e m p e r a t u r e and h u m i d i t y t h a n t h e a i r i n t h e c o l d room, The t u n n e l was made i n s e c t i o n s f o r e a s y d i s m a n t l i n g o r e n l a r g e m e n t . Virith t h e s i n g l e - i n l e t , s i n g l e - w i d t h

1/3

hp f a n , i t i s p o s s i b l e t o o b t a i n mean wind s p e e d s of

60

mph i n a c r o s s - s e c t i o n a r e a of

36

s q i n . Wind speed was c o n t r o l l e d by i n s e r t i n g g r i d s i n t h e s e c t i o n n e a r t h e f a n o u t l e t ,

Two d i f f e r e n t a p p r o a c h s e c t i o n s were u s e d i n t h e l a b o r a t o r y e x p e r i m e n t s , One a p p r o a c h s e c t i o n c o n t r a c t e d from 12 by 1 2 i n . t o a c o n t r o l s e c t i o n of

6

by

6

i n . The o t h e r a p p r o a c h s e c t i o n expanded from 12 by 12 i n . t o s c o n t r o l s e c t i o n o f

6

by

36

in. Figure 1

shows a g e n e r a l scheniatic s k e t c h of t h e wind t u n n e l and e x p e r i m e n t a l a p p a r a t u s .

(6)

WIND

SPEED kEASUREh1;ENT

Wind speeds were measured by u s i n g a

4-m

d i a m e t e r p f t o t t u b e and s p e c i a l d i f f e r e n t i a l p r e s s u r e m e t e r (Model 303-2, Decker Aviatf on Corpora t i o n ) a The p i t o t t u b e and s t a t i c p r e s s u r e t u b e

were connected t o t h e d i f f e r e n t i a l m e t e r l o c a t e d o u t s i d e t h e c o l d room. Measured mF1an w i n c l s p e e d s checked vrit;hfn

5

p e r c e n t w i t h mean wind speed measurements, usi.ng a vel-ometer.

DEW- POINT rn~~~PERATUKF:

-

m:ASTTREmNT

Dew-poin-t t e m p e r a t u r e s were measu.red by a Burton E l e c t r o n i c Dewpointer, Samples of a i r i n s i d e t h e wind t u n n e l were pumped o u t t h r o u g h t h e p i t o t - t u b e conrlections t o the Dewpointer. Because of t h e d i f f i c u l t y of measurj.ng dew p o i n t s a t low ternpera t;ure no r e a l checks on t h e a c c u r a c y o f t h e d-ew-point measurements were o b t a i n e d . However, c o n s i s t e n t r e s u l t s were o b t a i n e d , when t h e l e n s on which t h e vapour condensed vra s k e p t c l e a n . For example, if t h e a i r a t

+ 1 4 O l ? was d r i e d b y p a s s i n g over l a y e r s of cnlciunl c h l o r i d e , t h e dew- p o i n t temperat.ure could be reduced t o -2S0F: i f t h e a i r was p a r t i a l l y

s a t u r a t e d by p a s s i n g o v e r a pan of w a r r w a t e r , the dew-point tenipera- t u r e could be i n c r e a s e d t o

+8

and +10°3'. U n t r e a t e d a i r i n the wind t u n n e l a t a t e m p e r a t u r e of +-11_120~ had a dew-point tempera t u r e which v a r i e d between

-6

t o - € ? O F o

AIR TEMPERATURE P~'EASUFtEE'1ENT

A i r t e m p e r a t u r e s were measurod by means of a thermocouple mounted on t h e t o p of t h e p i t o t tubc. Thus, i.t; w a s e a s y when t a k i n g a v e l o c i t y p r o f i l e t o o b t a i n t e m p e r a t u r e p r o f i l e s a s w e l l . EVAPORATION RATE MEASUREME?IT

--

L i g h t aluminum t r a y s

15

cm wfde, 30 CK l o n g and 1 cm deep were f i l l e d w i t h I c e o r s c r e e n e d snow a n d p l a c e d f l u s h w i t h t h e

f l o o r of t h e t u n n e l c o n t r o l s e c t i o n . E v a p o r a t i o n r a t e s were

d e t e r m i n e d by measuring t h e weight l o s s i n t h e rnatsrj-a1 i n a known time i n t e r v a l .

PRELIMINARY EXPERIIrnNTS

I n o r d e r t o i n v e s t i g a t e t h e e f f e c t of s u r f a c e r o u g h n e s s on e v a p o r a t i o n r a t e , i t w a s f i r s t n e c e s s a r y t o d e t e r m i n e e m p i r i c a l l y t h e e f f e c t of pan s i z e , d e p t h of sample and o t h e r e x p e r i m e n t a l v a r i a b l e s on e v a p o r a t i o n r a t e . I t was a l s o n e c e s s a r y t o determine

(7)

t h e d u r a t i o n of e x p e r i m e n t s i n o r d e r t o o b t a i n measurable e v a p o r a t i o n and t o d e c i d e w h e t h e r t h e l e n g t h of ru.n would a f f e c t t h e e v a p o r a t i o n r a t e .

