• Aucun résultat trouvé

Recovery of phenolics from apple peels using CO2+ethanol extraction: Kinetics and antioxidant activity of extracts

N/A
N/A
Protected

Academic year: 2022

Partager "Recovery of phenolics from apple peels using CO2+ethanol extraction: Kinetics and antioxidant activity of extracts"

Copied!
11
0
0

Texte intégral

(1)

ContentslistsavailableatScienceDirect

The Journal of Supercritical Fluids

jou rn al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / s u p f l u

Recovery of phenolics from apple peels using CO 2 + ethanol extraction: Kinetics and antioxidant activity of extracts

Audrey Massias

a,b

, Séverine Boisard

c

, Michel Baccaunaud

a

, Fernando Leal Calderon

b

, Pascale Subra-Paternault

b,∗

aAgrotec,sited’Agropole,BP102,47931AgenCedex9,France

bCBMNUMRCNRS5248,UniversitéBordeaux,IPB,AlléeGeoffroySaintHilaire,Bat.14B,33600Pessac,France

cEA921SONAS/SFR4207QUASAV,Universitéd’Angers,16BoulevardDaviers,49045AngersCedex01,France

a r t i c l e i n f o

Articlehistory:

Received15September2014 Receivedinrevisedform 10December2014 Accepted10December2014 Availableonline18December2014

Keywords:

Applepeel Phenolics

Supercriticalextraction Antioxidant

a b s t r a c t

Subcritical extraction (SFE) of dry and ground Golden delicious peels (30g) was investigated at 25MPaand 50C usingCO2 and ethanol (96%)in 75:25mol ratio.As forconventional ethanolor methanol/acetone/waterextraction,ninephenolicswereidentifiedinSFE-extractsincludingthesugar- basedphloridzinandquercetinderivatives.Extractionkineticsoftheninephenolicsandoftheglobal yieldweremonitoredviacollectionoffractionsthatwerealsocharacterizedfortheirantioxidantactivity (ABTSantiradicalactivity).Kineticsshowedaconstantextractionrateupto1.1kgoffluidandadecreasing rateafterwards,butthematrixwasnotexhaustedafter3hofextraction.Besidestheclassicalcontin- uousflowprotocol,SFEwasperformedbyintroducingstaticperiodsbetweenthedynamiccollectof fractions.Staticperiodsdidnotyieldsignificantimprovementintheoverallyieldandintheindividual yieldofmostphenolics.Increasingthematrixloadingdidnotimprovetherecoveryeither.Conversely, extractionsfrom15gprovidedthehighestphenolicsyieldof800mg/100gdrypeels.Forextractstestedfor antioxidantcapacity(30gloading),valuesupto5–6mgEquivalentAscorbicAcid/gextractwereobtained.

Activitieswerepositivelycorrelatedwithphenolicsconcentrationinfractionsonlyforstaticconditions.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Adietrichin freshvegetablesand fruitsis generallyrecom- mendedforahealthylifestylebecausetheyconstituteimportant sourcesofnutrients[1]likeantioxidants[2],phytosterols[3]and fibre[4].Transformationofarawmaterialtofoodstuffcreatesa

‘waste’thatcomprisesaswelltheediblefoodmassthatislost,dis- carded,ordegradedinthedifferentstagesofthefoodsupplychain.

Otherremnantsarepeels,stems,cores,skins,seeds,husks,branor strawfromcereals,fishskin,headandbones,millwastewaters,etc.

Food‘wastes’havelongbeenconsideredasundesirablematerials thatweredisposedof,incostlymanners,viaanimalfeed,landfill orincineration,butnowadays,theyareconsideredaspromising sourcesofvaluablenutraceuticals[1,5].

Applesareoneofthemostconsumedfruitsworldwideandare amongthemajorsourcesofphytochemicalsandantioxidantsin thehumandiet.Approximately70milliontonnesofapplesarepro- ducedworldwide(http://www.wapa-association.org).Applefruits

Correspondingauthor.Tel.:+330540006832.

E-mailaddress:subra@enscbp.fr(P.Subra-Paternault).

haveavariedandwell-balancedcompositionwithalargediver- sityofvitamins,ahighcontentoffibrescomparedtootherfruits andaremoderatelyenergeticintermsofcaloricintake[6,7].Pre- ventionofvariouschronicdiseaseshasbeenassociatedwithapple consumption[8],inparticularcardiovasculardisease,inrelation withthemainbioactivecompoundsofapples,namelyfibreand polyphenols[9].Applescontainover60differentphenolic com- pounds[8].Thefourmajorphenolicgroupsarehydroxycinnamic acids(withchlorogenicacidasthemostabundantrepresentative), dihydrochalcone derivatives (specially phloridzin), flavan-3-ols (catechinasmonomersorprocyanidinsasoligomers)andflavonols (quercetinandquercetinglycosides)[10,11].Thedistributionand concentrationofpolyphenolsvarygreatlyamongapplecultivars (rangeof68–165mg/100gedibleportion[6])andwithintheapple fruit.Apple peelshavehigher levelsoftotal polyphenoliccom- pounds than flesh or core and concentrate specially quercetin glycosides,chlorogenicacidandphloridzin[11–15].Asexample, foreightapplecultivars,thetotalpolyphenolicsrangedfrom1.0 to2.3mg/goffreshweightinthepeel,tobecomparedwiththe 0.33–0.93mg/gof freshweightin flesh[13].Additionally, apple peelspolyphenolswereshowntohavebeneficialactionsonoxida- tivestressandinflammation[16].

http://dx.doi.org/10.1016/j.supflu.2014.12.007 0896-8446/©2014ElsevierB.V.Allrightsreserved.

(2)

InFrance,anaverageof20kgofapplespercapitaareconsumed [17]correspondingtoa20.4%marketshare,farmoreimportant thanthatofthesecondmostconsumedfruits,bananas(14%)and oranges(12%).AppleisthelargestfruitproducedinFrancewith 1.5milliontonnesin2013.Around30%oftheproductionistrans- formedinjuices,compotes,concentrates,generatinglargevolumes ofwastesincludingpeels.

