• Aucun résultat trouvé

Impact of composite structure and morphology on electronic and ionic conductivity of carbon contained LiCoO2 cathode

N/A
N/A
Protected

Academic year: 2021

Partager "Impact of composite structure and morphology on electronic and ionic conductivity of carbon contained LiCoO2 cathode"

Copied!
7
0
0

Texte intégral

(1)

Impact

of

composite

structure

and

morphology

on

electronic

and

ionic

conductivity

of

carbon

contained

LiCoO

2

cathode

Nam

Hee

Kwon

a,∗

,

Hui

Yin

a

,

Pierre

Brodard

b

,

Claudia

Sugnaux

a

,

Katharina

M.

Fromm

a

aUniversityofFribourg,DepartmentofChemistry,CheminduMusée9,CH-1700Fribourg,Switzerland

bUniversityofAppliedSciencesofWesternSwitzerland,CollegeofEngineeringandArchitectureofFribourg,BoulevarddePérolles80,CH-1705Fribourg,

Switzerland

Cathodesinlithiumionbatteriesconsistofanionicconductor,anelectronicconductorandabinderin ordertomakeacompositethatisbothelectronicallyandionicallyconductive.Thecarboncoatingon thecathodematerialplaysacriticalrolefortheelectrochemicalpropertiesoflithiumionbatteriesdue totheincreasedelectronicconductivity.Weexplaintherelationshipbetweentheelectrochemical prop-ertiesandthecharacteristicsofcompositespreparedusingtheball-millingprocessinthisreport.We investigatedtwotypesofcarbonaceousmaterials(graphiteandcarbonblack)inLiCoO2electrodes.These

selectedcarbonmaterialshavedifferentcharacteristicsandstructureuponball-millingwithLiCoO2.The

compositepreparedbyball-millingfor5minleadstobettermixingofcarbonandLiCoO2,anintimate

con-tactofcarbononLiCoO2,ahigherlithiumiondiffusion(DLi)thannonball-milledandlongerball-milled

composites.Ontheotherhand,alongertimeofball-milling(30and60min)decreasestheelectronic andionicconductivityduetoanincreaseofdisorderedstructureofcarbonandathickanddensecarbon coatinglayeronLiCoO2particles,preventingthediffusionoflithiumions,respectively.

1. Introduction

High-performancecathodesoflithiumionbatteriesrequireto beelectronicallyandionicallyconductiveinordertofacilitatethe fasttransport ofelectronsand lithiumionsthatare insertedor extractedfromthetransitionmetaloxideparticles(LiCoO2,[1–5]

LiMn2O4,[6]LiMO2(M=mixedtransitionmetals),[7,8]LiFePO4,

LiMnPO4 [9,10]etc.).Ingeneral,theionicconductorsofcathode

materialsneedanelectronicconductortoimprovetheelectronic conductivityoftheelectrode.Carbonmaterialiscommonlyused asaconductiveadditivetofacilitatethetransportofelectronsin thecathode.Theelectronicconductivityofcarbondependsonits purity,itsorderedand/ordisorderedstructure,themanufacturing processesandthecarbonaceoussourcesetc.[11–13].

Moreimportantly,theelectronicconductivityofcompositeis notonlyrelatedtothecarbonmaterialitselfbutalsotheprocessof assemblingthecompositetogetherwiththeactivematerial,which strongly influences thecomposite structure [14–18].Therefore, the preparation ofcomposite is a crucial step tomaximizethe

∗ Correspondingauthor.Tel.:+41796780008;fax:+41263009738.