F i g u r e 2 i l l u s t r a t e s some of t h e r e s u l t s from p r e l i m i n a r y e x p e r i m e n t a t i o n . F i g u r e 2 ( a ) mows t h a t e v a p o r a t i o n r a t e i n c r e a s e d o n l y s l i g h t l y w i t h t h e d u r a t i o n of e x p e r i m e n t s ; a c t u a l l y , t h e r e was o n l y a s l i g h t diffex-ence i n r a t e between e v a p o r a t i o n from a pan i n s i d e t h e wind t u n n e l f o r a n hour and a pan exposed t o t h e same c o n d i t i o n s i n s i d e t h e t u n n e l f o r 1 2 h o u r s . These r e s 1 ; l t s and

mea s u r e n ~ e n t s of dew-point tempera t u r e showed t h a t t h e r e was enough l e a k a g e of a i r from o u t s i d e t h e t u n n e l t o p r e v e n t t h e a i r i n s i d e f r o m becoming s a t u r a t e d even i f t h e e x p e r i m e n t s were r u n f o r s e v e r a l h o u r s . I t was found t h a t e x p e r i m e n t a l r u n s of from 5 0 t o

60

m i n u t e s r e s u l t e d i n e v a p o r a t i o n l o s s e s which c o u l d be measured w i t h t h e s c a l e s a v a i l a b l e . F i g u r e 2 ( b ) shows t h a t t h e e v a p o r a t i o n r a t e i n c r e a s e s w i t h t h e d e c r e a s i n g s i z e of e v a p o r a t i n g pan. T h i s v a r i a t i o n of e v a p o r a - t i o n r a t e w i t h t h e s i z e of pan c o n f i r m s t h e f i n d i n g s of p r e v i o u s i n v e s t i g a t o r s . F i g u r e 2 ( c ) shows t h o e f f e c t of t h e l i p of e v a p o r a t i o n pan on t h e r a t e of e v a p o r a t i o n . With f i n e - g r a i n e d snow e v a p o r a t i o n r a t e a p p e a r s t o be a f f e c t e d o n l y s l i g h t l y by d e c r e a s i n g t h e d e p t h of snow, a n d hence i n c r e a s i n g t h e l i p of . t h e pan. With a smooth i c e s u r f a c e t h e r e i s o n l y a s l i g h t d e c r e a s e i n e v a p o r a t i o n w i t h a 0.33-cm l i p . T h i s e x p e r i m e n t showed t h a t i f t h e l i p of t h e e v a p o r a t i n g pan i s n o t o v e r 0.33 cm t h e e v a p o r a t i o n r a t s w i l l n o t be a f f e c t e d .

F i g u r e 3 ( a ) shows t h e d i f f e r e n c e i n e v a p o r a t i o n r a t e s between c r u s t e d a n d u n d i s t u r b e d snow samples u n d e r s i m i l a r

c o n d i t i o n s . A h a r d c r u s t was formed by p l a c i n g t h e sample i n t h e e v a p o r a t i o n t r a y i n a warm room f o r a b o u t f i v e m i n u t e s a n d t h e n r e t u r n i n g i t t o t h e c o l d room. F i g u r e 3 ( a ) shows t h a t t h e

e v a p o r a t i o n r a t e f r o m c r u s t e d snow i s s i g n i f i c a n t l y l e s s t h a n f r o m n o n - c r u s t e d snow u n d e r s i m i l a r c o n d i t i o n s . P o s s i b l y , t h i s mathod

of c r u s t i n g t h e snow smooths t h e s u r f a c e o r impedes t h e movement of w a t e r vapour t o t h e s u r f a c e , r e s u l t i n g i n l e s s e v a p o r a t i o n .

F i g u r e 3 ( b ) shows t h a t snow s u r f a c e s w i t h o u t i n s u l a t i o n on t h e t r a y below had g r e a t e r e v a p o r a t i o n t h a n when i n s u l a t i o n was a p p l i e d . A p p a r e n t l y h e a t f l o w from t,he bottom a f f e c t e d t h e r a t e of evapora t i o n . Theref o r e , i n o r d e r t o r u n a l l e x p e r i m e n t s u n d e r s i m i l a r c o n d i t i o n s , t h e bottoms c f a l l t h e t r a y s were c o v e r e d w i t h i n s u l a t i o n .