Inthiswork,theuseofcompressedCO2 torecoverphenolic componentsfromapplepeelwasinvestigated. Sub-and super- criticalextractionoffunctionalingredientsfromnaturalsources wasreviewedbyHerreroin2006[18],whereasDiaz-Reinoso[19]

focusedoncompoundswithantioxidantactivitiesandMarostica [20]onphenolicsfromplantmaterials.Since2006,morethan70 papersabout‘polyphenols’and‘supercriticalextraction’havebeen published(scopussource).Withspecialmentiontofoodwastes, grape residues produced by thewine or distilling industry are amongthemostlargelystudiedby-products.Residuescomprised grapeskinorseeds[21,22],bagasse[23],marc[24,25]orpomace [26,27].As for otherby-products, colouring anthocyaninswere extractedfromeggplantpeels[28],phenolicantioxidantsfromsev- eralberriespressingwastes[29]oroilcontainingphenolicsfrom cherrykernels[30]orgrapeseeds[31].Fruitspulporleaveswere investigatedaswell,inparticularsweetcherries[32],jamunfruits [33],pitangaleaves[34]andarrabidaechicaleaves[35],forthe mostrecent studies.Tothebestofourknowledge,supercritical extractionfromappleswasonlyreportedonce[36].Theby-product wastheapplepomace,i.e.skinandpulpresiduesremainingafter pressing the fruits for juice production. One gram of pomace was extracted by CO2+ethanol (14–20%) for 10–40min vary- ing pressure (20–60MPa) and temperature (40–60C). Extracts werecharacterizedforthetotalphenoliccontentandantioxidant activity,butnoidentificationandquantificationoftheextracted phenolicspecieswerereported.

The aim of this work was to evaluate the potentialities of supercriticaltechnologytoextractphenoliccompoundsfromapple peels,focusingonthreeissues:

(1)Identificationandquantificationoftheextractedpolyphenols.

(2)Monitoringtheextractionkineticsofpolyphenolsandofthe totalextractedamount.

(3)Studyingtheimpactof processconditionsontokineticsand yields(implementationofstaticstepsduringextraction,varia- tionoftheamountofmatrixloadedinthevessel).

Inthiswork,dryapplepeelswereextractedbyCO2+25%mol cosolvent(ethanolat96%)at25MPaand50Cduring3h.Beingan apolarfluid,CO2hasalimitedcapacityfordissolvingpolypheno- licssoethanolisrequiredascosolventtoovercomethislimitation [37–39].Theuseofhighproportionofethanolwasjustifiedbythe factthatphloridzinandquercetinglycosides,abundantinapple peels,containa sugar moietythat is toopolartobesoluble in neatCO2.Theselectedtemperatureandpressureareintherange ofthoseusedforsupercriticalextractionofphenoliccompounds [20]andmoderatetemperatureandhighpressurearegenerally associatedwithlowthermaldegradationandhighsolubility.Due tothe25%ofcosolvent,extractionswereperformedinsubcriti- calconditionssince50Cisbelowthecriticaltemperatureofthat CO2+cosolventmixture[36].Duringtheextractioncourse,frac- tionswereregularlycollectedinordertodescribeaccuratelythe extractionkinetics and possibly fractionate the phenolics pool.

Extractswerecharacterizedintermsofglobalyield,phenoliccom- positionandantioxidantactivity.Anewprocedureofextraction thatalternatedstaticanddynamicperiodswasalsoinvestigated withtheaimofgivinglongertimeformasstransferanddiffusion tooccur.

2. Materialsandmethods

2.1. Applepeelpreparationandchemicals

Golden delicious apples were purchased from a local con- ventional orchardand werestored at 1C. Apples werepeeled mechanically(Kali,France)andtheobtainedpeelswereimmedi- atelypackedintopolyethylenebagsandfrozenat−18Cfor24h.

Sampleswerethenfreeze-driedduring48h(HetoLabEquipment, HetoFD2.5,Denmark)andwerefurtherstoredinthedarkunder vacuumatroomtemperature.Themoisturecontentofthedried applepeelswasmeasuredbyweightlossat68Cinovenunder vacuum(Multilab20,LeMatérielPhysico-Chimique,France)and wasintherangeof5–7%. Forextractions,thedriedapplepeels weregroundusingakitchen-typegrinder(Moulinex,France).The obtainedgroundmaterialwasnotsievedsothesamplesconsisted ingrainsofvarioussizesbelow1mm.

Carbondioxide(CO2,99.5wt.%,AirLiquide,France)andethanol (EtOH,96%,Xylab,France)wereusedforsupercriticalextractions.

SolventsforliquidchromatographywereofHPLCgrade(acetoni- trile,99.98%;aceticacid,99.5%)andwerepurchasedfromFisher Chemicaland AcrosOrganics,respectively. Severalstandardsof polyphenols(HPLC-grade,purityhigherthan97%)werepurchased fromSigma–AldrichandExtrasynthese(France):(+)-catechin,(−)- epicatechin,phloridzin,chlorogenicacid,quercetin-3-d-glucoside, quercitrin(quercetin-3-O-arabinoside),hyperoside(quercetin-3- O-galactoside).

2.2. Supercriticalfluidextraction

Extractionswereperformedusingahome-madesystemwhich consistsof anextractor vesselof490cm3 (lengthof 25cm and innerdiameterof5cm)heatedbyheatingmantle(Watlow)and twoGilsonpumpsforfluidsadmission(model305,headsof25SC and10SCforCO2andcosolvent,respectively).TheCO2andcosol- ventflow rateswerecheckedbya gas-meterandthecosolvent volumeconsumptionovertime,respectively.Multiplestopvalves (AutoclaveFrance)enabletobypasstheextractortostabilizethe extractingflux,andameteringvalveisusedtocontroltheover- all flow rate. The set-up comprises a pre-cooling unit (Julabo, Germany)forCO2,apre-heatercartridge(TOPIndustrie,France), areliefvalveandvariouspressureandtemperaturesensors.The extractionswereperformedat50Cand25MPawhichiscloseto thepressurelimitoftheequipment.Theextractorwasfilledwith aweightedamountofdriedapplepeels,usingalternatedbedsof matrixand glassbeadsof2mmtoavoid caking.Theextracting CO2+cosolventmixturecirculatedfrombottomtotop.Dissolved specieswererecoveredinahome-madecycloniccollectorwhose bottomwasplungediniceandthatoperatedatatmosphericpres- sure.Fractionationofextractswasperformedbychangingregularly thecollectorbottom.

