• Aucun résultat trouvé

NONLINEAR RESPONSE OF A SPHERICAL BUBBLE TO A MULTI-FREQUENCY EXCITATION

N/A
N/A
Protected

Academic year: 2021

Partager "NONLINEAR RESPONSE OF A SPHERICAL BUBBLE TO A MULTI-FREQUENCY EXCITATION"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: jpa-00219561

https://hal.archives-ouvertes.fr/jpa-00219561

Submitted on 1 Jan 1979

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

NONLINEAR RESPONSE OF A SPHERICAL BUBBLE TO A MULTI-FREQUENCY EXCITATION

A. Nayfeh, D. Mook

To cite this version:

A. Nayfeh, D. Mook. NONLINEAR RESPONSE OF A SPHERICAL BUBBLE TO A MULTI- FREQUENCY EXCITATION. Journal de Physique Colloques, 1979, 40 (C8), pp.C8-310-C8-314.

�10.1051/jphyscol:1979855�. �jpa-00219561�

(2)

NONLINEAR RESPONSE OF A SPHERICAL BUBBLE TO A MULTI-FREQUENCY EXCITATION NAYFEH A.H. and MOOK D.T.

Engineering Science -and Mechanics- Department Virginia Polytechnic Institute and State University Blacksburg, Virginia - 24061 - U.S.A.

A b s t r a c t . - A n o n l i n e a r a n a l y s i s i s conducted f o r the r a d i a l o s c i l l a t i o n s o f a spherical gas bubble immersed i n a s l i g h t l y compressible f l u i d . The mass o f the gas bubble and the surface tension are assumed t o be n e g l i g i b l e . The r a d i a l v e l o c i t y o f the bubble i s assumed to be small compared w i t h the speed o f sound. The response o f the bubble to a plane wave t r a i n whose wavelength i s l a r g e compared w i t h the radius o f the bubble i s determined. The present analysis extends the e x i s t i n g s i n g l e - f r e - quency analyses t o the case o f pressure waves having m u l t i - f r e q u e n c i e s . The a n a l y s i s reveals the existence o f combination resonances f o r which a l a r g e bubble response e x i s t s . These resonances e x i s t i n a d d i t i o n to the primary and secondary resonances r e s u l t i n g from a s i n g l e - f r e a u e n c y e x c i t a t i o n . Mo- r e o v e r , the analysis reveals the existence o f simultaneous resonances which can considerably modify the response.

1 . I n t r o d u c t i o n . - We consider the n o n l i n e a r sym- m e t r i c response o f a spherical gas bubble immersed i n a s l i g h t l y compressible f l u i d t o an i n c i d e n t a c o u s t i c pressure wave. The pressure wave i s assu- med t o c o n s i s t o f m u l t i - f r e q u e n c i e s whose wave- lengths are l a r g e compared w i t h the radius o f the bubble.

The n o n l i n e a r symmetric response o f a s p h e r i c a l gas bubble to an i n c i d e n t a c o u s t i c pressure wave c o n s i s t i n g o f a s i n g l e frequency was s t u d i e d by E l l e r and Flynn / l / , Safer / 2 / , Lauterborn / 3 / and Nayfeh and Saric IM. E l l e r and Flynn / l / and Safar / 2 / analysed the generation o f subharmonic o s c i l l a t i o n s o f order o n e - h a l f by bubbles immersed i n an incompressible f l u i d . They determined a p e r i o d i c subharmonic s o l u t i o n and then i n v e s t i g a t e d i t s s t a - b i l i t y using a H i l l ' s equation t o determine the t h r e s h o l d o f t h e pressure wave f o r the onset o f the subharmonic o s c i l l a t i o n s . Using the method o f mul- t i p l e scales / 5 / , Nayfeh and Saric / 4 / analyzed primary resonances, subharmonic resonances o f order o n e - h a l f and superharmonic resonance o f order two.

I n t e g r a t i n g the equation governing the r a d i a l o s c i l - l a t i o n s o f a bubble, Lauterborn / 3 / found t h a t l a r g e

1 1 1 2 3 2 3 responses occur when fi/uo^r, - j , ^-, ? , 1, j , - p y .

I n t h i s paper, we extend these analyses t o the case o f a c o u s t i c waves c o n s i s t i n g o f m u l t i - f r e q u e n c i e s .