(8)

EFFECT OF VAPOUR PRESSURE DIFFERENCE ON EVAPORATION RATE

The f i r s t s e t of e x p e r i m e n t s was made w i t h t h e c o n t r a c t i n g approach c o n d i t i o n s and

6-

by 6-in. c o n t r o l s e c t i o n , The vapour p r e s s u r e a t

3

cm above t h e e v a p o r a t i n g s u r f a c e was o b t a i n e d by measuring t h e dew p o i n t a s d e s c r i b e d p r e v i o u s l y . The vapour p r e s s u r e a t t h e e v a p o r a t i n g s u r f a c e was o b t a i n e d by assuming t h e a i r was s a t u r a t e d a t t h e e v a p o r a t i o n s u r f a c e a t t h e t e m p e r a t u r e of t h e c o l d roam.

T h i s assumption w h i l e n o t c o m p l e t e l y v a l i d appeared t o g i v e r e a s o n a b l y c o n s i s t e n t r e s u l t s . A measurement of t h e i a e s u r f a c e t e m p e r a t u r e by means of a thermocouple imbedded i n t h e i c e i n d i c a t e d t h a t t h e t e m p e r a t u r e of t h e e v a p o r a t i n g s u r f a c e was between t h e dry- and wet-bulb t e m p e r a t u r e s .

D i f f e r e n t vapour-pressure g r a d i e n t s were o b t a i n e d by i n s e r t i n g l a y e r s of c a l c i u m c h l o r i d e o r a pan of warm w a t e r i n t o t h e upper p o r t i o n of t h e wind t u n n e l t o d r y t h e a i r o r t o add m o i s t u r e t o t h e a i r . I n t h e l a t t e r o a s e

i t

was d i f f i c u l t t o keep t h e a i r i n t h e t u n n e l a t a c o n s t a n t t e m p e r a t u r e because of t h e warming e f f e c t of t h e w a t e r ,

F i g u r e

4

i n d i c a t e s t h a t t h e r a t e of eva o r a t i o n froni i c e s u r f a c e s v a r i e s a c c o r d i n g t o D a l t o n f s Law (1802

7

.

EFFECT OF WIND VELOCITY AND SURFACE ROUGHNESS O N E V A P O R A T I O N RATE F i g u r e

5

shows t h e r e l a t i o n between e v a p o r a t i o n r a t e s and mean wind s p e e d s f o r d i f f e r e n t s u r f a c e s . The r e c o r d s were c o n s i s - t e n t showing t h a t , f o r t h i s e x p e r i m e n t a l s e t - u p a t l e a s t , t h e r a t e

of e v a p o r a t i o n was d e c i d e d l y h i g h e r from a rough s u r f a c e t h a n from a smooth s u r f a c e under s i m i l a r c o n d i t i o n s . The degree of roughness

of t h e s u r f a c e may a f f e c t t h e t u r b u l e n c e of t h e a i r o r be an i n d i c a t i o n of t h e s u r f a c e a r e a exposed which i n t u r n a f f e a t a t h e r a t e of e v a p o r a t i o n *

EFFECT OF DIFFERENT APPROACH CONDITI.0NS ON EVAPORATION RATE

A s t h e r e l a t i o n s h i p between mean wind speed, s u r f a c e t e x t u r e , and e v a p o r a t i o n r a t e may n o t h o l d f o r a l l approach c o n d i t i o n s ,

o b s e r v a t i o n s were c a r r i e d o u t u s i n g a n expanding a p p r o a c h s e c t t o n and t h e

6-

by $-inch c o n t r o l s e c t i o n . E v a p o r a t i o n r u n s were made f o r an i c e s u r f a c e and c o a r s e snow s u r f a c e only, under d i f f e r e n t c o n d i t i o n s of wind speed, I t was c o n s i d e r e d u n n e c e s s a r y t o c o n t i n u e t h e t e s t s on t h e f i n e snow s u r f a c e , a s t h e c o a r s e snow and i c e

(9)

Figure

6

shows the e f f e c t of changing t h e approach condi- t i o n s on t h e evaporation r a t e s . Apparently t h e s e c o n d i t i o n s a f f e c t t h e degree of turbulence which, i n t u r n , a f f e c t s the r a t e of

evaporation from d i f f e r e n t s u r f a c e s . The r a t e of evaporation was p l o t t e d a g a i n s t t h e l o g of the Reynold's number s o t h a t t h e r e s u l t s aould be compared t o those of o t h e r workers. The change from laminar

U

X

flow t o t u r b u l e n t flow appears t o take p l a c e a t loglO

1

=

4.9

which

Zr

a m p a r e s t o t h e value found by Yamamoto. I t i s i n t e r e & i n g t o n o t e t h a t t h e r e i s a decided d i p i n the curve i n t h i s region.