Extractionswerecarriedoutfollowingtwoprocedures.Ascom- monsteps,thevesselwaschargedwiththematrix,heated,and pressurizedwithCO2upto25MPa.Astaticperiodof20–30min wasappliedbeforestartingtheextractionbyactivatingtheCO2 andcosolventpumps.Thefirstfractionwascollecteduntilacon- tinuousflowofethanolappearedinthecollector,typicallyafter 20–25min,foranoverallCO2/EtOHflowof10g/min.Thisfraction, labelledF0,correspondstotheethanolbreakthroughandcontains mostlythematterthatwassolubilizedduringthestaticperiodin neatCO2.Intheso-calleddynamicprocedure,theextractioncon- tinuedwithregularcollectsofextractsevery20min,i.e.forone breakthrough time,over 200min.Theextractor wassometimes subjectedto10minofstaticstepwhenrecoveringF0andF1in ordertowashthecollector.After200min,thecosolventpumpwas stoppedandneatCO2wasusedtoflushthematrixfromethanol

(3)

untilnosolventtracesweredetectedattheseparatorentrance,typ- icallyafter1h.Inthesecondprocedure,called‘static’,astaticperiod wasintroducedbeforecollectingeachfraction,i.e.attheendofa 20mindynamiccollection,thevesselwasisolatedandthefluxwas stoppedfor30min.Thestatic/dynamicalternationwascarriedout for4×20min,beforestoppingtheethanolflowandflushingthe matrixwithpureCO2asinthedynamicprocedure.Extractionsby thetwoprocedureswererepeatedtwicetocheckreproducibility.

Thecollectedfractionswereanalyzedfortotalmassbygravime- try after evaporating ethanol under nitrogen flux. The total extracted mass was determined from the sum of the fraction masses collectedover theextraction time. Fractions wereana- lyzed for antioxidant activity via the Ascorbic Acid Equivalent AntioxidantCapacity(AAEAC)method.Phenolicswereidentified andquantified byliquid chromatography(HPLC). In Tables,the amountsofphenolics orofglobalextractsare expressedin mg orgper100gdrypeels,inwhichthesubscript‘drypeels’designates thelyophilizedapplepeelscontaining5–7wt%moisture.Infigures, kineticsdataaregivenascumulatedamountasafunctionofthe massofextractingfluid.Thelattervariablewaspreferredtotime sincetheamountoffluidusedtocollectafractionwasthesame whateverthenumberanddurationofstaticperiods.

2.3. Conventionalsolventextraction

Conventionalextractions were carried out on dry peels fol- lowing two different methods. In the first one, derived from Colin-Henrion [11] and named hereafter MeOH/Acetone, peels werefirstmixedwithmethanol(14mLfor0.6g).Afterfiltration undervacuum,peelswerere-suspendedinanacetone:watermix- ture70:30v:v(8mL)andfiltratedagain.Thetworesultingextracts werecombinedanddriedusingarotaryevaporatorundervacuum at30C.Thefinalconcentratewasredissolvedin10mLmethanol forHPLCanalysis.Inthesecondmethod,peelsweremaceratedin ethanol(EtOH96%)at45Cfor3hundermagneticstirring(100mL ofsolventper10gofpeels).Macerationwasperformedforthesake ofcomparisonwithsupercriticalextractionsandwasthuscarried outwithavolumeofethanolidenticaltothatpassedwith1.1kgof {CO2+ethanol}mixture.Thesupernatantwasrecoveredbyfiltra- tionundervacuumanddirectlyinjectedinHPLC.

2.4. Analyticalmethods

Identification of polyphenols was performed by coupling chromatographicseparationandphotodiodearrayormassspec- trometry detectors [40]. Analytical HPLC was run on a 2695 Waters (Guyancourt,France) separation module equippedwith a diode array detector 2996 Waters. Separation was achieved on a Phenomenex (Le Pecq, France) Luna column 100 C18 (250mm×4.6mmi.d.,5␮m)protectedwithaPhenomenexcar- tridge(C18,4mm×3mmi.d.)atatemperatureof30C.Themobile phaseconsistedof0.1%formicacidinwater(eluentA)andace- tonitrile(eluentB)andtheseparationwasperformedusingthe followinggradient:4–10%B(0–5min),10–45%B(5–40min),ata flowrateof1mL/min.Injectionvolumewas10␮LandUVdetection wasstudiedattwowavelengths:280and350nm.TheMSanalyses wereperformedonaBruker(Bremen,Germany)ESI/APCIion-trap Esquire3000+innegativemode,withthefollowingconditions:

collisiongas,He;collisionenergyamplitude,1.3V;nebulizerand dryinggas,N2,7L/min;pressureofnebulizergas,30psi;drytem- perature,340C;flowrate,1.0mL/min;solventsplitratio1:9;scan range,m/z100–1000.Identificationofpolyphenolswasachieved bycomparisonofUVprofilesandmassspectrawithliteraturedata and/orusingpurestandards.

Routineanalysis of produced extracts was performed using anAccelaHPLCsystem(ThermoScientific,USA)consistingofan

Accela1250pumpwithadegasser,anautosampler,andaphoto- diodearraydetector.AC18pyramidcolumn(250mm×4.6mm, 5␮mparticlesize;Macherey-Nagel, France)wasusedforchro- matographicseparationsat30C.Amobilephaseconstitutedby aceticacid(distilledwater:aceticacid97.5:2.5(v/v),eluentA)and acetonitrile(eluent B) was used witha discontinuousgradient of3–9%B(0–5min),9–16%B(5–15min),16–33%B(15–30min), 33–50%B(30–37min), 50–90%B(37–40min),at aflow rateof 1ml/min. Injection volume was 10␮L. Quantification was per- formedviacalibrationcurvesthatplotthepeakareaversusknown concentrationsofstandardsintherangeof0.05–1mg/mL.Calibra- tioncurvesderivedfor6dataminimumweresatisfactorilyfitted with linear regression equation (correlation coefficients larger than0.997).Standardsofcatechin,epicatechin,phloridzin,chloro- genicacid,andseveralquercetinderivatives(quercetin-glucoside, -arabinoside,-galactoside)wereusedforquantification.Quercetin xyloside and quercetin rhamnoside were quantified using the quercetin-arabinoside calibration curve, so data are expressed asarabinosideequivalent(mgEq.Arabi).Quantificationwasper- formedat=360nmforquercetinderivativesand=280nmfor otherphenolics.

