• Aucun résultat trouvé

U L T R A S T R U C T U R A L FEATURES OF T H E GAMETOGENIC A N D SPOROGONIC DEVELOPMENT OF HEPATOZOON SIPEDON (APICOMPLEXA: ADELEORINA)

N/A
N/A
Protected

Academic year: 2022

Partager "U L T R A S T R U C T U R A L FEATURES OF T H E GAMETOGENIC A N D SPOROGONIC DEVELOPMENT OF HEPATOZOON SIPEDON (APICOMPLEXA: ADELEORINA) "

Copied!
12
0
0

Texte intégral

(1)

U L T R A S T R U C T U R A L FEATURES OF T H E GAMETOGENIC A N D SPOROGONIC DEVELOPMENT OF HEPATOZOON SIPEDON (APICOMPLEXA: ADELEORINA)

The applicability of ultrastructural data in differentiating among Hepatozoon species

SMITH T.G.* & DESSER S.S.*

Summary :

Stages of gametogony and sporogony of the haemogregarine Hepatozoon sipedon, an apicomplexan parasite of the Northern water snake, Nerodia sipedon sipedon, were studied in the mosquito, Culex pipiens, by electron microscopy. Four days after mosquitoes fed on an infected snake, microgamonts and macrogamonts were observed in syzygy in parasitophorous vacuoles within fat body cells of the haemocoel. During

microgametogenesis, two biflagellated microgametes wete formed, one of which fertilized the macrogamete. After fertilization, zygotes increased rapidly in size, accumulating reserve material in the form of lipid inclusions. Beginning at 16 days post-feeding (PF), the nucleus of the immature oocyst underwent multiple divisions in the first stage of sporoblast formation. Small crystalloid bodies initially appeared in the cytoplasm of the dividing oocyst at 2 0 days PF.

At 2 4 days PF, the oocyst contained hundreds of sporoblasts, each of which matured as early as 2 8 days PF into thick-walled sporocysts containing eight sporozoites and a large residual body.

Sporozoites contained a large crystalloid body comprised of tightly-packed particles assembled in a paracrystalline array. The use of ultrastructural characters in the differentiation of Hepatozoon species is discussed in context with the current phylogenetic hypotheses of adeleorin taxa.

KEY WORDS : Culex pipiens, gametogony, haemogregarine, Hepatozoon, mosquito, sporogony, ultrastructure.

Résumé: CARACTÉRISTIQUES ULTRASTRUCTURALES DU DÉVELOPPEMENT GAMÉTOGÉNIQUE ET SPOROGONIQUE D'HEPATOZOON SIPEDON (APICOMPLEXA: ADELEORINA) : Applicabilité des caractéristiques ultrastructurales pour la séparation des espèces d'Hepatozoon Les stades de la gamétogonie et de la sporogonie de

l'hémogrégarine Hepatozoon sipedon, un parasite du phylum Apicomplexa qui infeste la Couleuvre d'eau (Nerodia sipedon sipedon), ont été étudiés dans le moustique Culex pipiens à l'aide de la microscopie électronique. Quatre jours après que le moustique se soit nourri sur une couleuvre, un microgamonte et un macrogamonte se sont associés (syzygyie) dans une vacuole parasitophore à l'intérieur de l'hémocoèle du moustique. La microgamétogénèse a produit deux microgamètes bi-flagellés, dont un a fertilisé la macrogamète. Après la fertilisation, les zygotes ont grandi rapidement et amassé d'importantes réserves sous forme d'inclusions lipidiques. Après le 16e jour, le noyau du jeune oocyste a subi des divisions multiples au cours du premier stade de la formation des sporoblastes. Les cristalloïdes apparaissent dans le cytoplasme de l'oocyste après le 20e jour. Le 24e jour, l'oocyste contient de nombreux sporoblastes, qui murissent tous après le 28e jour dans des sporocystes qui contiennent huit sporozoites et un grand corps résiduel. Les sporozoites contiennent un grand cristalloïde composé de petites particules en

arrangement paracristallin. L'usage des caractéristiques ultrastructurales pour la séparation des espèces d'Hepatozoon est présenté dans le contexte des hypothèses sur les phytogénies courantes des genres du sous-ordre Adeleorina.

MOTS CLÉS : Culex pipiens, gamétogonie, hémogrégarine, Hepatozoon, moustique, sporogonie, ultrastructure.

INTRODUCTION

S

p e c i e s o f the g e n u s Hepatozoon are h a e m o g r e - g a r i n e parasites c h a r a c t e r i z e d b y g a m e t o g e n i c and s p o r o g o n i c d e v e l o p m e n t , with the formation o f large multisporocystic o o c y s t s , in an a r t h r o p o d defi- nitive host, a n d m e r o g o n i c a n d g a m o n t o g o n i c d e v e - l o p m e n t in the internal organs a n d b l o o d cells o f a ver- t e b r a t e intermediate h o s t after an infected a r t h r o p o d is i n g e s t e d (Levine, 1 9 8 8 ) . O v e r 3 0 0 s p e c i e s o f Hepato-

*Department of Zoology, University of Toronto, Toronto, Ontario, Canada M5S 3G5.

Correspondence: Sherwin S. Desser. Tel: (416) 978-6956 - Fax : (416) 978-8532 - E-mail <wired@zoo.toronto.edu>.

zoon h a v e b e e n r e p o r t e d from all g r o u p s o f t e t r a p o d v e r t e b r a t e s , a l t h o u g h o v e r 9 0 % o f t h e s e h a v e b e e n d e s c r i b e d s o l e l y o n the b a s i s o f b l o o d s t r e a m g a m o n t s (Smith, 1 9 9 6 ) . T h e m o r p h o l o g i c a l features o f intraery- throcytic a n d i n t r a l e u c o c y t i c stages are insufficient to s e p a r a t e m e m b e r s o f this g e n u s from t h o s e o f o t h e r g e n e r a o f h a e m o g r e g a r i n e s infecting terrestrial verte- brates, n a m e l y Haemogregarina, Hemolivia & Karyo- lysus ( M o h a m m e d & Mansour, 1 9 5 9 ; Ball et al., 1 9 6 7 ) , let a l o n e to c o n f e r specific status.

