• Aucun résultat trouvé

Integrating genetic and epidemiological data to determine transmission pathways of foot-and-mouth disease virus.

N/A
N/A
Protected

Academic year: 2021

Partager "Integrating genetic and epidemiological data to determine transmission pathways of foot-and-mouth disease virus."

Copied!
17
0
0

Texte intégral

(1)

HAL Id: hal-02817901

https://hal.inrae.fr/hal-02817901

Submitted on 6 Jun 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Integrating genetic and epidemiological data to determine transmission pathways of foot-and-mouth

disease virus.

Gael Thébaud, E.M. Cottam, - Wadsworth, J., J. Gloster, L. Mansley, D.J. Paton, D.P. King, D.T. Haydon

To cite this version:

Gael Thébaud, E.M. Cottam, - Wadsworth, J., J. Gloster, L. Mansley, et al.. Integrating genetic and epidemiological data to determine transmission pathways of foot-and-mouth disease virus.. Mathe-matics and InforMathe-matics in Evolution and Phylogeny, Jun 2008, Montpellier, France. �hal-02817901�

(2)

Integrating genetic and

epidemiological data to determine

virus transmission pathways

1 UMR BGPI (INRA-Montpellier)

2 Division of Environmental and

Evolutionary Biology (University of Glasgow)

3 Institute for Animal Health

(Pirbright)

4 Animal Health Divisional Office

(Perth)

Eleanor COTTAM 2,3, Gaël THÉBAUD 1,2, Jemma WADSWORTH 3,

John GLOSTER 3, Leonard MANSLEY4, David PATON 3,

(3)

Molecular epidemiology and directionality

Introduction

Direction of transmission :

reference (more or less implicit)

to additional information

Genetic sequences:

phylogeny

clades / groups / types

Comparison between genetic

similarity and

geographic proximityecological zone

host species...

(4)

type of source and target individualstransmission distances

important or missing sources likely transmission modes

evolution during 1 transmission cycle

Accessible information

epidemiology

evolution

Why is directionality interesting?

Introduction

Implications: - logical: - legal: source “target” cause≈ consequences≈ responsible≈ victim≈

In theory, complete description of the epidemic In practice, data sets concerning few individuals

parameterise

epidemiological models (e.g., network models)

limit virus propagation

multiscale models

(5)

Questions on FMDV

Introduction

At which scale is there some viral genetic

polymorphism?

animal, farm, disease focus?

Can we use the observed polymorphism

to identify transmission chains? How?

What is the reliability of veterinary

(6)

Biological system

• Foot-and-mouth disease virus outbreak (2001)

20 complete genomes (~10 kb each)

5 initial infections with a known history

15 farms from the same focus (Durham County)

10 km A K B D E C G I J M N O L P F 10 km A K B D E C G I J M N O L P F

Positive-strand RNA virus:

High mutation rate (~10-4 errors/nucleotide/replication)Limited recombination

(7)

Known root2 independent introductions4 groups 0 10 20 30 40 50 60 70 80 90 100 110 Day of outbreak A B C D M E N G I J F K L 1 2 3 5 4 O P 0 10 20 30 40 50 60 70 80 90 100 110 Day of outbreak A B C D M E N G I J F K L 1 2 3 5 4 O P 24 n uc leot ide s ubs ti tu ti ons S A R/ 19/ 200 0 24 n uc leot ide s ubs ti tu ti ons S A R/ 19/ 200 0 TCS 10 km A K B D E C G I J M N O L P F 10 km A K B D E C G I J M N O L P F

Genetic data

(8)

Genetic data

0 10 20 30 40 50 60 70 80 90 100 110 Day of outbreak A B C D M E N G I J F K L 1 2 3 5 4 O P 0 10 20 30 40 50 60 70 80 90 100 110 Day of outbreak A B C D M E N G I J F K L 1 2 3 5 4 O P 24 n uc leot ide s ubs t ti ons itu S A R/ 19/ 0 200 24 n uc leot ide s ubs t ti ons itu S A R/ 19/ 0 200 TCSKnown root2 independent introductions4 groups How to identify transmission history?