E-mailaddresses:namhee.kwon@unifr.ch,nhkwon2011@hotmail.com

(N.H.Kwon).

electrochemical properties of the electrode. Recently, Kwon reported that the morphology of composite is affected by the preparationconditionsofmakingacompositeviaball-milling[18]. Amechanical mixing improvesthehomogeneityof carbon and theactivematerial,enhancingtheelectrochemicalpropertiesof cathode.However,therearestillscientificquestionsabouta ball-millingprocessremainingasfollows;i)doestheball-millingaffect thelocalstructureofcarbon?ii)doestheelectronicconductivity ofthecompositechangeuponball-milling?,andiii)knowingthat mechanicalmillingbreakslargeparticles,howwouldthelithium iondiffusionoftheactivematerialbeaffecteduponmilling?To answerthose questions, weevaluated theeffectof ball-milling intermsoftheelectronicandionicconductivityofcompositeas wellasthestructureofcarbonandthemorphologyofcomposite preparedbyball-milling.

2. Experimental

Graphite(SFG,Timcal,Belgium)andcarbonblack(Ketjenblack 600, Akzo Nobel, Germany) wereused to preparea composite materialwithcommercialLiCoO2(Aldrich).Thesecarbon

materi-alsarereferredtoas“SFG”and“Ket”,respectively,inthefollowing. Thesematerialswereball-milledinahorizontalset-up(RetchMM 400)for 5, 30 or60minwith30/s ofthe frequencyin a jar of

Published in (OHFWURFKLPLFD$FWD±

which should be cited to refer to this work.

(2)

Fig.1.Thecyclicvoltammogramsofcarbon/LiCoO2compositeelectrodes(a)with10wt%ofSFGand(b)with10wt%ofKetpreparedbyball-millingfor0,5,30and60min.

Thesweepscanratewas0.1mV/s.TheelectrolytewasEC:DMCwith1MLiPF6salt.

10mlwithtwostainlesssteelballsof10mmindiameter.After creatinga composite of carbon and LiCoO2 viaball-milling, an

electrodewaspreparedonaluminumfoilwiththecompositeof carbon/LiCoO2(C-LiCoO2)andpolyvinylidenefluoride(PVDF)in

N-methyl-2-pyrrolidone(NMP).TheweightratiooftheLiCoO2active

material,carbon and binder was80:10:10.Thetested cathodes had5×5mmofsurfaceareaandcontainedtypicallyabout1mg ofactivematerialafterdrying. Theelectrodesweredriedunder vacuumat120◦Covernight.Lithiummetalandethylene carbon-ate(EC)anddimethylcarbonate(DMC)mixture(1:1v/v)with1M LiPF6 wereusedasa counter electrode andelectrolyte,

respec-tively.Apotentiostat(PrincetonAppliedResearch 273A)andan Arbinbatterytestinstrument(version4.27)wereusedto exam-inetheelectrochemicalpropertiesofthecarbon-LiCoO2composite

electrodes.

Ramanspectroscopywasappliedtostudythestructureof car-bonbeforeandafterball-milling.Theexperimentswerecarried outwithaconfocalmicro-Ramanspectrometer(HORIBALabRAM HR800,combinedwithanopticalmicroscopeOlympusBX41).We usedalaserat531.8nmforexcitation,attenuatedwithneutral den-sityfilters(ND0.4andND2,60%and99%attenuation,respectively), resultinginlaserpowersof16mWand0.4mWonsamplewiththe 50Xobjectiveemployed,respectively.Becauseoftheconcentration ofthelightontoaverysmallspot(diameterapprox.2␮m),the attenuationofthelaserpowerwithfilterswasnecessarytoavoid thermaldegradationofthesample.Theacquisitiontimewassetto 2×0.5s.Themorphologyandthesizeoftheparticleswere deter-minedusingscanningelectronmicroscopy(SEM,PhilipsXL30)and

transmissionelectronmicroscopy(TEM,FEI/PhilipsCM100).The Brunauer-Emmett-Teller(BET)nitrogenadsorption methodwas usedtomeasurethespecificsurfaceareaofLiCoO2,carbon

mate-rialsand C-LiCoO2 compositesbeforeandafterball-milling.The

electronicconductivitywasmeasuredwithdensepelletsof com-posites and LiCoO2 material usingdirect current (DC)with the

4-pointprobe method.The pellets in 13mm of diameterwere pressedby5tonsinordertomakeadensebody.Thelithiumion dif-fusioncoefficients(DLi)oftheelectrodesweredeterminedbycyclic

voltammetrytechniqueusingthelinearrelationshipbetweenpeak current,thelinearsweeprateandiondiffusionconstantfromthe Randles-Sevcikequation[19].Eachiondiffusioncoefficientisthe meanvalueofthreeelectrodestestedunderthesamemeasurement conditions.