In

o t h e r words, f o r a s l i g h t l y h i g h e r wind v e l o c i t y a t t h i s p o i n t , evaporation r a t e s decreased before r a p i d l y i n c r e a s i n g a g a i n under more t u r b u l e n t

aonditions. A s S u t t o n

(1953)

p o i n t s out, a s u r f a c e which i s aero- dynamically "smooth" a t low v e l o c i t i e s may become aerodynamically "roughn a s the mean v e l o c i t i e s i n c r e a s e , and between these two l i m i t s i s a t r a n s i t i o n r e g i o n i n which a s u r f a c e i s n e i t h e r smooth nor

e n t i r e l y rough.

The i n t e r e s t i n g point i s , however, t h a t with d i f f e r e n t approach c o n d i t i o n s t h e e f f e c t of s u r f a c e t e x t u r e on t h e r a t e of evaporation changed, and t h e r e l a t i o n s h i p between e v a p o r a t i o n r a t e and mean wind speed was a l t e r e d . Most previous i n v e s t i g a t o r s did n o t seem t o consider t h e e f f e o t of approach c o n d i t i o n s on t h e i r wind t u n n e l i n v e s t i g a t i o n s of evaporation l o s s e s . Probably t h i s i s one reason why the r e l a t i o n s h i p between mean wind v e l o c i t y and evapora- t i o n r a t e has shown such v a r i a b i l i t y Hiokox

(1946).

Also, f o r values

'1' l e s s than

4.9,

the evaporation r a t e s f o r coarse snow and

log10

7

i c e s a a c e s were almost t h e same under i d e n t i c a l conditions.

LABORATORY CHECK O F SVERDRUP FORMULA

Many previous i n v e s t i g a t o r s d i d n o t a o t u a l l y measure t h e v e l o c i t y p r o f i l e above the evaporating s u r f a c e and thus d i d n o t determine t h e boundary l a y e r t h i c k n e s s or t h e

ZO

a s d e f i n e d by Sverdrup

(1936).

For a l l t h e evaporating runs, a t t e m p t s were made t o measure t h e v e l o c i t y p r o f i l e a t r e g u l a r i n t e r v a l s above t h e s u r f a c e t o h e i g h t

4.5

om. The procedure was t o b r i n g t h e bottom of t h e p i t o t tube f l u s h w i t h t h e c e n t r e of t h e snow or i c e s u r f a c e and t h e n t o ' r a i s e

i t

v e r t i c a l l y i n 0.5-cm i n t e r v a l s .

With t h e smaller c r o s s - s e c t i o n and c o n t r a c t i n g approach o o n d i t i o n s t h e mean ZO was 0,002 om f o r t h e i c e s u r f a c e , 0.011 cm f o r t h e f i n e snow and 0.110 cm f o r t h e ooarse snow. With t h e measuring technique used it appeared t h a t , f o r t h e s e approach

oonditions, ZO was c o n s t a n t f o r wind speeds t e s t e d under t u r b u l e n t flow conditions. ZO was a c t u a l l y obtained by p l o t t i n g t h e v e l o c i t y p r o f i l e s on semi-log paper and extending t h e s t r a i g h t l i n e t o f i n d a t what h e i g h t above t h e s u r f a c e the v e l o c i t y was zero.

(10)

With t h e l a r g e r c r o s s - s e c t i o n and expanding approach c o n d i t i o n s t h e mean Zo was measured a s OoO029 cm f o r b o t h t h e

u

X

i c e and c o a r s e snow s u r f a c e s f o r v a l u e s of loglO

2

l e a s t h a n

ZT

5.0. For v a l u e s g r e a t e r t h a n 5.0 t h e c o a r s e snow ZO = 0.008 om and t h e i c e s u r f a c e ZO

=

0.0029 omr Some d i f f i c u l t y was e n c o u n t e r e d

i n

o b t a i n i n g good v a l u e s f o r t h i s boundary l a y e r t h i o k n e s s a t t h e lower wind v e l o c i t i e a e

The e x p e r i m e n t a l d a t a from a l l e v a p o r a t i o n experiment a

wl t h b o t h approach c o n d i t i o n s were combined and t h e Sverdrup

f omnula was t e s t e d (Sverdrup,

1936).

F i g u r e 7 shows t h e r e l a t i o n -

s h i p between e v a p o r a t i o n r a t e and t h e combined v a r i a b l e s of mean wind speed, vapour p r e s s u r e d i f f e r e n c e s and boundary l a y e r t h i c k n e s s .