(9)

1 known chain of transmissions 0 10 20 30 40 50 60 70 80 90 100 110 A B C D M E N G I J F K L 1 2 3 5 4 O P 0 10 20 30 40 50 60 70 80 90 100 110 A B C D M E N G I J F K L 1 2 3 5 4 O P 24 nucl eoti de s ubs tituti ons S A R/ 19/2000 24 nucl eoti de s ubs tituti ons S A R/ 19/20003 obvious transmissions

Which is the most likely transmission tree?

What about the

other ones?? ? ? ? ? ? ? ? ?

Which is the most likely farm for each node ?

Known root

Use of contact tracing data

(10)

Epidemiology

• L : Probability density

for latency (Γ)

• Ii : Probability density

for the infection date of farm i • Fi (t) : Probability for farm i to be infectious at date t 27 J anu ar y 2 001 0 3 Fe br uar y 200 1 1 0 Fe br uar y 200 1 1 7 Fe br uar y 200 1 2 4 Fe br uar y 200 1 03 M ar c h 2001 10 M ar c h 2001 17 M ar c h 2001 24 M ar c h 2001 31 M ar c h 20 01 07 A p ri l 2 001 14 A p ri l 2 001 21 A p ri l 2 001 28 A p ri l 2 001 05 M a y 200 1 12 M a y 200 1 19 M a y 200 1 26 M a y 200 1 02 J une 200 1 1 2 3 4 5 B C A D E F G I J K L M N O P 09 J une 200 1 27 J anu ar y 2 001 0 3 Fe br uar y 200 1 1 0 Fe br uar y 200 1 1 7 Fe br uar y 200 1 2 4 Fe br uar y 200 1 03 M ar c h 2001 10 M ar c h 2001 17 M ar c h 2001 24 M ar c h 2001 31 M ar c h 20 01 07 A p ri l 2 001 14 A p ri l 2 001 21 A p ri l 2 001 28 A p ri l 2 001 05 M a y 200 1 12 M a y 200 1 19 M a y 200 1 26 M a y 200 1 02 J une 200 1 1 2 3 4 5 B C A D E F G I J K L M N O P 09 J une 200 1

Animal movement ban

27 J anuar y 2001 0 3 Feb ruar y 20 01 1 0 Feb ruar y 20 01 1 7 Feb ruar y 20 01 2 4 Feb ruar y 20 01 03 M ar c h 20 01 10 M ar c h 20 01 17 M ar c h 20 01 24 M ar c h 20 01 31 M ar c h 2001 0 7 A pr il 2001 1 4 A pr il 2001 2 1 A pr il 2001 2 8 A pr il 2001 05 M a y 2001 12 M a y 2001 19 M a y 2001 26 M a y 2001 02 J une 2 001 09 J une 2 001 27 J anuar y 2001 0 3 Feb ruar y 20 01 1 0 Feb ruar y 20 01 1 7 Feb ruar y 20 01 2 4 Feb ruar y 20 01 03 M ar c h 20 01 10 M ar c h 20 01 17 M ar c h 20 01 24 M ar c h 20 01 31 M ar c h 2001 0 7 A pr il 2001 1 4 A pr il 2001 2 1 A pr il 2001 2 8 A pr il 2001 05 M a y 2001 12 M a y 2001 19 M a y 2001 26 M a y 2001 02 J une 2 001 09 J une 2 001 27 J 2 001 1 2 3 4 5 B C A D E F G I J K L M N O P 27 J 2 001 1 2 3 4 5 B C A D E F G I J K L M N O P

(11)

Epidemiology

• λij: Likelihood of

i Å { j rather than

another observed farm }

27 J anu ar y 2 001 0 3 Fe br uar y 200 1 1 0 Fe br uar y 200 1 1 7 Fe br uar y 200 1 2 4 Fe br uar y 200 1 03 M ar c h 2001 10 M ar c h 2001 17 M ar c h 2001 24 M ar c h 2001 31 M ar c h 20 01 07 A p ri l 2 001 14 A p ri l 2 001 21 A p ri l 2 001 28 A p ri l 2 001 05 M a y 200 1 12 M a y 200 1 19 M a y 200 1 26 M a y 200 1 02 J une 200 1 1 2 3 4 5 B C A D E F G I J K L M N O P 09 J une 200 1 27 J anu ar y 2 001 0 3 Fe br uar y 200 1 1 0 Fe br uar y 200 1 1 7 Fe br uar y 200 1 2 4 Fe br uar y 200 1 03 M ar c h 2001 10 M ar c h 2001 17 M ar c h 2001 24 M ar c h 2001 31 M ar c h 20 01 07 A p ri l 2 001 14 A p ri l 2 001 21 A p ri l 2 001 28 A p ri l 2 001 05 M a y 200 1 12 M a y 200 1 19 M a y 200 1 26 M a y 200 1 02 J une 200 1 1 2 3 4 5 B C A D E F G I J K L M N O P 09 J une 200 1