Thedeterminationoftheextractsantioxidantcapacity(AAEAC) isbasedontheabilityofantioxidantstoscavengetheradicalcation of ABTS (2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonate).The methodologyhereemployedfollowedthatdescribedbyReetal.

[41]withsomemodifications.Briefly,ABTSradicalcation(ABTS+) was produced by reacting 7mmol/L ABTS stock solution with 140mmol/L manganese dioxide (MnO2) in dark at room tem- peraturefor12h.TheABTS+ solutionwasdilutedwithdistilled watertoanabsorbanceof0.70±0.02at=734nm.Aftertheaddi- tionof40␮Lofthesampletoanalyzeto1960␮Lofthediluted ABTS+solution,absorbancereadingsweretakenevery1minusing Helios␥spectrophotometer(ThermoElectronCorporation,USA).l- Ascorbicacid(AA,Sigma–Aldrich,USA)wasusedasreference.The percentageinhibitionofabsorbanceat734nmwascalculatedasa functionoftheconcentrationofextractsandascorbicacid.Results wereexpressedasmgofascorbicacidpergofextract.

3. Resultsanddiscussion

3.1. Polyphenolprofileofapplepeelsextracts

Chromatograms of apple peel extracts obtained by CO2+25%EtOHextractionaregiveninFig.1.

HPLC analysisof extractsobtained by EtOHmaceration and MeOH/Acetone extractionareprovided as wellfor comparison.

PhenolicswereidentifiedbyUVspectra/massspectrometrydata and/or comparison with retention time of standards (Table1).

Whatevertheextract,theidentifiedphenolicswerecatechin,epi- catechin, chlorogenic acid, phloridzin and quercetin glycosides (quercetin-3-O-glucoside, -galactoside, -arabinoside,-xyloside,- rhamnoside)whicharethemajorphenolicsofapples[11,16,42].

ItisworthwhilenotingthatHPLCprofilesofsupercriticalextracts exhibitedallpeaksofphenolicsindicatingthattheconditionswere suitabletoextracteventhesugar-basedphloridzinandquercetin glycosides.

3.2. Supercriticalextraction:staticversusdynamicprocedure ExtractionswithCO2+EtOHmixturewerecarriedoutbytwo methods,aconventionaldynamicandastepwiseprocedurethat involvedstaticperiodsbetweencollectingfractions.Theevolution oftheextractedamountineachfractionisillustratedFig.2forthe staticprocedure.TheF0 fractionrarelycontainedanyphenolics sinceitcollectedwhatwassolubilizedduringthestaticperiodin

(4)

Fig. 1.Phenolic profiles at =280nm of varioussamples: (A) SFE staticon 30g-loading,fractionF3; (B) SFEdynamic30g-loading,fractionF3; (C)EtOH maceration; (D) MeOH/acetone extraction. Peakattribution: (1) catechin; (2) chlorogenicacid; (3) epicatechin; (4) quercetin-3-O-glucoside; (5) quercetin- 3-O-galactoside; (6)quercetin-3-O-arabinoside;(7)quercetin-3-O-xyloside;(8) quercetin-3-O-rhamnoside;(9)phloridzin.

neatCO2.AllphenolicswereusuallypresentintheF1fractionindi- catingthatallcomponentswerereadilyaccessibleintheground applepeelsmatrix.TheirconcentrationincreaseduptoF2orF3 beforedecreasinginF4andeventuallybeingconstantwhenextrac- tionwascontinuedfor longerdurationas inthedynamic case.

CumulateddataaregiveninFig.3withdeviationbarsprovided byduplicationofextractionexperiments.

Thereproducibilitywascriticalindynamicconditionsforcat- echin, chlorogenic acid, quercetin-glucoside and -rhamnoside.

Catechinand chlorogenicacidareeluted inchromatography as smallpeaksamongotherpeaks,whichcouldcomplicatedetection

Fig.2.AmountofeachphenolicinfractionscollectedduringSFEat25MPa,50C, andCO2+25%cosolvent(EtOH96%),staticprocedure,from30gofgroundapple peels,Ftotal=9.7±0.8g/min.E13labelisthesamplereferenceinourdatabase.

andthereforethequantificationincomplexextracts.Forchloro- genicacid[11,43,44]andcatechin[45],theirsusceptibilitytothe polyphenoloxidaseenzymecouldintroduceanadditionalsource ofdeviation.Noneofthehypothesisholdsforthetwoquercetin- derivatives.Besides,theextracting fluidis a ternarymixtureof CO2/ethanol/water,whosecomponentscanabsorbseparatelyand differentlyontothesolidmatrixandinducethereforeadifferent partitioningofextractablespeciesbetweenthesolidandthefluid phasesalongtheextractorbed.Lookingcloserattheamountcol- lectedin eachindividualfraction, themaindeviations occurred infractions F1and F2,i.e. collectingwhat waselutedbya vol- umeoffluidcorrespondingtotwicetheethanolbreakthrough.The permanentregimeofflowandofthecomplexfluidcomposition mightbenotyetattained. Whentime wasgivenforconditions tosettleviastaticperiods,reproducibilitywasbetter.Regarding nowtheextractionprofiles,thecurvesshapewassimilarwhat- everthecompoundandproceededmostlyataconstantextraction rateupto1.1kgfluid. Notethat thelastpoint ofcurves corre- spondstothefractionobtainedduringthefinalflush withpure CO2,sothestrongerapparentfallingratediscernableattheend ofcurvesismorelikelyduetopoorersolubilizationratherthan tomatrixexhaustion.Therefore,theextractionofphenolicswas notfinishedafter2kgoffluid,i.e.afterafluid/matrixratioof67.

ThisisconsistentwithHasbayAdilresultsonapplepomacethat reportedthatavalueof80goffluid/gofmatrixwasnecessaryto reachaplateauonthetotalphenolicsextractioncurve[36].Taking reproducibilitydeviationsintoaccount,theintroductionofstatic periodsbetweenthedynamiccollectionsdidnotyieldappreciable improvementoftheextractedrate,exceptedforphloridzin.Static periodswereinvestigatedasawaytogivemoretimeforspecies todiffusewithinthepeelstructure,thematerialgrainsorinthe extractingfluid.Aninsignificantimpactindicatedthatmasstrans- ferwasnotasignificantlimitingmechanismfortheextractionof mostphenolics.