Thus, i t seems t o give e x p e r i m e n t a l evidence t o s u p p o r t t h e e q u a t i o n developed by Sverdrup. The g e n e r a l form of t h e e q u a t i o n a p p e a r s t o be s a t i s f a c t o r y f o r t h e a d i a b a t i c c o n d i t i o n s d e s c r i b e d i n t h i s r e p o r t . The f a c t t h a t t h e c o a r s e - g r a i n e d snow e v a p o r a t i o n r a t e s f o r c o n t r a c t i n g approach c o n d i t i o n s do n o t f a l l on t h e same l i n e a s t h e o t h e r r a t e s i s p o s s i b l y due t o some t u r b u l e n c e f a c t o r which was not measured.

h

DISCUSSION OF RESULTS

T h i s p r e s e n t s t u d y of e v a p o r a t i o n from snow and i c e s u r f a c e s i s a p r e l i m i n a r y one, I n o r d e r t o a n a l y s e t h e r e s u l t s completely* a d d i t i o n a l and improved a p p a r a t u s w i l l be r e q u i r e d . A means of e v a l u a t i n g t h e t u r b u l e n c e of t h e a i r s t r e a m i s r e q u i r e d (Schubauer and Klebanoff,

1946;

Dryden 1947). A f u r t h e r check on t h e

r e l i a b i l i t y of dew-point measurements, p a r t i c u l a r l y n e a r t h e e v a p o r a t i n g s u r f a c e would be d e s i r a b l e , a s would measurement of t h e tempera t w e of t h e evapclqa t i n g s u r f a c e

.

There a r e d e f i n i t e l i m i t a t i o n s t o wind-tunnel t e c h n i q u e s f o r s t u d y i n g e v a p o r a t i o n under atmospheric c o n d i t i o n s . I t i s t h e w r i t e r ' s o p i n i o n , however, t h a t some of t h e b a s i c i d e a s of evapora- t i o n should be i n v e s t i g a t e d under c o n t r o l l e d c o n d i t i o n s b e f o r e

i n t r o d u c i n g e l l the c o m p l i c a t i o n s of s t u d y i n g e v a p o r a t i o n l o s s e s i n t h e atmosphere, Wind-tunnel s t u d i e s would be of p a r t i c u l a r u s e f o r e v a l u a t i n g t h e i n s t r u m e n t a t i o n needed f o r f i e l d o b s e r v a t i o n s . Also, t h e r e l a t i o n s h i p between s u r f a c e e v a p o r a t i o n and vapour move- ment t h r o u g h porous m a t e r i a l s such a s snow and g r a n u l a r s o i l s could be i n v e s t i g a t e d w i t h wind-tunnel t e c h n i q u e s . Some e x p e r i m e n t a l work on s t u d y i n g e v a p o r a t i o n from s o i l s by wind-tunnel t e c h n i q u e s h a s been done by Jensen

(1954)

i n Denmark. A s t u d y of f o r c e d -

c o n v e c t i o n h e a t t r a n s f e r from f l a t s u r f a c e s by Parmelee and Huebscher (1947) g i v e s u s e f u l i n f o r m a t i o n on t h e t y p e of a p p a r a t u s and t h e

t u r b u l e n c e measurements r e q u i r e d f o r d e t a i l e d i n v e s t i g a t i o n s of t h i s

(11)

A f t e r t h e e x p e r i m e n t s r e p o r t e d on were completed t h e w r i t e r r e c e i v e d a r e v i e w of t h e e x t e n s i v e w i n d - t u n n e l i n v e s t i g a t i o n s

conducted by Cermak and Koloseus ( 1 9 5 3 ) i n which t h e y l o o k e d i n t o t h e p o s s i b i l i t i e s of u s i n g a model t o d u p l i c a t e e v a p o r a t i o n from a n a t u r a l l a k e . T h e i r i n v e s t i g a t i o n s p r e s e n t c l e a r l y t h e problems e n c o u n t e r e d i n t r y i n g t o r e l a t e e v a p o r a t i o n e x p e r i m e n t s i n a

l a b o r a t o r y t o a t m o s p h e r i c c o n d i t i o n s ,

Because of l a c k of s p e c i f i c i n f o r m a t i o n on t h e t e m p e r a t u r e s a t which Powell ( 1 9 4 0 ) a n d Hay (1.956) c a r r i e d o u t t h e i r e x p e r i m e n t s

i t i s i m p o s s i b l e t o compare t h e p r e s e n t r o s u l t s w i t h e i t h e r of

t h e s e a u t h o r s . F o r t u n a t e l y i t was p o s s i b l e t o compare r e s u l t s w i t h d a t a from Yamamotots work (Yamamoto, 1950). F i g u r e

8

shows t h i s

comparison, u s i n g Yarnamot;ots t e r m i n o l o g y . I t f s i n t e r e s t i n g t o n o t e t h a t t h e r e s u l t s o b t a i n e d f a l l i n t o t h e same g e n e r a l p a t t e r n .