∑ ∑

≠ = = = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ⋅ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ⋅ = n i k k k C C t i j C C t i ij I t F t I t F t k j i j 1 ) , min( 0 ) , min( 0 ) ( ) ( ) ( ) ( λ

Animal movement ban

• L : Probability density

for latency (Γ)

• Ii : Probability density

for the infection date of farm i

• Fi (t) : Probability for

farm i to be infectious at date t

(12)

• λij: likelihood of i Å { j rather than another observed farm }

λ

ij can be computed for each transmission

Thus, for a complete transmission tree (k),

λ

k = Π

λ

ij

E L E L 1 {L,E} G I J F G I J F 2 {F,G} {1,2,K} K K 1728 trees Loglikelihood F requenc y -250 -200 -150 -100 0 5 1 0 15 20 2 5 30

λ

And

λ

k can be computed for any tree

… if all the possible trees can be enumerated

Æ Algorithm defining the possible trees by recurrence from the leaves back to the root

Genetics + epidemiology

All differing from contact tracing results

(13)

Rescaled likelihood:

λ

k =

λ

k / Σ

λ

k

Which group of trees

represent 95% of the rescaled likelihood?

Which is the most likely group of trees?

4 trees

most likely tree

(14)

( # ) Number of distinct sources among the 4 most likely trees [ # ] Likelihood of the most probable transmission

Genetics + epidemiology

(15)

0 10 20 30 40 50 60 70 80 90 100 110 A B C D M E N G I J F K L 1 2 3 5 4 O P 0 10 20 30 40 50 60 70 80 90 100 110 A B C D M E N G I J F K L 1 2 3 5 4 O P 24 nu c leot ide s ubs ti tut ions S A R/ 19/ 2000 24 nu c leot ide s ubs ti tut ions S A R/ 19/ 2000 A K O L F

Genetics + epidemiology

(16)

Genetics + epidemiology

Spatial pattern

Short distance transmission 10 km A K B D E C G I J M N O L P F 10 km A K B D E C G I J M N O L P F MeanDistSim Fr eq ue nc y 4000 6000 8000 10000 0 5 00 0 1 00 00 1 50 00 2 00 00 P(1-sided) = 1.2 x 10-3 Mean distance 4850 m 7472 m

(17)

Conclusions

The whole set of possible transmission trees is identified based on genetic data

Their relative likelihood is evaluated based on epidemiological data

Interesting method for real-time forensic applications

Identifying the tree root

Dealing with censoring / sampling issuesWeighting different sources of information

Difficulties

Summary

Cottam E.M. et al. (2008) Integrating genetic and epidemiological data to determine transmission pathways of foot-and-mouth disease virus. Proc. R. Soc. B 275: 887-895.

Références

Documents relatifs

In addition all oral swab and probang samples were tested for the presence of FMDV using real time RT-PCR because in these samples neutralising antibodies, that could influence

In this study, we quantified the within-pen transmission of FMDV in groups of non- vaccinated pigs and between-pen trans- mission in a group of pigs in which the infectious

This surveillance summary includes information from countries where transmission of Hand, Foot, and Mouth disease (HFMD) occurs and case counts which are routinely reported.. Since

Figure 3: HFMD cases admitted to hospital reported weekly by sentinel sites 2012-2015, Hong Kong Center for Health Protection, China. Macau

This surveillance summary includes information from countries where transmission of Hand, Foot, and Mouth disease (HFMD) occurs and case counts are routinely reported.. Since 12

Figure 3: HFMD cases admitted to hospital reported weekly by sentinel sites 2012-2016, Hong Kong Center for Health Protection, China. Macau

Figure 3: HFMD cases admitted to hospital reported weekly by sentinel sites 2012-2016, Hong Kong Center for Health Protection, China. Macau

As of 30 January 2016, a total of 58 hospital admissions of HFMD have been reported in the past 5 weeks from sentinel sites, this is higher than observed in previous