T h e m o s t useful criteria for the g e n e r i c p l a c e m e n t o f h a e m o g r e g a r i n e s and the differentiation o f Hepatozoon s p e c i e s are features o f g a m e t o g o n y a n d s p o r o g o n y in the invertebrate h o s t (Ball, 1 9 6 7 ) , w h i c h for m e m b e r s o f this g e n u s m a y b e e i t h e r a tick, mite, l o u s e , dip- teran, o r flea (Telford, 1 9 8 4 ) . However, with the e x c e p -

Parasite, 1997, 2, 141-151

Mémoire

141

Article available athttp://www.parasite-journal.orgorhttp://dx.doi.org/10.1051/parasite/1997042141

(2)

SMITH T.G. & DESSER S.S.

tion o f a few ultrastructural studies (Vivier et al., 1 9 7 2 ; G ö b e l & Krampitz, 1 9 8 2 ; Bashtar et al, 1 9 8 4 b ; Lowi- chik et al., 1 9 9 3 ; D e s s e r et ai, 1 9 9 5 ) , data for sexual d e v e l o p m e n t are often i n c o m p l e t e o r restricted to stages o b s e r v e d by light m i c r o s c o p y . In this study, w e d e s c r i b e the ultrastructure o f the g a m e t o g e n i c and s p o r o g o n i c stages o f Hepatozoon sipedon, a s p e c i e s infecting Northern water s n a k e s in Culex pipiens, a potentially natural definitive host (Smith et al., 1 9 9 4 ) .

MATERIALS AND METHODS

COLLECTION AND MAINTENANCE OF EXPERIMENTAL ANIMALS

N

o r t h e r n w a t e r s n a k e s (Nerodia sipedon sipedon) w e r e c o l l e c t e d from marshes near the Q u e e n ' s University Biological Station ( 4 4 ° 3 5 ' N ; 7 6 ° 1 5 ' W ) , north o f Kingston, Ontario, Canada in May, 1 9 9 2 . Smears m a d e o f b l o o d c o l l e c t e d from the caudal vein w e r e fixed and stained with Diff- Q u i k ® . and e x a m i n e d for h a e m o g r e g a r i n e s . S n a k e s w e r e h o u s e d in m e s h - c o v e r e d terraria and maintained on a diet o f c h o p p e d w o r m s and fish.

Larvae o f the m o s q u i t o Culex pipiens, o b t a i n e d from Carolina Biological Supply C o m p a n y , w e r e fed a mix­

ture o f TetraMin® fishfood and yeast, and maintained in dechlorinated tap water at 25 °C in shallow plastic- tubs. P u p a e in small jars o f water w e r e transferred to s c r e e n e d plastic b o x e s . Adults w e r e provided with distilled water and a 10 % sucrose solution, and main­

tained at 25 °C at 7 5 - 8 0 % humidity o n a 1 4 : 1 0 hour day/night cycle.

EXAMINATION OF DEVELOPMENTAL STAGES

Mosquitoes deprived o f water and sucrose for 12 and 3 6 hours, respectively, w e r e allowed to feed o n an unrestrained infected water s n a k e in a glass feeding c a g e in the dark at 25 ° C Engorged m o s q u i t o e s w e r e maintained as described a b o v e .

Wet mounts o f the abdominal contents o f C. pipiens w e r e e x a m i n e d at 2 8 days PF. Single oocysts w e r e rup­

tured by applying gentle pressure on an overlying c o v e r slip in order to o b s e r v e and count sporocysts.

A b d o m e n s o f blood-fed C. pipiens w e r e dissected at 1, 4 - 1 4 , 16, 18, 2 0 , 22, 24 and 2 8 days PF and fixed in 2.5 % ( v / v ) glutaraldehyde in 0 , 0 9 M S ö r e n s e n ' s p h o s p h a t e buffer ( B o z z o l a & Russell, 1 9 9 2 ) , pH 7 . 1 , for 7 2 h o u r s . S p e c i m e n s w e r e p o s t - f i x e d in 4 % osmium tetroxide in 0.13 M S ô r e n s e n ' s buffer contai­

ning 0.8 % ( w / v ) potassium ferrocyanide and 0.15 M s u c r o s e , d e h y d r a t e d through an a s c e n d i n g g r a d e d ethanol series, and infiltrated and e m b e d d e d in Spurr's resin (Spurr, 1 9 6 9 ) . Semithin sections (0.5 μm), cut

using a R e i c h e r t Ultracut-E u l t r a m i c r o t o m e , w e r e stained with 1.0 % toluidine blue and post-stained with 1.0 % b a s i c fuchsin. Ultrathin s e c t i o n s w e r e stained using 2.0 % ( w / v ) uranyl acetate in 5 0 % m e t h a n o l , post-stained in Reynolds' lead citrate (Reynolds, 1 9 6 3 ) , and e x a m i n e d with a Hitachi H 7 0 0 0 e l e c t r o n micro­

s c o p e .

All photomicrographs, including those o f w e t mounts and semithin sections, w e r e taken with a Zeiss Uni­

versal 1 p h o t o m i c r o s c o p e using K o d a k T-MAX 100 film.

RESULTS

A

t 1 day PF, g a m o n t s o f Hepatozoon sipedon, w h i c h m a i n t a i n e d t h e e l o n g a t e d structure o b s e r v e d in b l o o d films (Fig. 1), had e m e r g e d from i n g e s t e d e r y t h r o c y t e s and w e r e o b s e r v e d in groups o f two, three or four (Fig. 2 ) a m o n g b l o o d cells in the gut o f the mosquito.

At 4 days PF, gamonts that had paired in syzygy within a parasitophorous v a c u o l e w e r e o b s e r v e d undergoing g a m e t o g e n e s i s within the cytoplasm o f fat b o d y cells in the h a e m o c o e l o f the m o s q u i t o C. pipiens (Fig. 3 ) T h e m a c r o g a m e t e contained large mitochondria and a nucleus that a p p e a r e d similar to that o f a gamont. At the c o m p l e t i o n o f m i c r o g a m e t o g e n e s i s , m i c r o g a m e t e s w e r e o b s e r v e d adjacent to the large m a c r o g a m e t e and the residual b o d y o f the microgamont, an irregular structure still containing m i c r o n e m e s and the remains o f an apical c o m p l e x (Fig. 3 ) . Examination o f serial semithin sections revealed that two biflagellate micro- g a m e t e s w e r e formed from e a c h microgamont. Micro- g a m e t e s consisted almost c o m p l e t e l y o f an electron- d e n s e n u c l e u s ( F i g . 4 ) , s u r r o u n d e d b y a t y p i c a l trilaminar pellicle. Cross-sections through the flagella o f the m i c r o g a m e t e s typically revealed a 9 + 1 arran­

g e m e n t o f singlet microtubules within a trilaminar fla­

gellar sheath (Fig. 5 ) .