Some of t h e s c a t t e r shown i n Pig.

8

might have b e e n r e d u c e d i f a t u r b u l e n c e f a c t o r o r s u r f a c e - r o u g h n e s s t e r m h a d been i n t r o d u c e d i n t o t h e e q u a t i o n developed by Yamamoto. The e f f e c t of s u r f a c e r o u g h n e s s on e v a p o r a t i o n r a t e s o v e r open w a t e r i s s t i l l t h e s u b j e c t of some c o n t r o v e r s y ( N o r r i s ,

1948;

Montgomery, 1940). While s u r f a c e r o u g h n e s s i n t h e l a b o r a t o r y c a n n o t be compared t o s u r f a c e r o u g h n e s s u n d e r f i e l d c o n d i t i o n s where t h e a p p r o a c h c o n d i t i o n s c a n v a r y c o n s i d e r a b l y , t h e f a c t t h a t t h e S v e r d r u p e q u a t i o n c h e c k s r e a s o n a b l y w e l l 1.n t h e l a b o r a t o r y g i v e s more a u t h o r i t y t o t h i s e q u a t i o n , a t l e a s t f o r . m e a s u r i n g t h e e v a p o r a t i o n from snow and i c e s u r f a c e s u n d e r s t a b l e a i r c o n d i t i o n s .

ACKNOWLEDGMENTS

The a u t h o r i s i n d e b t e d t o M r .

J.

McNally f o r t a k i n g many of t h e measurements; t o R. Armour f o r h e l p i n i n s t r u m e n t a t i o n ; t o D r . D. S t e p h e n s c n f o r a d v i c e on c e r t a i n a s p e c t s o f t h e i n s t r u m e n t a - t i o n ; and t o

L.W.

Gold f o r encouragement, e s p e c i a l l y i n the

p r e p a r a t i o n of t h e f i n a l r e p o r t .

REFERENCES

Cermak, JOE. and

H.

J. Koloseus. Lake Hefner model s t u d i e s of wind s t r u o t u r e and e v a p o r a t i o n , R e p o r t No.

54,

JEC 20, Colorado Agric. and Mech. Coll., F o r t C o l l i n s , Colorado, November

1953.

Dalton,

J.

E x p e r i m e n t a l e s s a y s on t h e c o n s t i t u t i o n of mixed gasea; on t h e f o r c e of s t e a m o r vapour from w a t e r s and o t h e r l i q u i d s , b o t h i n a torricelllan vacuum and i n a i r ; on e v a p o r a t i o n ; and

on t h e e x p a n s i o n o f g a s e s by h e a t , Mem. Proc. I I a n c h e s t e r L i t . and P h i l . Soc., Vol.

5,

p. 535-602, 1802.

(12)

Dryden, Hugh L. Some r e c e n t c o n t r i b u t i o n s t o t h e s t u d y of t r a n s i t i o n and t u r b u l e n t boundary l a y e r s . U.S. Nat. Adv. Corn. f o r

Aeronautics. Tech. Note no.

1168,

A p r i l

1947.

Gold, L.W. New snow and i c e r e s e a r c h l a b o r a t o r y i n Canada. J. of Glaciology, vol. 2, no.

19,

March

1956.

Hay, J.S. Evaporation from a s a t u r a t e d rough s u r f a c e i n t o a t u r b u l e n t a i r stream. A i r M i n i s t r y , a paper of t h e M e t e o r o l o g i c a l

Research Committee (London), M.R.P. no.

973,

January 24,

1956.

~ i o k o x , G.H. E v a p o r a t i o n from a f r e e w a t e r surfaoe. Trans. A.S.C.E.,

paper no. 2266, v o l e 111,

1946.

~ i n c h l e y , J.W. and G.W. Himuso E v a p o r a t i o n i n c u r r e n t s of a i r , Trans. I n a t . Chem. Engra. v o l ~ 2,

P O

57-64,

1924.

Jensen, Nartin. S h e l t e r e f f e c t

-

i n v e s t i g a t i o n s i n t o t h e aerodynamics of s h e l t e r and i t s e f f e c t s on c l i m a t e and c r o p s . The Danish T e c h n i c a l P r e s s , Copenhagen,

1954.

M i l l a r , FOG. Evaporation from f r e e w a t e r s u r f a c e s , Can. Meteor. Memoirs, vol. 1, p.

41-65,

1937.

Montgomery, ROB. Observations of v e r t i c a 1 humidity d i s t r i b u t i o n above t h e ocean s u r f a c e and t h e i r r e l a t i o n t o e v a p o r a t i o n . P a p e r s

i n

P h y s i c a l Oceanography and Moteorology (MIT and WHOI), v o l e

7,

no.