2 . Statement o f Problem. - The equation d e s c r i b i n g tne n o n l i n e a r r a d i a l o s c i l l a t i o n s o f a spherical gas bubble are / 6 /

where the dot denotes d i f f e r e n t i a t i o n w i t h respect t o t i m e , R* and R0* are the instantaneous and e q u i - l i b r i u m r a d i i o f the bubble, p0 and p0 are the undisturbed d e n s i t y and pressure o f the f l u i d , y i s the gas s p e c i f i c heat r a t i o , p* i s the f a r f i e l d pressure i n the f l u i d and y * i s the damping c o e f f i c i e n t due t o r a d i a t i o n and viscous d i s s i p a t i o n . Me introduce dimeasionless q u a n t i t i e s w i t h o u t a s t e r i s k s by using R* ,OJ0 = (SypVp'oRtf2) 2 a n d P * a s i"efe-

o rence quantities. Then, (1) becomes

JOURNAL DE PHYSIQUE Colloque C8, supplément au n°ll, tome 40, novembre 1979, page C8-310

Résumé. - On a effectué une analyse non linéaire des oscillations radiales d'une bulle de gaz sphé- rique dans un fluide peu compressible. La masse du gaz ainsi que la tension superficielle ont été négligées. La vitesse radiale de la bulle est supposée faible vis-âvis de la vitesse du son. On a dé- terminé la réponse de la bulle à un train d'ondes planes dont la longueur d'onde est grande devant le rayon de la bulle. Ce travail étend l'analyse existante correspondant à une fréquence unique, au cas d'ondes de pression multifréquences. L'analyse révèle l'existence de résonances combinées pour les- quelles la bulle répond intensément ; ces résonances s'ajoutent aux première et deuxième résonances résultant d'une excitation simple fréquence. De plus, l'analyse révèle l'existence de résonances si- multanées qui peuvent modifier considérablement la réponse.

Article published online by EDP Sciences and available at

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1979855

(3)

JOURNAL DE PHYSIQUE

where y=fl/uo

.

L e t t i n g

A

F = € 2 f , .Fn = €fn, p = Ey (7)

R = 1

+

r,(t), pm = 1

+

3yE(t) (3)

S u b s t i t u t i n g ( 6 ) and (7) i n t o ( 4 ) and (5) and equa- and expanding t h e r e s u l t f o r small

n ,

we o b t a i n t i n g c o e f f i c i e n t s o f l i k e powers o f E

,

we have

+

r,, fmcos(wm~,

+ +

f c o s w ~ ~

m=

1

(9)

The a c o u s t i c pressure wave i s assumed t o c o n s i s t o f mu1 m u l t i - f r e q u e n c i e s and we w r i t e i t as

where Do = a/aTO and Dl =

a / a

TI

.

The s o l u t i o n o f E ( t ) = F cos ut + M 1 Fmcos(wmt

+

-rm) ( 5 ) (8) can be expressed as

m= 1

M

TII = A(T1) exp (

ill

+,,,gl $,,exp(iwmTo) + cc (10) where the F ' s , w's and T ' S are constants. We assume

t h a t w l,corresponding t o a primary resonance/and a1 1 the wn are f a r away from 1.

where cc stands f o r t h e complex conjugate o f t h e I n t h i s paper, we use t h e method o f mu1 t i p l e preceding terms and

scales and o b t a i n a u n i f o r m asymptotic expansion o f the s o l u t i o n s o f equations ( 4 ) and (5) and we

1 1

compare some o f t h e r e s u l t s w i t h a numerical i n t e hm = -;ifm(u2m

-

1)- exp (,i rm) (11) g r a t i o n of equation ( 2 ) and (5).

3. An Asymptotic Expansion.

-

FolJowing t h e me- S u b s t i t u t i n g f o r n1 from (11) i n t o (9) g i v e s thod o f m u l t i p l e scales /5/, we seek a second

o r d e r s o l u t i o n f o r ( 4 ) and ( 5 ) i n t h e form 1

Dtne +712 =

-

2 i ( A 1

+

j ~ ) e x p ( i ~ , )

+

;?- f e x p ( i T o )

1 M

+ Z f m e x ~ ( i r m ) ] exp[i (~+u,,,)TJ + A i 3&(y+l-~,,,) m= 1

where E i s a small dimentionless q u a n t i t y which i s

1 the order o f t h e amplitude o f o s c i l l a t i o n , T o = t

1 M + 7 f m e x ~ ( - i ~ m ) ] e x ~ [ i ( l - ~ ) T o ] + 7

c

A,,,

m,n=1 i s a f a s t s c a l e and

T I

= ~t i s a slow scale. More-

over, we o r d e r t h e damping and f o r c i n g [3(y+l+6+,wn)~

,,

f u n c t i o n s so t h a t t h e e f f e c t s o f t h e damping, non-

l i n e a r i t y and resonances appear i n t h e same per- 1

+ f n e x ~ ( i ~ n l ~ e x ~ [ i ( w , + ~ n ) T , ] + ~

c

A,,,

t u r b a t i o n equation. Thus, we l e t m,n=l

[3(y+l+wmun)

Tin

(4)

NAYFEH, and a l .