3. Resultsanddiscussion

ThedifferentelectrodecompositematerialswithSFGandKet wereinvestigatedfortheirelectrochemicalproperties.Fig.1shows thecyclicvoltammogramcurvesofSFGandKetcontainingLiCoO2

compositeelectrodes.Thecomposite ofSFG/LiCoO2 preparedby

ball-millingfor0 and5minshowedsharpredoxcurrent peaks, whilethe30 and60minof ball-milledcompositeshada wider potentialdistancebetweenthereduction andoxidation current peaksandbroaderpeaksatbothredoxevents(Fig.1(a)).Withthe Ket/LiCoO2composite(Fig.1(b)),theredoxcurrentdensities

with-outballmillingareweaker,andfor30and60minevenirreversible, while onlythe 5minball-milledsample shows good reversible

Fig.2. Theratecapacities(C/10,C/5and1C)ofthecompositeselectrodesSFG/LiCoO2(a)andKet/LiCoO2(b).Thecompositeswerepreparedbyball-millingfor0,5,30and

60min.Thevoltagewindowwasbetween2.7and4.4Vvs.Li+/Li.LimetalandEC:DMCwith1MLiPF

6wereusedasanodeandelectrolyte,respectively.

(3)

Fig.3. Ramanspectrumof(a)SFG/LiCoO2and(b)Ket/LiCoO2compositepreparedbyball-millingforvarioustime.

redoxbehavior.Thus,ashortball-millingprovidedsuperior elec-trochemicalpropertiescomparedtonoorlongerball-milling.

Fig.2(a)and(b)showthedischargecapacitiesofthe compos-ites,SFG/LiCoO2 andKet/LiCoO2atC/10,C/5and1C.Thevoltage

window wasbetween2.7 and 4.4V vs.Li+/Li. 5minball-milled

SFG/LiCoO2 composite electrode providedthehighest discharge

capacitiesof220,196and106mAh/gatC/10,C/5and1C, respec-tively,amongalldifferentball-millingprocessesshowninFig.2(a). Thefirstcapacityofnon-ball-milledLiCoO2compositeelectrode

reachedover150mAh/gatC/10,whichisthemaximumpractical capacity.However,thefollowingcapacitiesdecreasedrapidly prob-ablyduetothehighuppervoltagelimit(4.4Vvs.Li/Li+).Fig.2(b)

shows thesametrend oftheball-millingeffect,sincethe5min ball-milled Ket/LiCoO2 composite electrode reachedthehighest

dischargecapacitiesof156,142and109mAh/gatC/10,C/5and1C, respectivelyamongtheseriesofKet/LiCoO2compositeelectrodes.

Thedischargecapacitiesof5minball-milledSFG/LiCoO2

compos-iteelectrodearehigherthanthoseof5minball-milledKet/LiCoO2

atallstudiedcurrentdensities.

In order to evaluate the effect of a short and long time of ball-millingontheelectrochemicalproperties,theC-Cbond struc-turesofbothcarbonmaterialswerefirstcharacterizedbyRaman spectroscopy.Fig.3(a)SFGand(b)Ketshowtwomainbandsat 1350and1580cm−1,correspondingtodisorderedDandorderedG band,respectively[20].IncaseofFig.3(a),theratioofintensities I1350/I1580increasesuponthemillingtime.Itmeansthatthe

disor-deredDbandbecomesmoredominantinthestructureofSFGupon milling.Fig.3(b)showstheRamanspectrumofKetinthe compos-ite,indicatingnotsurprisinglythattheinitialKetleadstoahigher intensityofdisorderedDbandat1350cm−1thantheonefortheG bandat1580cm−1.BothDandGbandsat1350and1580cm−1get broaderandlowerinintensitiesuponball-milling.Theball-milling processincreasesthusthedensityofdefectsand/orreducesthe crystallite size[21].In addition,thebandat1200cm−1 in ball-milled SFGand Ketis indicative of thepresence of amorphous sp3-hybridizedcarbonatoms.Therefore,millingofSFGseemsto