4,

19400

Norris, R. Evaporation from e x t e n s i v e s u r f a c e s of w a t e r roughened b waves. Q u a r t e r l y J o u r n a l of t h e Roy. Met. S o c i e t y , v o l e 71, no.

319,

January

1948.

Parmelee, G.V. and R.G. Huebscher. Forced c o n v e c t i o n h e a t t r a n s f e r from f l a t s u r f a c e s . Amer. Soc. of Heating and V e n t i l a t i n g Engineers, Reg. Bullo, vol.

53,

no.

3,

November

1947.

P a s q u i l l , F. Evaporation from a p l a n e , f r e e - l i q u i d s u r f a c e i n t o a

t u r b u l e n t a i r stream. Proo. Roy. Soc. of London, S e r i e s A, 182, no.

~ 9 8 8 ,

p.

75-95,

September

1943.

Powell, R.W. F u r t h e r e x p e r i m e n t s on t h e e v a p o r a t i o n of w a t e r from s a t u r a t e d s u r f a c e s . Trans, I n s t . of Chem. Engrs. vol.

18,

1940.

Powell, R.W. and

E m

G r i f f i t h s . The e v a p o r a t i o n from p l a n e and

c y l i n d r i c a l s u r f a c e s . Trans. I n s t , of Chem. Engrs. vol.

13,

P*

175-198,

1936.

(13)

Rohwer, Carl. Evaporation from free water surfaces. U . S . Dept. Agrio. Tech. Bull. no. 271, December 19310

Sohubauer, GOB. and P o s e Klebanoff. Theory and applioation of hot- wire instrument

s

in the inve s tiga tion of turbulent boundary

layers. U.S. National Advisory Committee for Aeronautios, March 1946.

Sutton, 0 . G . Miorometeorology; a study of physical processes in the

lowest layera of the earth' s atmosphere. MoGraw-Hill, New Yorko 1953, 333 Po

Sverdrup, H.U. Eddy oonductivity of the air over a amooth snow field. Geofysiske Publikaajoner, vole 11, no.

7,

p. 169, 1936 l

Yamamoto, (1. Investigation of evaporation from

cns

.

Trans. Amer. Oeophya. Union, vol. 31, no. 3,

P.

349-35 June 1950.

(14)

ACCESS PIPES TO COLD ROOM

r

I

4 - - COLD ROOM WALLS ( INSULATED

DEW - POINTER -

No I

a

LOCATION OF

PRESSURE METER

No 2 SECTION TUNNEL EQUIPMENT IN

INTERIOR OF COLD ROOM 1 7 ' - 4 " COLD ROOM

POTENTIOMETER - . -

N a 3

PUMP FOR DEW-

No, - 7 C T I O N

No. 2 PITOT TUBE

,-PLEXIGLASS TOP

+

,,' I L ;.' THERMOCOUPLE , 7 ALUMINUM EVAPORATING .--

--

, I PAN 3 0 x 1 5 ~ 1 cm "-INSULATION FLOOR

SIDE VIEW SHOWING DETAIL OF CONTROL SECTION

(15)

10-4 3 . 0

-

.

.

. . . - -

,-,

COARSE SNOW 2 . 0

-

ICE 1.0- . - ~ . -~ ~- -- . OO I 2 3 4 ( 3 - 2 7 m m . SURFACE W TIME ( H R ) FIGURE 2 (a)

EFFECT ,OF DURATION OF EXPERIMENT ON RATE OF EVAPORATION

FIGURE 2 (b)

EFFECT OF AREA OF EVAPORATING SURFACE ON THE RATE OF EVAPORATION

w NO LIP LIPa3CM L I P . 6 CM (PAN FULL) (PAN 'I3 FULL)

l-

-

2

5

3 . 0 - FIGURE 2 (c) z

a

2

c

2 . 0 u a 0

=

1 . 0 a. \

s

z

EFFECT OF LIP OR PAN RIM ON RATE OF

EVAPORATION INT REPORT IN

. U s 2 0 . A

A

-

r l '-- FINE SNOW SURFACE 'ICE SURFACE

(16)

ROOM TEMP

=

+ I 4 O F

e,-e,

=

1 - 6 5

rnb

OF

hg

x lom4 NO CRUST ON W 4

.o ----

I- SAMPLE SURFACE 4 an

a

s

z

0

3.0

CRUSTED SNOW

0

::

I- \ 2 10---.--& SAMPLE SURFACE (T: Z O

s

a

\ I . o

----

----

--

5

3

"

,

W 0 A - - .- W

---

..-.--.--- I- O r

T

SAMPLE SURFACE 4 an Ice a SAMPLE SURFACE

FINE SNOW COARSE SNOW

(-99

M

M

( -99

MM

-

3-39

MM)