Cumulated amounts of phenolics extracted at 1.1kg of fluid from the 30g-loading are summarized in Table 2. For

Table1

PhenolicsidentifiedfromapplepeelsbydiodearrayandmassspectroscopydetectorscoupledtoHPLCseparation.tR:retentiontime,max:wavelengthofmaximalabsorption, [M−H]:ionandfragmentinmassspectrometry,Mw:molecularweight.

Compounds tR(min) UVmax(nm) [M−H](m/z) Mw(g/mol)

Catechin(1) 14.40 280 nd 290

Chlorogenicacid(2) 15.37 298,325 353 354

Epicatechin(3) 17.29 280 289 290

Quercetin-3-O-glucoside(4) 22.50 256,355 463,frag301 464

Quercetin-3-O-galactoside(5) 22.76 256,355 463,frag301 464

Quercetin-3-O-arabinoside(6) 23.89 256,355 433,frag301 434

Quercetin-3-O-xyloside(7) 24.85 256,354 433 434

Quercetin-3-O-rhamnoside(8) 25.29 256,350 447,frag301 448

Phloridzin(9) 27.00 284 435,frag273 436

nd:notdetected.

(5)

Fig.3.Cumulatedamounts(inmg)ofphenolicsobtainedbySFEusingthedynamic(darksymbols)orthestatic(opensymbols)procedurefrom30gofgroundapplepeels.

Amountsofquercetin3-xylosideand3-rhamnosideareexpressedasequivalentquercetin3-arabinoside.

comparison with other extraction methods or literature, data are given for 100g of matrix. By the supercritical tech- nique, extracted amounts of phenolics were in the range 600mg/100gdrypeel in which quercetin glycosides grouprepre- sented77–78%.As individualcompounds,catechin, chlorogenic acid, phloridzin, quercetin-galactoside were extracted in the rangeof6–36mg/100gdrypeelwhereasepicatechinandtheother quercetinderivativeswerearound55–140mg/100gdrypeel.Com- pared to ethanol maceration, the ethanol+CO2 combination enhanced the extraction of all phenolics (except chlorogenic

acid),atrendthatwasevidencedaswellbyFarias-Compomanes et al. in case of grape bagasse extraction [23]. Total phenolics yield in the macerated sample was of 177mg/100gdrypeel and the glycosides-derivatives accounted for only 50% of the total.

Whenextractedwithmethanol/acetone/water,polyphenolstotal- ized792mg/100gdrypeelinwhichthepoolofquercetinglycosides accounted for 50%and chlorogenic acidfor 40%. Abundance of chlorogenic acid and quercetin-derivatives especially of galac- tosidemoiety was reportedin literature for Golden freshpeels extractedbymethanol[13],butepicatechinandphloridzinwere

(6)

Table2

Conditionsofextractionsandyieldofphenoliccompoundsextracted.EtOH:ethanol,MeOH:methanol,Ace:acetone;SFE:subcriticalfluidextraction.

Method SFEstatic-30g SFEdynamic-30g SFE-15gc Maceration Solvent

Solvent(mol) CO2:EtOH:H2O75:22:3 CO2:EtOH:H2O75:22:3 CO2:EtOH:H2O75:22:3 EtOH:H2O88:12 MeOH+Ace/H2O

Solvent/peelsratio(wtbasis)a 37 37 73 8 30

T/P 50C/25MPa 50C/25MPa 50C/25MPa 45C/0.1MPa 20C/0.1MPa

Globalyielda(g/100gdry peel)d

15.8±0.2 22.0±0.7 30.1±7 65±2 3.2

Phenolicsyielda(mg/100gdrypeeld)

Totalphenolics 550±115 603±182 800±25 177±32 792±26

Catechin 11.4±2.3 6.0±6.0 27.0±3.1 0 25.7±0.2

Chlorogenicacid 16.4±4.5 36.2±23.0 12.8±3.1 58.3±11.8 319.7±18.0

Epicatechin 71.6±3.4 78.7±11.4 118.3±4.8 28.5±4.6 43.5±1.9

Phloridzin 21.5±3.0 13.2±3.0 21.7±0.3 2.3±0.28 15.3±0.5

Quercetin-3-glucoside 81.2±23.0 113.7±60.4 147.1±4.5 26.1±4.9 86.6±2.3

Quercetin-3-galactoside 26.5±10.4 21.2±5.7 43.7±2.0 3.7±0.05 97.1±1.7

Quercetin-3-arabinoside 67.6±8.3 54.6±5.7 110.1±1.2 35.0±6.0 49.1±1.9

Quercetin-3-xylosideb 144.5±27.5 139.8±14.2 183.5±4.6 9.6±2.8 69.8±2.6

Quercetin-3-rhamnosideb 109.3±32.8 134.2±46.4 135.6±1.4 13.6±2.0 85.6±13.6

Totalphenolicsconcentration (gphenolics/kgextract)

34.7 27.4 26.7 2.5 247

a1.1kgofextractingfluidforsupercriticalextractions.

bExpressedasequivalentquercetin3-arabinoside.

c Datacorrespondtomeanvaluesbetweenstaticanddynamicresultssincetheyweresimilar.

d Drypeel=lyophilizedpeelsthatstillcontain5–7%humidity.

less abundant in oursample than usually reported [46–49]. In otherhand,compositionandconcentrationofphenolicsinfruits varywithfruitstype,growingseason,geographiclocation,genetic variation[48,50,51]andconditionsofextraction(sampletosol- vent ratio, time of exposure, temperature, etc.) influence the quantificationas well[52].Theparticularabundanceof chloro- genicacidinourextractpreparedbythemethanol/acetone/water methodcouldalsocomefromtheuseofacetonethatbyinhibit- ingthepolyphenoloxidaseenzymepreservestheoriginalcontent of the fruit [6]. Regarding quercetin-derivatives presence, the sum of total phenolics quantified by HPLC from a Gala apple pomace extracted by acetone/water, was 7.24g/kg dry matter, of which more than 50% was quercetin glycosides [42]. The quercetin-derivatives pool also represented the main phenolic constituents of methanol/waterextracts from 7 applevarieties peels,witha contentin therange of0.1–0.9g/kgfreshweight, which taking in account the peel humidity, corresponded to 40–360mg/100gofdrymatter[12].Thelevelofquercetinglyco- sidesinourvariousextractsandtheirhighcontributiontothetotal extractedphenolic pool are thereforeconsistentwithliterature data.