decreasethecrystallitesize(D/Gratioincreasing)andgenerates amorphoussp3carbonatoms(bandat1200cm−1appearing),while

incarbonblack,themillingleadstoonlyslightgenerationof amor-phoussp3-hybridizedcarbonatoms(lowbandat1200cm−1)and

increasesthedisorder/numberofdefects(D/Grationotchanging much,butbandsgetsbroaderandweaker).

Next, theelectronicconductivities(Fig.4)of thecomposites SFG/LiCoO2, Ket/LiCoO2 and LiCoO2 were measured by

four-point probe method.We foundout twomain resultsfromthis

measurement.Oneisthattheelectronicconductivitiesofboth com-positesdecreaseuponball-milling.Secondisthatthecomposite ofKet/LiCoO2hasalowerelectronicconductivitythantheoneof

SFG/LiCoO2.Thisresultsupportsthedataofelectrochemistry(Fig.1

and2(a))andRamanspectrum(Fig.3);higherelectronic conduc-tivitiescomefromhigherintensitiesoforderedGband(I1580)than

disorderedDband(I1350)ofthecompositespreparedfor0 and

5minball-milling.Intheend,thecompositehavinghigher elec-tronicconductivityprovidessuperiorelectrochemicalproperties showninFig.1and2(a).Increasingtheball-millingtimeprovides more defectstructure inboth SFGand Ket. Astheintensity of orderedGband(I1580)indicatesthatSFGhasahigherintensitythan

KetinRamanspectrumshowninFig.3,thepristinestructureofSFG ismoreorderedthantheoneofKet.ThisRamandatasupportsthe higherelectronicconductivityofSFG/LiCoO2 compositethanthe

oneofKet/LiCoO2beforeandafter5minofball-millingshownin

Fig.4.However,thelongertheball-milling,themoredisorderedis thestructureincarbonandthelesselectronicallyconductiveisthe composite.

TheelectronicconductivityofinitialLiCoO2withoutball-milling

andcarbonwasmeasuredby4-pointprobemethodtobe3×10−3 S/m.Afterball-millingfor5, 30and 60min,theelectronic con-ductivitiesofLiCoO2 withoutcarbonwere2×10−3,6×10−3and

5×10−3 S/m, respectively. Thus, the electronic conductivity of LiCoO2didnotchangesignificantlyuponball-millingcomparedto

thecomposites.

Fig.4.Theelectronicconductivitiesofthecomposites,SFG/LiCoO2,Ket/LiCoO2and

LiCoO2withoutcarbonversusball-millingtime.

(4)

Fig.5. Theimagesofscanningelectronmicroscopyofthecompositematerials:(a)and(c)SFG/LiCoO2preparedbyball-millingfor0and5min,respectivelyand(b)and(d)

Ket/LiCoO2preparedbyball-millingfor0and5min,respectively.

Electrodesrequiretobeelectronicallyconductivetoproduce theelectrical energy while theredoxreaction involving transi-tionmetaloccurs.Alongball-milling,whichdecreasestheordered structureofcarbon,islessdesiredduetothedecreasingofthe elec-tronicconductivity.However,ball-millinginducesabettermixing ofthecompositeandimprovestheintimatecontactbetween car-bonandtheactivematerialasourpreviousstudiesshowed[22,23]. Therefore,weinvestigatedthemorphologiesofthosecomposites withelectronmicroscopies,usingSEMandTEM.