S p o r o g o n i c d e v e l o p m e n t w a s o b s e r v e d b e t w e e n 5 and 28 days PF. Zygotes, e a c h contained within a para­

sitophorous vacuole, rapidly increased in size after fer­

tilization. At 6 days PF, immature oocysts c o n t a i n e d n u m e r o u s mitochondria around the periphery o f the cell and a few dispersed lipid inclusions (Fig. 6 ) . T h e nucleus c o n t a i n e d a granular nucleolus w h i c h w a s considerably m o r e c o n d e n s e d than that o b s e r v e d in m a c r o g a m e t e s . A substantial increase in the n u m b e r o f lipid inclusions and e l e c t r o n - d e n s e vesicles w a s evi­

dent in immature oocysts at 13 days PF (Fig. 7 ) . T h e nucleus at this stage was proportionally smaller, with a highly-condensed nucleolus. T h e intracellular nature o f s p o r o g o n i c d e v e l o p m e n t w a s still apparent at this

(3)

GAMETOGENESIS AND SPOROGONY OF HEPATOZOON SIPEDON

Figs. 1-5. — Gametogenesis of Hepatozoon sipedon. 1. Light micrograph of gamont (arrow) in erythrocyte of Northern water snake. Bar

= 10 μm. 2. Two gamonts (arrows) that have emerged from erythrocytes in the gut of Culex pipiens at 1 day post-feeding (PF). Bar = 1 μm.

3. A macrogamete (ma) with diffuse chromatin, two microgametes (mi), and the residual body of the microgamont (r) in a fat body cell at 4 days PF. Cross-sections through the flagella of the microgametes are indicated by arrowheads. Bar = 1 μm. 4. Microgamete at higher magnification, revealing the large electron-dense nucleus (asterisk) that occupies most of the cell. Bar = 0.5 μm. 5. A higher magnification of a cross-section through the flagella of the microgamete, showing the 9 + 1 arrangement of singlet microtubules within a trilaminar fla­

gellar sheath. Bar = 0.1 μm.

Parasite, 1997, 2, 141-151

Mémoire

1 4 3

(4)

SMITH T.G. & DESSER S.S.

Figs. 6-9. — Early sporogonic development of H. sipedon. 6. Immature oocyst at 6 days PF, revealing the nucleus (n). peripherally-arranged mitochondria (m) and a few dispersed lipid inclusions (asterisks). Bar = 5 μm. 7. Immature oocyst at 13 days PF, showing an increase in the number of lipid inclusions (asterisks) and the appearance of electron-dense vesicles (arrow). Note the intracellular aspect of the deve­

loping oocyst. Bar = 10 μm. 8. Immature oocyst at 14 days PF, with invaginations of the cytoplasmic membrane. Lipid inclusions (aste­

risks) and electron-dense vesicles are numerous. Bar - 10 μm. 9. Immature oocyst at 16 days PF, revealing four nuclei (n), each with a diffuse nucleolus. The electron-dense vesicles are most numerous at this stage. Bar = 10 μm.

(5)

stage, although due to the increasing size o f the imma­

ture oocyst, it w a s not o b v i o u s later in d e v e l o p m e n t . At 14 days PF, the cytoplasmic m e m b r a n e o f the imma­

ture o o c y s t b e g a n to invaginate (Fig. 8 ) . Many small mitochondria occurred in the cytoplasm o f the oocyst b e t w e e n these invaginations. Serial sections revealed that the nucleus o f the o o c y s t had divided into four smaller nuclei at 16 days PF (Fig. 9 ) . O t h e r features included many lipid inclusions smaller in size than t h o s e s e e n at earlier s t a g e s , small e l e c t r o n - d e n s e vesicles, and numerous small b l e b s o f cytoplasm exten­

ding from the oocyst. E a c h nucleus contained a dif­

fuse granular nucleolus and regions o f heterochro- matin. At 2 0 days PF, the nuclei o f the oocyst had subdivided further and w e r e found near the periphery o f the o o c y s t (Fig. 1 0 ) . In addition to abundant mito­

chondria and lipid inclusions, the cytoplasm o f the developing oocyst c o n t a i n e d small crystalloid b o d i e s consisting o f clumps o f round particles surrounded by rough e n d o p l a s m i c reticulum (Fig. 1 1 ) . A d e c r e a s e in the n u m b e r o f electron-dense inclusions was c o n c o ­ mitant with the increase in the n u m b e r o f small crys­

talloid bodies.

B y 24 days PF, n u m e r o u s sporoblasts (Fig. 1 2 ) w e r e found within developing oocysts. D e v e l o p i n g sporo­

blasts, e a c h invested by a trilaminar pellicle, included large crystalloid b o d i e s , amylopectin and lipid inclu­

sions, and o n e or more nuclei that were often observed near the periphery o f the sporoblast. Crystalloid bodies in s p o r o b l a s t s w e r e o r g a n i z e d into paracrystalline arrays (Fig. 1 3 ) and lacked the enclosing rough e n d o ­ plasmic reticulum s e e n in immature oocysts. Sporoblast nuclei contained a d e n s e nucleolus, unlike the granular nature o b s e r v e d in earlier stages. O t h e r distinctive fea­

tures o f sporoblasts included large projections o f cyto­

plasm (Fig. 1 4 ) , and the p r e s e n c e o f micropores o n the sporoblast surface (Fig. 14, inset).

By 2 8 days PF, most oocysts w e r e mature, consisting o f hundreds ( m e a n = 5 9 1 , n = 5 ) o f differentiated spo- rocysts e n c l o s i n g fully-formed s p o r o z o i t e s . Mature oocysts (Fig. 1 5 ) w e r e spherical and averaged 2 6 2 . 6

± 2 3 0 μm (n = 2 0 ) in diameter; mature sporocysts (Fig. 1 6 ) w e r e spherical and averaged 18.2 ± 1 . 0 μm (n = 4 0 ) in diameter. Individual sporocysts (Fig. 1 7 ) c o n t a i n e d eight sporozoites and a large residual b o d y e n c l o s e d within a thick sporocyst wall c o m p o s e d o f two layers (Fig. 17, inset A ) . T h e residual body, which e n c l o s e d large amylopectin and lipid inclusions, was b o u n d e d by a single m e m b r a n e , in contrast to the tri­

laminar pellicle surrounding the sporozoites (Fig. 17, inset B ) . Sporozoites (Figs. 17, 1 8 ) contained o n e large crystalloid body, n u m e r o u s a m y l o p e c t i n inclusions, and a typical apical c o m p l e x consisting o f a c o n o i d , polar ring c o m p l e x , rhoptries, m i c r o n e m e s and sub- pellicular microtubules.