Regarding consistency with the only study of supercritical extractionfromapple[36],letfirstremindthatindividualpheno- licconcentrationswerenotmeasuredbyHPLCandthatthetotal phenoliccontentwasestimatedbytheFolin–Ciocalteumethod.

Expressed as gallic acid equivalent (GAE), contents of 171mg GAE/100g sample and 47mg GAE/100g sample was reported for ethanol and (CO2+20wt% EtOH) extractions, respectively, which is an opposite trend toour own findings. However,the Folin–Ciocalteureagentdoesnotonlymeasurephenolsandreact withanyreducingsubstance.Itthereforemeasuresthetotalreduc- ingcapacity ofa sample,not justphenolic compounds.Besides phenols,nitrogen-containingcompounds,triosesglyceraldehyde, vitaminderivativesorproteinsarereactivetowardsthisreagent [53]. For applepurees and juice, the contributionof the inter- feringsubstances canbebetween31%and 48%[36]. Moreover, HasbayHadilinvestigations[36]werecarriedoutonapplepomace (flesh+skin residues after pressing) from Starking and Amasya applevarieties,whereasourownstudyisperformedonfreshskin solelyandGoldenDeliciousvariety,twodifferencesthatinducefluc- tuationsinquantityofantioxidants[48].

Fig.4.GlobalamountsofextractsobtainedbySFEusingthedynamic(darksymbols) orthestatic(opensymbols)procedureon30gofgroundapplepeels.Deviationbars forthestaticcasearetoosmalltobeviewed.

Regardingglobalyields(Fig.4,Table2),theoverallextracted amountswereintherange ofgram,andtheextractionprofiles exhibited,asphenolics,alinearpartupto1.1kgoffluid.

Whentheprocesswasrunabove1.1kgfluidasfordynamic case,theextractioncontinuedatalowerrate.Itisinterestingto notethatthisfallingextractionrateoccursatthesamefluidcon- sumptionthantheonereportedbyFarias-Campomanes[23]for similarmatrixamountandvesselcapacity(20gofgrapebagasse, 415cm3 vessel).Theintroductionofstaticperiodsyieldsaslight decreaseoftheglobalextractedamount,intherangeof1.5gat 1.1kgof fluid (reproducibilitybars forstatic conditionsare too smalltoappearinthegraph).Inotherwords,givingtimefordif- fusionpenalizedtheoverallextractionwhereasithadalmostno impactforphenolics,maybebecausetheycontributedforonlyfew percentilestotheextract(seebelow).Lessextractedamountin case ofstaticperiodmeansa smallertransported concentration throughthebed.Thoughnotverypronounced,thebehavioursug- gestscompetitivereactionstoextraction,suchasdegradationof extractablespeciesinlesssolublecompoundsorare-absorptionof theextractablespecies.Becauseofthecomplexityoftheextracting mixture(CO2:77mol%,ethanol:22mol%,water:3mol%),thefluid componentscanabsorbseparatelyandindifferentextendontothe solidmatrix,inducingadifferentpartitioningofextractablespecies betweenthesolidandthefluidphasesovertheextractionduration.

Whenexperimentswerecarriedoutinadynamicmode,therewas

(7)

Fig.5.EffectofthematrixloadingsontheglobalamountobtainedbySFEusing dynamicorstaticprocedure(15g,30gand55gofgroundapplepeels).

notenoughtimeforthecompetitiveredistributionordegradation tooccur,soextractableswereextracted.

Asmentionedbefore,therangeofextractedamountsofphen- olicsand global extractsis very different.More precisely, with valuesof27–35g/kgofextractat1.1kgoffluid(Table2),phenolics representonly3%oftheglobalextract.Althoughthequantifica- tiontookonlyinaccounttheidentifiedcompounds,thedifference istoolargetocomefromnon-identifiedpolyphenolssolely.The presenceofother compoundsinextractsis inherentoftheuse ofethanolthatis farfromselective.Similarrangevaryingfrom gramtotenofgramsperkgofextractwasreportedinliterature indicatingasubstantialextractionofmultiplecomponentsbesides thephenolicswhateverthematrix studied[23,29,32].Generally speaking,polyphenolsaresecondarymetabolitesofplantssothey arepresentatamuchlowerlevelthanconstitutivemoleculesof cellslikelipids,proteins,carbohydrates,and,asminorcompounds, minerals and vitamins. Among possible extracted components, lipidsand carbohydratesare potentialcandidatesalthough one cannotdiscardapossibleextractionbyleachingofanymolecules.

Lipids,including phospholipidsare wellextracted byCO2+25%

ethanol[54].Thesugarcontentofapplesisveryhigh(10gover 100goffreshedibleportionthatcontains83%ofwater)withd- fructoseandinlessextentd-glucoseaspredominantsugars[6].

ThoughscCO2 is non-polarandhence notsuitablefor carbohy- dratesextraction,studieshaveshownthatusingapolarcosolvent as ethanol can increase notably their solubility: a solubility of 0.1–0.8mg/g inCO2+21%ethanol(at96%)wasreportedforfour prebioticfructose-andgalactose-basedcarbohydrates[55].Com- paringscCO2+cosolventandsolventextractionsandcommenting respectiveglobalyields[56],Pineloetal.hypothesizedthatscCO2 conditionscouldbeable topromote a breakdownof thesugar structure of the plant matrix and the consequent solubility of theresultingmonomeric and oligomeric polysaccharidesprevi- ouslyravelledinthecellwallframework.Moreover,applepeels CO2-treatedinthisworkwereanalyzedforglucoseandfructose contents,andafterthesubcriticaltreatment,thelevelswerehalf theinitial values, which indicated that thesecompounds were indeedextracted.

3.3. Effectofapplepeelsloadings

SFEwasperformedbychargingvariousamountsofapplepeels intheextractor,15,30and55gforthestaticprocedure,and15 and30gforthedynamic.Increasingtheloadingdidnotyieldan enhancementoftheglobalextractedamountinthesamepropor- tionthantheloadingincrease(Fig.5).