TheinitialshapeandsizeofSFG/LiCoO2andKet/LiCoO2before

ball-millingcanbeeasilydifferentiatedbySEM(Fig.5(a)and(b)). TheparticlesofKet(Fig.5(b))areratheragglomeratedatthe cor-nersoflargeLiCoO2particles.Afterball-millingofthecomposite,it

ishomogeneouslymixedandtheshapesofLiCoO2andcarbon

par-ticlesbecameirregularandlargeLiCoO2particlesarebrokendown

tosmallersizes(Fig.5(c)and(d)).Thus,theball-millingprocess brokethemicron-sizedlargeparticlesofLiCoO2andSFG.

Thedifferenceofshortandlongball-millingofLiCoO2without

carbonwasverifiedbySEM(Fig.S1).Alongerball-millingof30and 60mincreatesthesecondaryagglomerations(>10␮m)ofparticles, likelyduetolocalheating(theinsetimageofFig.S1(c)and(d))The SSAofLiCoO2andthecompositesofSFG/LiCoO2andKet/LiCoO2are

discussedbelow.WehaveverifiedthephaseofLiCoO2beforeand

afterballmillingbyXRD.Therewasnophasetransformationof LiCoO2andnoextraimpuritiescreatedbyballmilling(Fig.S2).

Tostudyinmoredetailthemorphologyofcarbonandthe sur-faceofcompositebeforeandafterball-milling,TEMimagesofthe compositesweretaken(Fig.6).The0minball-milledcomposites, Fig.6(a)hasratherseparatedparticlesofcarbonandLiCoO2.Fig.6

(b)showsthesurfaceofLiCoO2whichispartiallycoatedwithKet.

TheinterfacebetweenKetandLiCoO2particlesinFig.6(b)showsa

significantdifferencefromthehomogeneouslycoatedLiCoO2

par-ticlesinFig.6(d).The5minball-milledcomposites(Fig.6(c)and (d))haveahomogeneousdistributionofcarbonandLiCoO2

parti-cles.ThecarbonmaterialsofbothSFGandKetareattachedonthe particlesofLiCoO2.Particularly,Fig.6(d)showsahomogeneously

coatedthinlayerofcarbon(greyintheimage)onthesurfaceof LiCoO2(blackintheimage).The5-minball-millingprovidesthusa

closeandmorehomogenouscontactofcarbonwithLiCoO2.

How-ever,alongermillingleadstoadenseandthicklayerofcarbonon LiCoO2 particles,asshowninFig.6(e)and(f).Thiscarbonlayer

canpreventthediffusionoflithiumions.Inaddition,itprovided adecreaseofelectronicconductivitybycreatingadefectstructure ofcarbon.Asaresult,theelectrochemicalpropertiesofthe com-positespreparedfor30and60minball-millingwereinferiortothe onesofthecompositesat5minofball-millingasshowninFig.2.

Theelectrodesforlithiumionbatteriesmustbealsoionically conductivetoobtaintheinsertion/extractionreactionoflithium ions.Wethereforeinvestigatedthediffusionoflithiumionsinthe compositeelectrodes.Thelithiumiondiffusioncoefficients(DLi)

ofthecomposite electrodesweredetermined bycyclic voltam-mograms at various scan rates with using the Randles–Sevcik equationdescribedbelow:[19]

Ip=(2.69×105)n3/2AD1/2Li Cv1/2

whereIpisthepeakcurrent;nisthenumberoftransferelectrons; Aisthesurfaceareaoftheelectrode;Cistheconcentrationof reac-tants;andvisthescanrate.Fig.7showsoneexampleofthecyclic voltammogramsofSFG/LiCoO2compositepreparedbyball-milling

for5minatvariousscanratesinordertodeterminetheanodic cur-rentpeaks.Then,thegraphsofthesquarerootofthescanrate,mV

(5)

Fig.6. TheimagesoftransmissionelectronmicroscopyofSFG/LiCoO2(left-handsideimages)andKet/LiCoO2(right-handsideimages)compositepreparedbyball-milled

for0min(a)and(b),5min(c)and(d),and60min(e)and(f).

½S−1/2,versustheanodicpeakgivetheslopesofeachelectrode,as

shownintheinsetofFig.7.Theseslopesrepresentthesquareroot ofthelithiumiondiffusioncoefficientvalue,DLi.