DISCUSSION

T

h e observation that g a m o n t s o f Hepatozoon sipedon associate in c l o s e proximity to e a c h other after emerging from erythrocytes within the b l o o d meal o f the m o s q u i t o is reported for a spe­

cies o f the genus for the first time. Lowichik et al.

( 1 9 9 3 ) reported widely-dispersed gamonts o f H. mocas- sini that travelled independently through the peritro- phic m e m b r a n e and penetrated the gut wall o f the m o s q u i t o . W h e t h e r or not g a m o n t s o f H. sipedon maintain this c l o s e association as they penetrate the gut wall is not known. Syzygy, gametogenesis, the for­

mation o f a Plasmodium-like o o k i n e t e , and fertiliza­

tion, w h i c h has b e e n reported, perhaps erroneously (Siddall, 1 9 9 5 ) for s o m e H e p a t o z o o n s p e c i e s to o c c u r in the gut lumen o f arthropods (Miller, 1 9 0 8 ; Robin,

Figs. 10, 11. — Late sporo­

gonic development of H.

sipedon at 20 days PF.

10. Immature oocyst with small nuclei (n) near the periphery.

Bar = 10 μm. 11. Higher magnification of a developing crystalloid body consisting of lipoprotein particles sur­

rounded by rough endo­

plasmic reticulum. Bar

= 0.2 μm.

Parasite, 1997, 2, 141-151

Mémoire

(6)

SMITH T.G. & DESSER S.S.

Figs. 12-14. — Late sporogonic development of H. sipedon at 24 days PF. 12. Sporoblast, surrounded by a trilaminar membrane, contai­

ning large crystalloid bodies (c), amylopectin (arrow) and lipid (asterisks) inclusions, and a nucleus («). Bar = 1 μm. 13. Crystalloid bodies are organized into paracrystalline arrays of small lipoprotien particles. Bar - 0.5 μm. 14. Developing sporoblasts with a trilaminar pellicle (arrow), large projections of cytoplasm, and micropores (arrowheads). Bar = 1 μm. Inset shows a micropore on the outer surface of the sporoblast membrane. Bar = 0.2 μm.

(7)

GAMETOGENESIS AND SPOROGONY OF HEPATOZOON SIPEDON

Figs. 15-18. — Mature oocysts and sporocysts of H. sipedon at 30 clays PF. 15. Light micrograph of mature oocyst, containing over 500 spo­

rocysts. Bar = 50 μm. 16. Phase contrast micrograph of a mature sporocyst with 8 sporozoites. Bar = 10 μm. 17. Cross-section through mature sporocyst. revealing sporozoites (arrows) that contain a single large crystalloid body (c), and a residual body (r) with amylopectin and lipid inclusions. Bar = 0.5 μm. Inset A shows the thick outer wall of the sporocyst composed of two layers. Bar = 0.2 μm. Inset B reveals that the residual body (r) is surrounded by a single membrane unlike the trilaminar pellicle (arrowhead) enclosing the mature spo- rozoite. Bar = 0.2 μm. 18. Mature sporozoite with an apical complex consisting of a conoid (C), polar ring complex (P), rhoptries (R) and micronemes (M). Bar = 0.2 μm.

Parasite, 1997, 2, 141-151 147

Mémoire

(8)

1936; Lewis & Wagner, 1 9 6 4 ) , have not b e e n observed in this o r other ultrastructural studies o f the g a m e t o - g e n e s i s o f Hepatozoon s p e c i e s (Vivier et al, 1 9 7 2 ; G ö b e l & Krampitz, 1 9 8 2 ; Bashtar et al., 1984b; Lowi- chik étal, 1 9 9 3 ; D e s s e r et al., 1 9 9 5 ) .

T h e ultrastructural features o f the g a m e t o g e n i c stages o f H. sipedon in its definitive host, Culex pipiens, w e r e generally similar to those o f other species o f Hepato­

zoon, including H. domerguei in Anopheles stephensi (see Vivier et al., 1 9 7 2 ) , H. aegypti in Culex pipiens

molestus ( s e e Bashtar et al., 1984b), and H. mocassini in Aedes aegypti ( s e e Lowichik et al., 1 9 9 3 ) , which uti­

lize snakes as vertebrate hosts, H. cateshianae in Culex territans, which infects the erythrocytes o f frogs (Desser et al., 1 9 9 5 ) , and H. erhardovae in the flea Xenopsylla cheopis, w h i c h infects the leucocytes o f voles ( G ö b e l

& Krampitz, 1 9 8 2 ) . In e a c h o f these species, syzygy involved the pairing o f a microgamont and a m a c r o - gamont in the s a m e parasitophorous v a c u o l e and sub­

sequent transformation o f e a c h gamont to a roughly spherical shape. Microgametogenesis resulted in the for­

mation o f microgametes that are characterized b y a large electron-dense nucleus and, d e p e n d i n g o n the species, the p r e s e n c e o f o n e or two flagella. T h e fate o f those microgametes not involved in fertilization and the residual b o d y o f the microgamont is unknown, des­

pite the fact that such residual structures are never s e e n after fertilization is c o m p l e t e , unlike that observed for Haemogregarina balli, in which such a residuum is pre­

sent in the mature oocyst (Siddall & Desser, 1990).

G a m e t o g e n i c and s u b s e q u e n t s p o r o g o n i c d e v e l o p ­ ment o f H. sipedon o c c u r r e d in the h a e m o c o e l o f the definitive invertebrate host ( s e e also Smith et al., 1994), the most c o m m o n site for sexual development o f other m e m b e r s o f this genus, including all o f those infecting s n a k e s (Landau et al., 1 9 7 0 ; Ball & O d a , 1 9 7 1 ; Bashtar et al., 1 9 8 4 a ; Lowichik et ai, 1 9 9 3 ) , and many o f those parasitizing lizards (Mackerras, 1 9 6 2 ; Bashtar et al.,