Forthefirstfractions(upto0.6kgoffluid),theglobalextracted amountwasinthesamerangewhateverthemassloadedorthe procedure.Afterwards,theincreasefrom15to30gdidincreasethe extractedamountbutnotinatwo-foldfactor.Increasingfurtherthe

loadingfrom30to55g(incaseofstaticprocedure)didnotyield moreextractedamountsincecurveswerealmostsuperimposed.

Thepoorsensitivityoftheextractedamountwiththematrixweight mightcomefromapoorpackingofthesolidintheextractorand/or thesaturationofthefluid.Althoughthebedwasmadebyalternated layersofmatrixandglassbeads,thethicknessoftheapplelayers wereincreasedtoaccommodatetheincreaseofmatrix loading.

Whenchannelling occurs, only parts of thematrix arein con- tactwiththeextractingfluid;higherloadingscouldincreaseonly slightlythematrixincontactlettingalargerportionnotextracted.

Saturationofthefluid,especiallyattheearlytimesoftheextrac- tionandabove15gofmatrixcouldcontributeaswelltothepoor effectofloadings.Similarextractedamountmeanssimilartrans- portedconcentrationthroughthebed,e.g.afluidalreadyenriched withextractablescomingforinstancefromthefirst15gofmatrix atthebedbottomcannotcompletelysolubilizetheextractables availablefromtheother15gofthebedexit.Afteracertaintime, thenegativeeffectofsaturationprogressivelyvanishedallowing forothermolecules tobeextractedand forregainingeffects of operationalparameters.Asaturationthatpostponedextractionof othermoleculeswasencounteredbyUquicheetal.[57]dealing withextractionofoilandminorlipidsfromseedscakes.Specially, sterolsandcarotenoidsthatwerepresentatlowerconcentration incakeandwerelesssolublethanoilwereextractedinthelater stagesofextractionwhentherewasnotenoughoiltosaturatethe CO2phase.Therefore,atimefractionationeffectbetweenthemajor oilandtheminorlipidswasobserved.

Forphenolics(Fig.6),itisworthwhilenotingthata15gofload- ingallowsforobtainingsimilarkineticsinstaticandindynamic modesandforattainingaplateau,visibleindynamicconditions sinceextractionwasperformedoverlongertime.Theextraction ratefelldownnotablyafter1.1kgfluidsothatat1.8kgoffluid,i.e.

forasolvent/matrixratioof120,theextractionofallphenolicswas almostfinished.

Theoverallamountofphenolicsextractedinthoseconditions wasintherange of140mgfor15goffeed.At1.1kgfluid,the amount extracted was 120mg, which gives the highest value of 0.8g of phenolics/100gdrypeel (Table 2). Whatever the pro- tocol, the extracts were mainly composed by epicatechin and quercetinderivatives(Table2),withthepoolofquercetinderiva- tivesaccountingfor76–79%.Asobservedfortheglobalextracted amount,anincrease of loadingdidnotyield a correspondingly increaseofextractedphenolics,exceptedforphloridzin.Allkinet- icswereinthesamerangewhatevertheprocedureandtheloading upto0.5–0.7kgfluid,whichisthesamebehaviourthanobserved foroverallextract.Beyondthatvalue,effectsofoperationalparam- eterswereregained,butphenolicsdidnotrespondin thesame extendtothevariationofloading.Forstaticconditionsthatwere morereproduciblethandynamicones,quercetine-glucosideand -galactoside were only slightly affected, whereas the extracted amountsofotherquercetinderivatives,epicatechinandphloridzin weremoreregularlyaugmented.Chlorogenicacidstillbehavedif- ferently,withanextractedamountthatwaslowerat60gthanfrom 30g.Indynamicconditionsandforcompoundsofhigherrepro- ducibledata(quercetine-xyloside,-arabinoside,-epicatechin),the extractedamountwasincreasedaswellprovidinghoweverthat morethan1.1kgoffluidwasused.

3.4. Antioxidantactivityofextracts

Theantioxidantcapacityofthevariousfractionscollecteddur- ingthestaticprocedure(30gloading)isillustratedFig.7.Deviation bars accounted for the analysis of the duplicated SFE experi- ments.TheF2andF3fractionsexhibitedthehighestantioxidant capacity (5–6mgAAEq./gextract)witha trendthat paralleledthe evolutionofthephenoliccontentinfractions(Fig.7).Lookingfora

(8)

Fig.6. EffectofthematrixloadingsonthephenolicamountobtainedbySFEusingdynamicorstaticprocedure(15g,30gand55gofgroundapplepeels).Amountsof quercetin3-xylosideand3-rhamnosideareexpressedasequivalentquercetin3-arabinoside.

correlation,theantioxidantactivitywasplotasfunctionofpheno- licsconcentrationinfractions(Fig.8),consideringdynamicresults obtainedat 30gloadingaswell.Staticresultsexhibiteda good trend (R2=0.916), whereas datafrom dynamic procedurewere morescattered(R2<0.15).Thetwodataoutofthetrendcontour fordynamicresultscorrespondedtofractionsF1andF2thatwere thoseattheearlystageoftheextraction.Thescatteringofdata andthetwodifferentcorrelationsdependingonprocedureseems

toindicatethateithernon-phenoliccompoundscontributetothe antioxidantactivity,oronlysomeofphenolicsareresponsiblefor itratherthanthewholepool.

Inliterature,antioxidantactivitiesdidnotcorrespondneces- sarilytohighcontentofphenols.Apositivecorrelationwasfound for56vegetablesbyDengetal.[58]whereasnorelationshipwas evidencedbyIsmailetal.for9typesofvegetables[59].Thedifferent methodsusedtoproduceextractsandtodeterminethephenolic

(9)

Fig.7. Ascorbicacidequivalentantioxidantcapacity(AAEAC,mg/gofdryextract) andtotalphenolicconcentration(mg/gofdryextract)offractionsproducedduring SFE(staticprocedure,30gofgroundapplepeels,duplicateextractions).

contentandtheantioxidantcapacitycouldhavegenerateddiffer- entselectivityandresponses:ethanolextraction,Folin–Ciocalteu reagent,coupledreactionoflinoleicacidand␤-caroteneinIsmail [59],twostepsextractionwithmethanol–aceticacid–watermix- tureforobtainingahydrophilicfraction,Folin–Ciocalteureagent, Troloxequivalentantioxidantcapacity in Deng[58].In another hand,allphenolicsdidnotexhibitthesameantioxidantcapacity.