Basedonthecalculationabove,Fig.8showsthelithiumion dif-fusioncoefficientsofthecomposites’electrodesversusthetimeof ball-milling.Thelithiumiondiffusioncoefficientsdecreasedwith theincrease ofball-millingtimeinboth compositematerialsof SFG/LiCoO2andKet/LiCoO2.Themainreasonofthismayberelated

tothedenseandthicklayerofcarbononLiCoO2preparedby

ball-millingfor30and60min,whichblocksthepenetrationoflithium ionsintotheparticleofLiCoO2asTEMimagesindicateinFig.6.On

theotherhand,the5minball-milledSFG/LiCoO2 composite

pro-videdhighestDLi among allthecomposites.Thisis becausethe

smallerparticlesizeofLiCoO2shortenedthediffusionpathlength

oflithiumionscomparedtotheinitialparticlesizeofLiCoO2.This

isconfirmedbythemeasurementofthespecificsurfacearea(SSA) ofLiCoO2,pristineandball-milledfor5min.TheSSAsofLiCoO2,

thecompositesofSFG/LiCoO2andKet/LiCoO2areshowninFig.9.

ItrevealedthattheSSAofLiCoO2increasedfrom0.52m2/g

(cor-respondingtoaparticlesizeof2.28␮m)ofthepristinematerialto 4.57m2/g(correspondingtoaparticlesizeof0.26␮m)after5min

ball-milling.Furtherball-milling(30min)stillincreasedtheSSAof LiCoO2,thusleadingtoyetsmallerparticlesizeofLiCoO2.However,

30and60minofball-millingproducedalsomoreagglomerated particlesof<10␮masshownintheinsertofFig.6(c)and(d). There-fore,theelectrochemicalpropertiesoflongerball-milledcomposite electrodeswereinferiortotheshortermillingbecauseofthedense carbonlayerandthedecreasedtheionicconductivityofthe com-posite.

According to Fick’s law, ion transport is governed by the distance;␶=L2/D,whereDistheiondiffusioncoefficient(the

diffu-sivity),Listhedistanceofdiffusionlength,and␶isthetimeforthe lithiumionsneededforthediffusiondistance.Thus,itisclearthat thesmallerparticlesizedLiCoO2hastheshorterdiffusionlength

forlithiumionscomparedtothelargerparticlesofLiCoO2within

acompositeelectrode.TheDLiofotherLiCoO2-carboncomposite

(6)

Fig.7.Cyclicvoltammogramcurvesatthescanratesfrom0.1to1mV/softheSFG/LiCoO2compositeelectrode.Thecompositeispreparedbyball-millingfor5min.The

insetfigure:TherelationshipbetweentheanodicpeakcurrentsandthesquarerootofthescanrateofSFG/LiCoO2withvariousball-millingtimeofthecomposite.

electrodesisreportedbetween10−13to10−7cm2S−1[24–29].The

largedifferenceofDLiisduetothedifferentformulausedfor

deter-miningthediffusioncoefficientsbydifferenttechniquesapplied. Insummary,weshowedthatthecharacteristicsofthe com-positeandthestructureofcarbonwerechangedviaball-milling.

Fig.8.ThediffusioncoefficientsoflithiumioninLiCoO2withSFGorKetdecrease

withincreasingthetimeofball-milling.

Fig.9.SSAsofthecomposites,SFG/LiCoO2andKet/LiCoO2andLiCoO2preparedby

ball-millingforvarioustime.

Thosecharacteristicsaffecttheelectrochemicalpropertiesofthe electrodes.Ashortball-millingimprovedtheelectrochemical prop-ertiesbasedontheshorterdiffusionpathlengthoflithiumions bybreakinglargeparticles,onthehomogeneouscarboncoating andontheintimatemixing,whileatthesametimekeepinghigh electronicconductivity.However,alongmillingtimeincreasesthe defectstructureofcarbon,decreasestheelectronicconductivity ofcomposite,leadstoathickcarbonlayerinthecompositeand degradesthustheelectrochemicalproperties.