I n s p e c t i o n o f (12) shows t h a t , t o second order, a number o f resonances m i g h t e x i s t . These i n c l u d e ( i ) a primary resonance when w 31,

( i i ) a subharmonic resonance when w 2 ,

P 1

( i i i ) a superharmonic resonance when wkd

,

( 1 v) a summed combination resonance when wm+wm% 1, and

( v ) a difference combination resonance when

Wm

-

Wn

=

1.

The f i r s t t h r e e o f these resonances are c h a r a c t e r i s - t i c s o f single-frequency e x c i t a t i o n s , w h i l e t h e l a s t two are c h a r a c t e r i s t i c s o f mu1 ti -frequency e x c i t a t i o n s . Another c h a r a c t e r i s t i c o f m u l t i - f r e - q,uency e x c i t a t i o n s i s the occurence o f simultaneous resonances ; t h a t i s , the frequency content of t h e e x c i t a t i o n i s such t h a t two o r more o f the above resonances might occur simultaneously. For example we l e t

( i ) a subharmonic resonance when up .* 3, ( i i ) a superharmonic resonance when wp* 1

,

2 3

( i i i ) u l trasubharmonic resonances when

uF3

o r 2,

( i v ) a combination resonance wheni yn+wm?wk I, and ( v ) a sub-combination resonance when wn+wmS 2.

Thus, depend~ing on t h e c o n t e n t o f t h e e x c i t a t i o n , two o r more o f the second- and t h i r d - o r d e r rqsonan- ces m i g h t occur simultaneously. Next, we present some numerical examples i l l u s t r a t i n g t h e e f f e c t s o f mu1 t i - f r e q u e n c y e x c i t a t i o n s .

4. Results and Discussion.

-

Since s i n g l e - f r e - quency e x c i t a t i o n s were s t u d i e d e x t e n s i v e l y , we r e s t r i c t o u r discussion t o m u l t i - f r e q u e n c y e x c i t a - t i o n s . To a v o i d l e n g t h y algebra, we r e s t r i c t our discussion t o second o r d e r o n l y and s e t F = 0.

We s t a r t t h e discussion by t h e case o f combi- naison resonances o f t h e summed and d i f f e r e n c e t y - pe. Thus, we l e t

and assume t h a t Q, and 0 , a r e away from

1

and 2.

Then, e l i m i n a t i n g the secular terms from (12) y i e l d s If there are Other

(I4)

reduces

-

Hence, as Tl-r m, the s o l u t i o n o f (17) i s

-

A r , e x p ( i ~ ~ T ~ + i ~ ~ )

- r 3

,exp( io3Tl+i.r3+i.rb)

Where

Carrying o u t t h e expansion t o t h i r d o r d e r shows t h a t o t h e r resonances w i l l occur. These i n c l u d e

A

Thus, t h e s m a l l e r t h e values o f p and o 3 are, t h e l a r g e r t h e response i s , as shown i n F i g u r e 1. Conse- q u e n t l y , t h e n o n l i n e a r resonant response can consi- d e r a b l y exceed t h e l i n e a r response.

The a n a l y s i s f o r t h e case of a combination resonance o f t h e d i f f e r e n c e type can be obtained from from t h e above by simple changing t h e s i g n o f Q,

.

F i g . 2. shows t h a t t h e n o n l i n e a r response can consi- d e r a b l y exceed t h e l i n e a r response.

Next,we consider the case of a simultaneous resonance. We l e t

wp = 1.5, WI = 0.5 + s o l

(5)

JOURNAL CE PHYSIQUE

Fig. 3. shows t h a t t h e presence o f t h e simultaneous resonance i s t o increase t h e n o n l i n e a r response.

Fig. 1.