1 9 8 7 ) and m a m m a l s (Furman, 1966; Krampitz, 1 9 8 1 ) . Consistent with this localization o f d e v e l o p m e n t is the formation o f a non-motile zygote following syzygy and g a m e t o g e n e s i s . O t h e r m e m b e r s o f the g e n u s u n d e r g o sexual d e v e l o p m e n t and s p o r o g o n y in the gut wall o f a mite, as is the c a s e with the lizard parasite, H. lygo- somarum ( s e e Allison & Desser, 1 9 8 1 ) or a tick, as o b s e r v e d with the tortoise h a e m o g r e g a r i n e , H. mau-

ritanicum (see Michel, 1 9 7 3 ) . T h e gut as a d e v e l o p ­ mental location for g a m e t o g o n y and s p o r o g o n y is similar to that o f m o r e derived adeleorins (Barta, 1 9 8 9 ; Siddall & Desser, 1991 ; Siddall, 1 9 9 5 ) , including s p e ­ cies o f Karyolysus ( s e e Svahn, 1975), Desseria ( s e e Sid­

dall & Desser, 1 9 9 2 ) , Cyrilia ( s e e Lainson, 1 9 8 1 ) , Hae­

mogregarina ( s e e S i d d a l l & D e s s e r , 1 9 9 0 ) , a n d Babesiosoma ( s e e Barta & Desser, 1 9 8 9 ) . In a phylo- g e n e t i c analysis o f the g e n u s Hepatozoon and related

h a e m o g r e g a r i n e taxa (Smith & Desser, in press), in w h i c h the d e v e l o p m e n t a l location o f s p o r o g o n y w a s used as a character, it was found that H. lygosomarum, H. mauritanicum, the remaining h a e m o g r e g a r i n e taxa and the dactylosomatids form a m o n o p h y l e t i c group that is the sister clade to a m o n o p h y l e t i c g r o u p o f Hepatozoon s p e c i e s that d e v e l o p in the h a e m o c o e l o f the invertebrate host.

T h e n u m b e r o f m i c r o g a m e t e s formed from a micro­

g a m o n t also varies a m o n g s p e c i e s o f Hepatozoon and has b e e n used as a character in the p h y l o g e n e t i c ana­

lysis o f the g e n u s (Smith & Desser, in press). Four m i c r o g a m e t e s per m i c r o g a m o n t have b e e n c o m m o n l y o b s e r v e d (Mackerras, 1 9 6 2 ; Ball & O d a , 1 9 7 1 ; Michel, 1 9 7 3 ; Bashtar et al., 1 9 8 4 b ; Bashtar et al., 1 9 8 7 ; Lowi­

chik et al., 1 9 9 3 ) , w h e r e a s o t h e r studies, including this one, h a v e revealed only t w o (Landau et al., 1 9 7 2 ; G ô b e l & Krampitz, 1 9 8 2 ; Desser et al, 1995). However, the inconsistency o f this character a m o n g Hepatozoon s p e c i e s , c o u p l e d with the difficulty in determining the n u m b e r o f m i c r o g a m e t e s formed from e a c h microga­

mont, precludes this character from b e i n g used to dif­

ferentiate groups within the genus.

T h e n u m b e r o f flagella b o r n e by e a c h m i c r o g a m e t e also provides p h y l o g e n e t i c data for separating Hepa­

tozoon species, as again there is variation within m e m ­ bers o f the genus. Biflagellated m i c r o g a m e t e s are the most c o m m o n state (Mackerras, 1 9 6 2 ; Landau et al., 1 9 7 0 ; Ball & O d a , 1 9 7 1 ; Lowichik et al, 1 9 9 3 ; D e s s e r et al., 1 9 9 5 ) , but uniflagellated m i c r o g a m e t e s have b e e n reported ( G ô b e l & Krampitz, 1982 ; Bashtar et al., 1 9 8 4 b ; Bashtar et al., 1 9 8 7 ) , as have aflagellated forms (Michel, 1 9 7 3 ) . T h e biflagellated state is shared with the m i c r o g a m e t e s o f eimeriorins, resulting in a less derived position for Hepatozoon in the p h y l o g e n e t i c analyses performed by Barta ( 1 9 8 9 ) , Siddall & D e s s e r ( 1 9 9 1 ) & Siddall ( 1 9 9 5 ) . T h e uniflagellated condition is similar to that observed in haemospororins (Garnham et al., 1 9 6 7 ; Desser, 1 9 7 0 ) and l o w e r adeleorins o f the g e n u s Klossia ( s e e Moltmann, 1 9 8 1 ) , while the afla­

gellated forms are characteristic o f m o r e highly derived adeleorins (Lainson, 1 9 8 1 ; Siddall & D e s s e r , 1 9 9 0 , 1 9 9 2 ; Barta, 1 9 9 D .

T h e flagella o f Hepatozoon s p e c i e s have b e e n s h o w n in the present study and those b y Bashtar et al. (1984b), Lowichik et al. ( 1 9 9 3 ) and D e s s e r et al. ( 1 9 9 5 ) to consist o f unusual arrangements o f single microtu­

bules, including 9 + 1, 8 + 2, 8 + 1, 7 + 1, and 4 + 0 forms, all o f w h i c h deviate from the classical 9 + 2 arrangement o f doublet microtubules s e e n in the m i c r o g a m e t e s o f other a p i c o m p l e x a n s ( S c h o l t y s e c k et al., 1 9 7 2 ) . As suggested b y Siddall & D e s s e r ( 1 9 9 0 ) , such unusual arrangements o f microtubules indicate that these structures are vestigial in nature, as such organelles w o u l d b e u n n e c e s s a r y for adeleorin para-

(9)

sites that associate in c l o s e proximity during syzygy.

In any c a s e , the highly variable microtubule arrange­

ments recorded for a single s p e c i e s o f Hepatozoon likely precludes this feature for s p e c i e s description o r differentiation.

U l t r a s t r u c t u r a l f e a t u r e s o f s p o r o g o n i c s t a g e s o f H. sipedon are consistent with t h o s e o b s e r v e d for H. domerguei ( s e e Vivier et al., 1 9 7 2 ) , H. erhardovae ( s e e G ô b e l & Krampitz, 1 9 8 2 ) H. aegypti ( s e e Bashtar et al., 1 9 8 4 © , H. mocassini ( s e e Lowichik et al., 1 9 9 3 ) and H. catesbianae ( s e e D e s s e r et al., 1 9 9 5 ) , despite the fact that for each species o f parasite a different spe­

cies o f intermediate host is utilized. T h e early stages o f nuclear division, o b s e r v e d as four nuclei c o n t a i n e d within the immature o o c y s t (Fig. 9 ) , have b e e n illus­

trated previously b y Vivier et al. ( 1 9 7 2 ) . T h e y inter­

preted this stage as the final result o f meiotic division o f the zygote, a prelude to the mitotic division o f nuclei that marks the first stage o f sporoblast formation. Sub­

sequently, several rounds o f mitosis p r o d u c e many sporocyst nuclei that are distributed n e a r the per­

iphery o f the oocyst. D e e p invaginations o f the plasma m e m b r a n e result in the formation o f cytoplasmic pro­

trusions, e a c h containing o n e nucleus, that eventually b u d off to form immature sporocysts (Bashtar et al.,

1 9 8 4 b ) .