4. Conclusions

Theelectronicandionicconductivitiesofthecathodedepend onthemorphologyofthecompositeinfluencedbythepreparation methodandtheinitialcharacteristicsofcarbon.Weapplieda ball-millingtopreparecompositesofdifferentcarbonsourcesandthe activematerialLiCoO2.Theball-millingchangesthecharacteristics

ofthecompositeasfollows;i)ashortball-milling(5min)improved thehomogeneityofthecompositeandprovidesintimatecontact ofcarbonandLiCoO2,whilealongball-millingleadstoathickand

densecarbonlayeronLiCoO2 particles;ii)theionicconductivity

improvedafterashortball-millingtimeduetothesmaller parti-clesizeofLiCoO2andimprovedtheelectrochemicalproperties,as

shownbythelithiumiondiffusioncoefficient;iii)thedisordered structureofSFGandKetincreaseduponball-milling,asobserved byRamanspectroscopy;andiv)alongtimeofball-milling(30and 60min)decreasedtheelectronicconductivityoftheformed com-posite,Therefore,theelectrochemicalpropertiesofthecathodeare affectedbythecharacteristicsofcathodecompositerelatedwith thetransportofelectronsandions.

Acknowledgement

ThisstudywassupportedbytheSwissNationalScience Founda-tion(NationalResearchProgram64),EKZ(Elektrizitätswerkedes KantonsZürich),theFriMat(theFribourgCenterforNanomaterials) andtheUniversityofFribourg.TheauthorsthankTimcal(Belgium) andAkzoNobel(Germany)forkindlyprovidingcarbonmaterials.

(7)

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound, intheonlineversion,

References

[1]S.Luo,K.Wang,J.Wang,K.Jiang,Q.Li,S.Fan,Adv.Mater.24(2012)2294–2298.

[2]X.Li,F.Cheng,B.Guo,J.Chen,J.Phys.Chem.B109(2005)14017–14024.

[3]F.Jiao,a.K.M.Shaju,P.G.Bruce,Angew.Chem.Int.Ed44(2005)6550–6553.

[4]Y.S.Jung,P.Lu,A.S.Cavanagh,C.Ban,G.-H.Kim,S.-H.Lee,S.M.George,S.J. Harris,A.C.Dillon,Adv.EnergyMater.3(2013)213–219.

[5]T.Wei,R.Zeng,Y.Sun,Y.Huang,K.Huang,Chem.Commun(2014).

[6]M.M.Thackeray,ProgSolidStateChem.25(1997)1–71.

[7]S.Jouanneau,K.W.Eberman,L.J.Krause,J.R.Dahn,J.Electrochem.Soc.150 (2003)A1637–A1642.

[8]T.Ohzuku,Y.Makimura,Chem.Lett(2001)744–745.

[9]A.K.Padhi,K.S.Nanjundaswamy,J.B.Goodenough,J.Electrochem.Soc.144 (1997)1188–1194.

[10]C.Delacourt,L.Laffont,R.Bouchet,C.Wurm,J.B.Leriche,M.Morcrette,J.M. Tarascon,C.Masquelier,J.Electrochem.Soc.152(2005)A913–A921.

[11]M.M.Doeff,J.D.Wilcox,R.Yu,A.Aumentado,M.Marcinek,R.Kostecki,J.Solid StateElectrochem12(2008)995–1001.

[12]L.Dai,D.W.Chang,J.-B.Baek,W.Lu,Small8(2012)1130–1166.

[13]M.E.Spahr,D.Goers,A.Leone,S.Stallone,E.Grivei,J.PowerSources196(2011) 3404–3413.

[14]J.-M.Chen,C.-H.Hsu,Y.-R.Lin,M.-H.Hsiao,G.T.-K.Fey,J.PowerSources184 (2008)498–502.

[15]K.Zaghib,J.Shim,A.Guerfi,P.Charest,K.A.Striebel,Electrochem.Solid-State Lett.8(2005)A207–A210.

[16]Z.Bakenov,I.Taniguchi,J.PowerSources195(2010)7445–7451.

[17]Y.Uno,K.Tachimori,T.Tsujikawa,T.Hirai,ECSTransactions25(2010)121–125.

[18]N.H.Kwon,SolidStateSci.21(2013)59–65.

[19]A.J.Bard,L.R.Faulkner,Electrochemicalmethods:Fundamentalsand Applica-tions,JohnWiley&Sons,INC,NewYork,2001.

[20]K.Kinoshita,Chemicalandsurfaceproperties,JohnWiley&Sons,Inc,United StatesofAmerica,1988.

[21]M.A.Pimenta,G.Dresselhaus,M.S.Dresselhaus,L.G.Canado,A.Jorio,R.Saito, Phys.Chem.Chem.Phys9(2007).

[22]N.-H.Kwon,K.M.Fromm,Electrochim.Acta69(2012)38–44.

[23]N.-H.Kwon,T.Drezen,I.Exnar,I.Teerlinck,M.Isono,M.Graetzel,Elecrochem SolidStateLett.9(2006)A277–A280.

[24]L.Sebastian,J.Gopalakrishnan,J.Mate.Chem.13(2003)433–441.

[25]K.Dokko,M.Mohamedi,Y.Fujita,T.Itoh,M.Nishizawa,M.Umeda,I.Uchida,J. Electrochem.Soc.148(2001)A422–A426.

[26]Y.H.Rho,K.Kanamura,J.Electrochem.Soc.159(2004)A1406–A1411.

[27]Y.-I.Jang,B.J.Neudecker,N.J.Dudney,Electrochem.Solid-StateLett.4(2001) A74–A77.

[28]H.Xia,L.Lu,G.Ceder,J.PowerSources159(2006)1422–1427.

[29]J.Xie,N.Imanishi,T.Matsumura,A.Hirano,Y.Takeda,O.Yamamoto,SolidState Ionics179(2008)362–370.

Figure

Fig. 1. The cyclic voltammograms of carbon/LiCoO 2 composite electrodes (a) with 10 wt% of SFG and (b) with 10 wt% of Ket prepared by ball-milling for 0, 5, 30 and 60 min.
Fig. 3. Raman spectrum of (a) SFG/LiCoO 2 and (b) Ket/LiCoO 2 composite prepared by ball-milling for various time.
Fig. 5. The images of scanning electron microscopy of the composite materials: (a) and (c) SFG/LiCoO 2 prepared by ball-milling for 0 and 5 min, respectively and (b) and (d) Ket/LiCoO 2 prepared by ball-milling for 0 and 5 min, respectively.
Fig. 6. The images of transmission electron microscopy of SFG/LiCoO 2 (left-hand side images) and Ket/LiCoO 2 (right-hand side images) composite prepared by ball-milled for 0 min (a) and (b), 5 min (c) and (d), and 60 min (e) and (f).
+2

Références

Documents relatifs

NIH-PA Author Manuscript.. Brohawn SG, Leksa NC, Spear ED, Rajashankar KR, Schwartz TU. Structural evidence for common ancestry of the nuclear pore complex and vesicle coats. Berke

This is the author’s peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.. PLEASE

The trans- ports of BC in the ERG simulated by the HYSPLIT model indicated that South Asia’s BC emissions in monsoon sea- sons dominated the varying trend of BC concentrations

The RECOVER:2010 project did not model every acidified freshwater ecosystem within Europe; rather the focus was on key regions and representative ecosystems where acidification

Ce à quoi l’on s’accorde tout de même, en général, c’est à les opposer catégoriquement à “l’art pour l’art” – l’art autonome – ou, plus récemment,

Within that theoretical scheme, which reproduces by construction the experimental energies of the main fragments in 37 S to 35 Si once full correlations are included, the

Principal components analysis (PCA) highlighted three multifactorial components distinguishing the various genotypes according to their behaviour to the disease. These components

Successful optimization of the gear problem using genetic algorithms resulted in a simple semi-major axis/eccentricity pair which, when used as the epoch elements