-

The e f f e c t o f a combination resonance o f t h e summed type on t h e response of the bubble f o r

u

= 0.005, n 3 = 0.4, F1 = F2 = 0.02 ; ( a ) l i n e a r

,

( b ) Q,, = 0.6 and (c)Qb = 0.59.

Fig. 3.

-

The e f f e c t o f a simultaneous resonance on t h e bubble f o r - p - = 0.005, Ql = fl.5','Q2 =1.5, F1 = F2= 0.05 ; (a) l i n e a r , (b) F2 = 0 and ( c ) F2 = 0.02.

The magnitude o f t h e n o n l i n e a r p a r t increases w i t h

A

( ? a ) decreasing p and alas before.

As a l a s t example, we consider the case o f simultaneous sub- and super-harmonic resonances.

Thus (14) reduces t o

A

2 i ( ~ ~ + p A ) - 1 1 ~ ~ x ~ ( i a ~ ~ ~ + i ~ ~ ) - r ~ e x p ( 2 i a ~ ~ ~ + 2 i ~ 1 ) = 0 (21)

To s o l v e t h i s equation, we l e t

Fig. 2.

-

Effect of a combination resonance o f t h e 1 1

d i f f e r e n c e type on t h e response of the bubble f o r A = (Br + iBi) exp ( '2 i02$ +

7

iT2) (22) p= 0.005, Q 3 = 0.65, F1 = F2 = 0.02 ;

( a ) l i n e a r , (b) Q 4 = 1.65 and ( c )

n,

= 1.64.

where Br and Bi a r e r e a l i n (21), separate r e a l and imaginary p a r t s and o b t a i n

Then, (14) reduces t o

where

AS T!-+ W , t h e s o l u t i o n of (19) becomes

1 1

x

= (20,

- 2

an) T1 + 2 - r ~

- 2

T 2 (25)

1 A 1 *

-

1

A= i r 1 ( u + 2 i a l ) - 1 e x p ( 2 i a l ~ ~ + 2 i n ) -

7

i r z ~ ( u - i ~ l ) x

The s o l u t i o n of t h e homogeneous problem i s of t h e

exp(-ialT1 + i ~

-

2 TI) (20) form

(6)

where

Hence , the particular solution will be the largest when

Thus, one can expect the superharmonic resonance to produce a large effect when

as shown in Fig.4.

F i g . 4. The e f f e c t OT simultaneous sub- and supers harmonic resonances f o r y = 0 . 0 0 5 , n j = 0 . 5 0 ,

fi2 = 2 . 0 , F2 = 0.05 ; (a) l i n e a r , (b) Fi = 0 . 0 2 , fi2 = 2.1 (c) Fj = 0.02, R2= 2.0 and (d)

F1 1 = 0, fi2= 2.0.

REFERENCES

HI E l l e r , A . I . , and F l y n n , H.G., J . Acoust. Soc, Am. 46 (1969) 722.

HI S a f a r , M.H., J . Phys. D. 3 (1970) 635.

17,1 Lauterbom, W., Acoustica 23, (1970) 73.

IM Nayfeh, A.H. and Saric, W.S., J. Sound Vib.

30 (1973) 445.

/5/ Nayfeh, A.H., Perturbation Methods (Wiley Interscience, New York, 1973).

/6/ Noltingk, B.E., and Neppiras, E.A. Proc.

Roy. Soc. Lond. B63 (1950) 674.

Références

Documents relatifs

peut calculer théoriquement. Ce qui veut dire qu'un tel mode sera essentiellement concentré autour d'une énergie particulière et apparaîtra comme une réso- nance. En

La partie hachurée (Mk) correspond à la partie du spectre prise en considération pour le calcul de la section efficace. niveaux excités

En somme, les textes et les scènes du couloir et de ses portes ne laissent aucun doute que Sobek empruntait le couloir lors de la célébration des fêtes de Chedbeg, aussi bien lors de

Les distributions angulaires observées sont en bon accord avec JP(E) = 0- ; les autres nombres quanti- ques possibles ne donnent pas un aussi bon accord. On trouve

names to type objects, but here we add records to track in which cog an ob- ject is located. Records can be: ⊥, meaning that the structure of the object is unknown; G[f : T ],

élastique électron-atome ou molecule, il semblait que, dans ce domaine de la physique, tout avait ete dit.. A cette époque d6jh, 1’existence d’un 6troit

Résonances dans un circuit série

Les variations du flux magnétique produit par la bobine émettrice à travers la bobine réceptrice induisent un terme de tension électrique d’induction dans