In m a n y studies o f the s p o r o g o n i c d e v e l o p m e n t o f Hepatozoon species, small crystalloid bodies b o u n d b y rough e n d o p l a s m i c reticulum a p p e a r e d prior to the division o f t h e i m m a t u r e o o c y s t into s p o r o b l a s t s ( 2 0 days P F ) . It s e e m s that these crystalloid b o d i e s are the precursors o f the larger forms s e e n in sporoblasts and sporocysts, as Bashtar et al. ( 1 9 8 4 b ) o b s e r v e d d e e p invaginations o f the o o c y s t m e m b r a n e prior to sporoblast differentiation, with e a c h resulting projec­

tion containing o n e nucleus and a n u m b e r o f small crystalloid b o d i e s . Mature crystalloid b o d i e s s e e n in mature sporozoites are c o m p o s e d o f paracrystalline arrays o f small lipoprotein-containing particles des­

cribed originally from sporozoites o f L e u c o c y t o z o o n and Haemoproteus s p e c i e s ( D e s s e r & Trefiak, 1 9 7 1 ; Trefiak & Desser, 1 9 7 3 ) . Small electron-dense inclu­

sions that w e r e abundant prior to the formation o f crys­

talloid b o d i e s d e c r e a s e d in n u m b e r and eventually disappeared w h e n crystalloid bodies w e r e fully formed.

T h e s e inclusions may serve as the lipoprotein precursor that is p a c k a g e d into the particles that constitute e a c h crystalloid body.

T h e p r e s e n c e o f a trilaminar pellicle surrounding the d e v e l o p i n g s p o r o c y s t w a s r e p o r t e d in H. sipedon (Fig. 1 3 ) and H. domerguei ( s e e Vivier et al, 1 9 7 2 ) . T h e present study revealed that the mature sporozoites are invested b y a trilaminar pellicle, w h e r e a s the resi­

dual b o d y remaining after c o m p l e t i o n o f sporocyst d e v e l o p m e n t w a s e n c l o s e d b y a single plasma m e m ­

brane. T h e formation o f sporozoites from sporoblasts has b e e n o b s e r v e d for other species o f Hepatozoon ( B a s h t a r et al, 1984b; Lowichik et al, 1 9 9 3 ) , and involves concurrent nuclear division o f the sporoblast nucleus into presumptive sporozoite nuclei and the for­

mation o f sporozoite anlagen from cytoplasmic pro­

trusions o f the sporocyst.

Micropores o n the surface o f the sporoblast (Fig. 1 7 ) have b e e n o b s e r v e d previously b y Vivier et al. ( 1 9 7 2 ) . Their p r e s e n c e indicates that sporoblasts are still acti­

vely assimilating nutrients from the external environ­

ment, in this c a s e the residuum c o n t a i n e d within the walls o f the oocyst, or perhaps material s e q u e s t e r e d from the remains o f the fat b o d y o f the mosquito host.

In fact, mosquitoes containing 100 or m o r e oocysts are usually devoid o f eggs, indicating that resources nor­

mally allotted to egg production are probably utilized b y the developing parasites.

Mature sporozoites o f H. sipedon contain only o n e crys­

talloid body, similar to t h o s e o f H. catesbianae ( s e e D e s s e r et al., 1 9 9 5 ) . However, sporozoites o f other Hepatozoon species (Bashtar et al., 1 9 8 4 b ; Lowichik et al., 1 9 9 3 ) and o t h e r a d e l e o r i n s (Siddall & D e s s e r , 1991 ; Siddall & Desser, 1993), contain two distinct crys­

talloid bodies. Hepatozoon sipedon, w h i c h requires both an anuran and ophidian host (Smith et al., 1 9 9 4 ) and H. catesbianae, w h i c h exclusively utilizes frogs as vertebrate hosts ( D e s s e r et al., 1 9 9 5 ) , w e r e h y p o ­ thesized to b e sister taxa in a p h y l o g e n e t i c r e c o n s ­ truction o f Hepatozoon s p e c i e s (Smith & Desser, in press), and h e n c e the reduction to o n e crystalloid b o d y might represent an a p o m o r p h i c feature o f this clade. T h e ultrastructure o f these b o d i e s is similar to those reported from other Hepatozoon species and ade­

leorins.

Given the variability in the site o f gametogenic and spo­

rogonic d e v e l o p m e n t and the n u m b e r and structure o f the microgametes, as well as the conclusions made from phylogenetic hypotheses o f the adeleorin genera, there is substantial information with which to justify splitting the genus Hepatozoon, an observation previously made by other workers (Ball & Oda, 1 9 7 1 ; Barta, 1 9 8 9 ) and reiterated b y Smith & D e s s e r (in press). T h e r e is little doubt that groups o f Hepatozoon species displaying such variety in life history could b e elevated to generic- status, although the features that would constitute viable characters for separation would have to b e determined.

T h e lack o f c o m p l e t e , reliable life cycle and ultra- structural data for the majority o f Hepatozoon species, especially for those m e m b e r s which infect mammals, lizards, birds and crocodilians, currently precludes any division o f this genus. Siddall & D e s s e r ( 1 9 9 2 ) stress the necessity for ultrastructural studies to fully document the life cycle o f adeleorin parasites. Although ultra- structure may b e useful in distinguishing a m o n g exis-

Parasite, 1997, 2, 141-151

149 GAMETOGENESIS AND SPOROGONY OF HEPATOZOON SIPEDON

(10)

S M I T H T . G . & D E S S E R S . S .

ting genera, the similarity o f many o f these stages a m o n g the Hepatozoon species investigated s o far indi- cates that only certain features, including the n u m b e r o f m i c r o g a m e t e s p r o d u c e d p e r m i c r o g a m o n t , t h e number o f flagella borne by each microgamete, a n d the n u m b e r and fine structure o f crystalloid bodies, will b e useful in further t a x o n o m i c studies.

ACKNOWLEDGEMENTS

W

e t h a n k H e n r y H o n g , B e t t y K i m a n d C h o n g x i e X i a o for their c o m m e n t s o n ear- lier drafts o f the paper. Further recognition is d u e Henry Hong for his technical assistance a n d Andrea Lawson for h e r help in collecting m o s q u i t o e s at the Wildlife Research Station. This research w a s sup- p o r t e d b y T h e Natural S c i e n c e s a n d E n g i n e e r i n g Research Council o f Canada.

REFERENCES

ALLISON B. & DESSER S.S. Developmental stages of Hepato- zoon lygosomarum (Doré, 1919) comb. n. (Protozoa: Hae- mogregarinidae), a parasite of a New Zealand skink, Leio- lopisma nigriplantare. Journal of Parasitology, 1991, 67, 852-858.

BALL G.H. Some blood sporozoans from east African reptiles.

Journal of Protozoology, 1967, 14, 198-210.

BALL G.H. & ODA S.N. Sexual stages in the life history of the hemogregarine Hepatozoon rarefaciens (Sambon

& Seligman, 1907). Journal of Protozoology, 1971, 18, 697-700.

BALL G.H., CHAO J . & TELFORD S.R. The life history of Hepa- tozoon rarefaciens (Sambon & Seligman, 1907) from Dry- marchon corais (Colubridae), and its experimental transfer to Constrictor constrictor (Boidae). Journal of Parasitology, 1967, 53, 897-909.

BARIA J.R. Phylogenetic analysis of the class Sporozoea (Phylum Apicomplexa Levine, 1970): Evidence for the independent evolution of heteroxenous life cycles. Journal of Parasitology, 1989, 75, 195-206.

BARIA J.R. The Dactylosomatidae. Advances in Parasitology, 1991, 30, 1-37.

BARIA J.R. & DKSSER S.S. Development of Babesiosoma sta- bleri (Dactylosomatidae, Adeleida; Apicomplexa) in its leech vector (Batracobdella picta) and the relationship of the dactylosomatids to the piroplasms of higher verte- brates. Journal of Protozoology, 1989, 36, 241-253-

BASIITAR A.R., BOULOS R. & MKHLHORN H. Hepatozoon aegypti nov. sp.: 1. Life cycle. Zeitscbrift fur Pamsitenkunde, 1984 a, 70, 29-41.

BASHTAR A.R., GHAFFAR, F A . & MEHLHORN H. Hepatozoon aegypti nov. sp.: 3. Electron microscopic studies on the gamogony and sporogony inside the vector Culexpipiens molestus. Zeitscbrift fur Parasitenkunde, 1984b, 70, 53-65.

BASHTAR A.R., ABDEL-GHAFFAR F.A. & SHAZI.Y M.A. Develop- mental stages of Hepatozoon gracilis (Wenyon, 1909) comb, nov., a parasite of the Egyptian skink, Mabuya quinquetaeniata. Parasitology Research, 1987, 73, 507-514.

BOZZOLA J J . & RUSSELL L.D. Electron microscopy: Principles and techniques for biologists. Jones and Bartlett Publishers.

Boston, Massachusetts, USA, 1992.

DESSER S.S. The fine structure of Leucocytozoon simondi.

I. Gametocytogenesis. Canadian Journal of Zoology, 1970, 48, 331-336.

DESSER S.S. & TREFIAK W.D. Crystalline inclusions in Leuco- cytozoon simondi. Canadian Journal of Zoology, 1971, 49, 134-135.

DESSER S.S., HONG H. & MARTIN D.S. The life history, ultra- structure, and experimental transmission of Hepatozoon catesbianae n. comb., an apicomplexan parasite o f the bullfrog, Rana catesbeiana and the mosquito, Culex ter- ritans in Algonquin Park, Ontario. Journal of Parasitology.

1995, 81, 212-222.

FURMAN D.P. Hepatozoon balfouri (Laveran, 1905): sporogonic cycle, pathogenesis, and transmission by mites to jerboa hosts. Journal of Parasitology, 1966, 52, 373-382.

GARNHAM P.C.C., BIRD R.G. & BAKER J.R. Electron microscope studies of motile stages of malaria parasites. V. Exflagel- lation in Plasmodium, Hepatocystis and Leucocytozoon.

Transactions of the Royal Society of Tropical Medicine and Hygiene, 1967, 61, 58-68.

GÔBEL E. & KRAMPITZ H.E. Histologische Untersuchungen zur Gamogonie und Sporogonie von Hepatozoon erhardovae in experimentell infizierten Rattenflôhen (Xenopsylla cheopis). Zeitscbrift fur Parasitenkunde, 1982, 67, 261-271.

KRAMPITZ H.E. Development of Hepatozoon erhardovae Kram- pitz, 1964 (Protozoa: Haemogregarinidae) in experimental mammalian and arthropod hosts. II. Sexual development in fleas and sporozoite indices in xenodiagnosis. Trans- actions of the Royal Society of Tropical Medicine and Hygiene, 1981, 75, 155-157.

LAINSON R. On Cyrilia gomesi (Neiva and Pinto, 1926) gen.

nov. (Haemogregarinidae) and Trypanosoma bourouli Neiva and Pinto, in the fish Synbranchus mormoratus:

simultaneous transmission by the leech Haementeria lutzi.

In: Parasitological Topics, Special Publication No. 1, Society of Protozoologists. Canning E.U. (ed.), Lawrence, Kansas, USA, 1981, 150-158.

LANDAU I., CHABAUD A.G., MICHEL J . C . & BRYGOO E.R. Mise en évidence d'un double mode de transmission chez un Hepatozoon de Reptiles malgaches. Comptes Rendus de l'Académie des Sciences, 1970, 270, 2308-2310.

LANDAU I., MICHEL J . C . , CHABAUD A.G. & BRYGOO E.R. Cycle biologique à'Hepatozoon domerguei; discussion sur les caractères fondamentaux d'un cycle de Coccidie. Zeit- scbrift fur Parasitenkunde, 1972, 38, 250-270.

LEVINE N.D. The protozoan phylum Apicomplexa. CRC Press Incorporated, Boca Raton, Florida, 1988.

LEWIS J.E. & WAGNER E.D. Hepatozoon sauromali sp. n., a hae- mogregarine from the Chuckwalla (Sauromalus spp.) with notes on the life history. Journal of Parasitology, 1964, 50, 11-14.

(11)

GAMETOGENESIS AND SPOROGONY OF HEPATOZOON SIPEDON

LOWICHIK A., LANNERS N.L., LOWRIE R.C. & MEINERS N.E. Game-

togenesis and sporogony of Hepatozoon mocassini (Api- complexa: Adeleina: Hepatozoidae) in an experimental mosquito host, Aedes aegypti. Journal of Eukaryotic Micro-

biology, 1993, 40, 287-297.

MACKERRAS M.J.

The life history of a Hepatozoon (Sporozoa:

Adeleidea) of varanid lizards in Australia. Australian Journal of Zoology. 1962, 10. 35-44.

MICHEL

J.C. Hepatozoon mauritanicum (Et. et Ed. Sergent.

1904) n. comb., parasite de Testudo graeca : redescription de la sporogonie chez Hyalomma aegyptium et la schi- zogonie tissulaire d'après le material d'E. Brumpt. Annales de Parasitologie Humaine et Comparée, 1973, 48, 11-21.

MILLER W . W .

Hepatozoonpemiciosum n. g., n. sp., a haemo- gregarine pathogenic for white rats ; with a brief descrip- tion of the sexual cycle in the intermediate host, a mite (Laelaps echidninus Berlese). Bulletin of the Hygiene Labo- ratory of Washington, 1908, 46, 51-123.

MOHAMMED A.H.H. & MANSOUR N.S. The haemogregarine

complex (an analytical systematic review). Bulletin of the Faculty of Science, Cairo University, 1959, 35, 39-51.

MOLTMANN U.G. Light and electron microscopic studies on Klossia helicina (Coccidia): development of gamonts in snail kidney tissue cultures and sporogony in the natural host. Protistologica, 1981, 7 7, 185-197.

REYNOLDS E.S. The use of lead citrate at high pH as an elec- tron opaque stain in electron microscopy. Journal of Cell Biology, 1963, 17, 208.

ROBIN

LA. Cycle évolutif d'un Hepatozoon de Gecko peni- cillatus. Annales de l'Institut Pasteur, 1936, 56, 376-394.

SCHOLTYSECK E., MEHLHORN H. & HAMMOND D.M. Electron

microscope studies of microgametogenesis in Coccidia and related groups. Zeitschrift fur Parasitenkunde, 1972, 38, 95-131.

SIDDALL M.E. Phylogeny of adeleid blood parasites with a par- tial systematic revision of the haemogregarine complex.

Journal of Eukaryotic Microbiology, 1995, 42, 116-125.

SIDDALL M.E. & DESSER S.S. Gametogenesis and sporogonic

development of Haemogregarina balli (Apicomplexa, Ade- leina: Haemogregarinidae) in the leech Placobdella ornata.

Journal of Protozoology, 1990, 37, 511-520.

SIDDALL

M.E. &

DESSER

S.S. Merogonic development of Hae- mogregarina balli (Apicomplexa, Adeleina: Haemogrega- rinidae) in the leech Placobdella ornata (Glossiphoniidae), its transmission to a chelonian intermediate host and phy- logenetic implications. Journal of Parasitology, 1991, 77.

426-436.

SIDDALL M.E. & DESSER S.S. Ultrastructure of gametogenesis

and sporogony of Haemogregarina (sensu lato) myoxo- cephali (Apicomplexa: Adeleina) in the marine leech Mal- miana scorpii. Journal of Protozoology, 1992, 39, 545-554.

SIDDALL M.E. & DESSER S.S. Ultrastructure of merogonic deve-

lopment of Haemogregarina (sensu lato) myoxocephali (Apicomplexa: Adeleina) in the marine leech Malmiana scorpii and localization of infective stages in the salivary cells. European fournal of Protistology, 1993, 29, 191-201.

SMITH

T.G The genus Hepatozoon (Apicomplexa: Adeleina).

Journal of Parasitology, 1996, 82, 565-585.

SMITH T.G. & DESSER S.S. Phylogenetic analysis of the genus

Hepatozoon (Apicomplexa: Adeleorina). Systematic Para- sitology, in press.

SMITH T.G., DESSER S.S. & MARTIN D.S. The development of

Hepatozoon sipedon n. sp. (Apicomplexa: Adeleina: Hepa- tozoidae) in its natural host, the Northern water snake (Nerodia sipedon sipedon), the culicine vectors, Culex pipiens and Culex territans, and an intermediate host, the Northern leopard frog (Rana pipiens). Parasitology Research, 1994, 80, 559-568.

SPURR A.R. A low-viscosity epoxy resin embedding medium for electron microscopy, fournal of Ultrastructural Research, 1969, 26, 31.

SVAHN

K. Blood parasites of the genus Karyolysus (Coccidia, Adeleina) in Scandinavian lizards. Description and life- cycle. Norwegian Journal of Zoology. 1975, 23, 277-295.

TELFORD S.R. Haemoparasites of reptiles. In: Diseases of Amphibians and Reptiles. Hoff G.L., Frye F.L. &

Jacobson E.R. (eds), Plenum Press, New York, USA, 1984, 385-517.

TREFIAK W.D. & DESSER S.S. Crystalloid inclusions in species

of Leucocytozoon, Parahaemoproteus, and Plasmodium, fournal of Protozoology, 1973, 20, 73-80.

VIVIER E., PETITPREZ A. & LANDAI: I. Observations ultrastruc-

turales sur la sporoblastogenèse de l'hémogrégarine, Hepa- tozoon domerguei, Coccidie, Adeleidea. Protistologica, 1972, 8, 315-333.

Reçu le 1

e r

février 1997 Accepté le 14 mars 1997

Mémoire 151

Parasite, 1997, 2, 141-151

(12)

Références

Documents relatifs

T h e fact that there are no other cmc surfaces with Q - O will be established in w A systematic approach to this classification problem is to study a suitable

Je n’ai pas trouvé d’autres formes pour initia- liser ce qui est devenu un art de vivre, celui qui naît lorsque nous installons la conscience dans le cœur et que nous abordons toutes

[r]

Il est conçu pour vous aider à lancer un dialogue sur l’âgisme à la maison, au travail, à l’école ou encore dans la sphère... MENER UN DIALOGUE AVEC VOS PROCHES ET

En 2015, pour la Semaine des Mathématiques, plusieurs centaines de clas- ses dans toute la France ont participé à un mini-concours par classe mis en place par Canopé National avec

- Roulés de tortillas au poulet avec ses pousses de radis - Plateau de fromages fins du Québec (bergeron, oka, brie, cheddar fort &amp; cheddar doux, bleu). - Éventail de crudités

Songez qu'il contient (j(&gt;7 articles, dont beaucoup donneront lieu à de longues discussions. Pen- dant ce temps, les autres projets concernant le travail seront renvoyés à la

In this case, both S t and the cubic surface have automorphism group S 5 , and S t has type VI in Kondo’s classification of complex Enriques surfaces with finite automorphism