Phenoliccompoundspossesschemicalstructuralrequirementsfor antioxidantactivitybecausetheyhavephenolichydroxylgroups abletodonateahydrogenatomoranelectrontoafreeradicaland extendedconjugatedaromaticsystemtodelocalizeanunpaired electron.AsdiscussedbyDaiandMumper[60],chlorogenicacid(an hydroxycinnamicacidderivative),isconsideredasapotentantiox- idantagent as it possesses a catechol moiety (ortho-dihydroxy structure)linkedtoaCH CH COO whichallowsthedelocaliza- tionofelectronbyresonance.Amongflavonoids,quercetinexhibits high antioxidant activity because it combines all the require- ments:acatecholmoietyintheBring,the2,3-doublebondwitha

Fig.8.Testofcorrelationbetweenantioxidantcapacityandconcentrationofphen- olics(mg/gofdryextract)infractionsobtainedduringSFEstaticanddynamic procedure(30gofgroundapplepeels,duplicateextractions).

4-oxofunctionintheCring,the3-and5-hydroxylgroupswith the4-oxofunctionin Aand Crings.Thefree 3-hydroxylgroup isimportantforantioxidantactivity.Evenifthe3-glycosylation may reducethe activity when compared with thecorrespond- ingaglycone[60],quercetinglycosylatedderivativesstillhavethe otherattributes.Whentested asinhibitorsoffishoiloxidation, quercetin-3-O-glucoside,-galactosideand-rhamnosideexhibited similarorslightlyhighereffectivenessthantheaglyconequercetin [61],whereas forphloridzin,its2-glycosylationyielded alower inhibitionthantheaglyconephloretin[62].Incaseofapples,an activityintherangeof820␮molTroloxeq./100goffruitweremea- suredforGoldenvarietybySerraetal.[63].Eightothervarieties ofapplewerestudiedaswell,andwhen submittingtheoverall resultstostatisticalanalysis,catechin,epicatechin,procyanidinB1 andquercetin-3-glucosidewereidentifiedasmajorcontributors totheantioxidantactivities(flesh+peelsextracts;ORAC,HORAC andLDLassays).Foranindustrialresiduecomingasapomaceof juice-squeezedFuji,GrannySmithandQinguanapplesmixture,the antioxidantactivity,expressedasABTSradicalinhibitionrate,was positivelycorrelatedwiththephenolicscontentofvariousfractions andspeciallytothepresenceofprocyanindinsB,chlorogenicacid andquercetin[64].Lookingforacorrelationwiththechlorogenic concentrationorquercetin-derivativepoolsinourextractswillbe investigatedinfuture.

4. Conclusions

Theaimofthisworkwastoevaluatethepotentialitiesofsuper- criticaltechnologytorecoverthevaluablepolyphenolicsfroma fruitwaste,namelytheapplepeels.Comparedtotheonlystudy reportedinliterature,thepresentworkidentifiedandquantified themajor extracted phenolics, monitoredtheextraction kinet- ics of the polyphenols and of the global extract amount, and investigatedseveralprocessparameters intheviewofscale-up (amount of matrix chargedin the vessel,introductionof static steps during extraction). All principal phenolics known to be presentinapplepeelswereextractedbytheconditionsused,i.e.

CO2+25mol%cosolvent(EtOH96%),25MPa,50C,includingthe polarsugar-based quercetin derivatives and phloridzin. Extrac- tionswerecarriedoutbycollectingfractionsoveratimerelated totheethanolbreakthrough,inordertoimprovetheaccuracyof kineticsandtheunderstandingofthepermanentregimeestablish- ment.Extractionofphenolicsstartedrapidlywithnodelaybetween components,indicatingthattheywereallreadilyaccessible.Over thedurationoftheextractions,theexhaustionofthematrixwas usuallynotattained,exceptforexperimentperformedona15g loadingtreatedwith1.8kgoffluid,i.e.forasolvent/feedratioof 120.Increasingthematrixloadingdidnotincreasetheextracted amountsinthesameratio,apoorefficiencythatcouldberelatedto thefluidsaturation,bedpacking,permanentregimeofextraction notestablishedyet,oracombinationofthosefactors.Introduction ofstaticperiodswasenvisagedaswaytogivetimesforspecies todiffusewithinthematerial.For phenolics,thedifferencewas notsignificant,whereasfor theoverallextract,staticconditions ledtoaslightlysmallerextractedamount.Althougheachpheno- licwasrespondingdiverselytotheeffect,thedifferenceswerenot significantenoughtoenvisageseparationbetweengroups.

Sofar,SCFtechnologywasefficienttorecoverthephenolicsata levelof120mgfrom15gofpeelswithonly1.1kgofextractingfluid.

Comparedtomethanol/acetone/waterorethanolextracts,contri- butionofquercetinderivativestothephenolicpoolinSCextracts wasparticularlyhighwithvalueintherangeof75–80wt%instead of50%.However,phenolicsconstitutedlessthan5%wtofthewhole extract,alowcontentinherenttotheuseofethanolthatisfarfroma selectivesolvent.Supercriticalextractswereexhibitingantioxidant

Références

Documents relatifs

Finally, a fourth damage scenario damage scenario #4 is created by cutting the last 16 straight lined tendons in the upper part of the bridge and 8 parabolic tendons.. This damage

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

The headscarf at school, the burka in the street, the mosque in the city, and the minarets in the landscape indicate the presence of Muslim actors in daily life (sometimes with

Peut faire un exposé sur un thème familier ou dans sa spécialité en mettant en relief les points qui lui semblent essentiels, quand il/elle peut

Peut faire un exposé sur un thème familier ou dans sa spécialité en mettant en relief les points qui lui semblent essentiels, quand il/elle peut

Nous soulignons le rôle de la proximité relationnelle dans la réduction des incertitudes en termes de quantité, de prix et de qualité, auxquelles sont soumis les vendeurs

ةيبطلا ةبقارملا : لولأا لصفلا 16 بنبذ فيو بردلدا تُب ام ةقلاعلا ميعدتو ةدايز ىلع امتح دعاسي ؼوس الش ،بعلال ةيحصلا ةلاحلل روىدت يأ نم رثكأ لذإ

Les modèles porcins d’hépatectomie et de transplantation de foie partiel ont été largement utilisés pour étudier les techniques chirurgicales de modulation du