FIGURE

3 ( a l

THE EFFECT OF SNOW CRUST

ON THE RATE OF

NO INSULATION

BOTTOM OF EVAPORATING

PAN ' INSULATED

0 10 16

WIND VELOCITY (FT/SEC)

5 CM ABOVE SURFACE

FIGURE

b(b)

THE EFFECT OF INSULATION ON THE BOTTOM

OF THE EVAPORATING

PAN

ON EVAPORATION

RATES

(17)

LEGEND :

ICE SURFACE FOR ALL T E S T S

ROOM T E M P t 1 4 O F

e a =

VAPOUR PRESS. OF AIR 5 CM ABOVE SURFACE

e,

=VAPOUR PRESS. AT ICE SURFACE

FIGURE

4

EFFECT OF VAPOUR

PRESSURE DIFFERENCE

(18)

LEGEND :

ROOM TEMP = + 14 O F

VAPOUR PRESS. DIFFERENCE

e,-e,

=

1 . 6 5

mb

x---X COARSE SNOW b99-3.27 MM

0-0 FINE SNOW <99 MM

a-• SMOOTH ICE SURFACE

NOTE :

EACH PLOTTED POINT REPRESENTS

AVERAGE OF 2 TESTS

MEAN WlND SPEED (FT/SEC) 3 CM ABOVE SURFACE

FIGURE

5

E F F E C T O F VARIATION

IN

WlND V E L O C I T Y

81

SURFACE ROUGHNESS ON EVAPORATION

(19)

4- 4

4.6

4.8

5.0 5.2 5.4

LOG OF REYNOLD'S NO = log,. UI X I

a

---

CONTRACTING APPROACH EXPANDING APPROACH ROOM T E M P = + 1 4 O F VAPOUR PRESSURE DIFFERENCE = 1.55 m b

F I G U R E

6

E F F E C T OF C H A N G I N G A P P R O A C H CONDITIONS

O N T H E R A T E O F EVAPORATION.

(20)

L E G E N D : C O A q S E SNOW S U R F A C E 0 F I N E SNOW S U R F A C E I C E S U R F A C E a -HT OF M E A S U R E M E N T O F M E A N W l N D S P E E D 8 V A P O U R P R E S S U R E U a - M E A N W l N D S P E E D ea-VAPOUR P R E S S U R E O F A I R e s - S A T . V A P P R E S S . O F A I R AT S U R F A C E Zo-ROUGHNESS P A R A M E T E R

F I G U R E

7

R E L A T I O N S H I P B E T W E E N EVAPORATION

R A T E A N D T H R E E V A R I A B L E S

(21)

- - - - -- - - -.

0 MILLAR'S MEASUREMENTS

A GI-ICHI YAMAMOTO MEASURE-

MENTS WITH 2 0 C M PAN

ICE MEASUREMENT

A COARSE SbIOW MEASUREMENTS

1

(EXPANDING CROSS

-

SECTION)

FIGURE 8

RELATION

BETWEEN

REYNOLD'S

NUMBER

AND RATE OF EVAPORATION USING GI-ICHI

Références

Documents relatifs

On the one hand, although there is consensus among neuroscientists that perceptual decision-making is a dynamic and competitive process, it is still unclear how neural mecha-

Susceptibility versus temperature curves of type L, M and H samples subjected to the palaeointensity experiment, after having been heated to different temperatures..

Metric Name: Receiving Cycle Time Frequency of Measurement: Monthly Report To: Director, Product Management Data Collector:. Director, Distribution Center Manager, Distribution

Our electrophysiological data are, as in the past, evoked responses to acoustic stimuli and so-called &#34;spontaneous&#34; activity of the brain-wave type.. Since

ﺢﻠﻣﻟا ﻎﺿﻣأ ﻻ ( ﻲﻘﯾﻘﺣﻟا ﻰﻧﻌﻣﻟﺎﻓ ﺎﻧﻫ دوﺻﻘﻣﻟا رﯾﻏ و وﻫ دارﻣﻟا دﯾﻌﺑﻟا ﻰﻧﻌﻣﻟا ﺎﻣأ ﺢﻠﻣﻟا ﻎﺿﻣ وﻫ ) ةرﺷﻌﻟا ( ، زﺑﺧﻟا ﻪﯾﻠﻋ نوﻬﯾ ﻻ يأ ﺢﻠﻣﻟاو برﻌﻟا دﻧﻋ لﺎﻘﯾ ﺎﻣﻛ ) نﻣ ﺎﻧﻠﻛأ

The rapid economic growth in India and accompanying demand for improved healthcare, particularly in rural populations, make a compelling case for global

Inspired by the regret minimization study, an important direction of future work is to obtain finite-time upper bounds on the sample complexity of an algorithm, that would

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB..