• Aucun résultat trouvé

Identification of polynomial chaos representations in high dimension from a set of realizations

N/A
N/A
Protected

Academic year: 2021

Partager "Identification of polynomial chaos representations in high dimension from a set of realizations"

Copied!
34
0
0

Texte intégral

(1)

HAL Id: hal-00770006

https://hal-upec-upem.archives-ouvertes.fr/hal-00770006

Submitted on 4 Jan 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

high dimension from a set of realizations

Guillaume Perrin, Christian Soize, Denis Duhamel, Christine Fünfschilling

To cite this version:

Guillaume Perrin, Christian Soize, Denis Duhamel, Christine Fünfschilling. Identification of poly- nomial chaos representations in high dimension from a set of realizations. SIAM Journal on Sci- entific Computing, Society for Industrial and Applied Mathematics, 2012, 34 (6), pp.A2917-A2945.

�10.1137/11084950X�. �hal-00770006�

(2)

G. PERRIN

∗† ‡

,C. SOIZE

, D. DUHAMEL

, AND C. FUNFSCHILLING

Abstrat.

Thispaper deals with the identiation in high dimensionof polynomial haos expansionof

randomvetorsfromasetofrealizations. Duetonumerialandmemoryonstraints,theusualpoly-

nomialhaosidentiation methodsarebasedon aseriesof trunations thatinduesanumerial

bias. Thisbiasbeomesverydetrimentaltothe onvergeneanalysisofpolynomialhaosidenti-

ationinhighdimension. Thispaperthereforeproposesanewformulationoftheusualpolynomial

haosidentiationalgorithmstoavoidthisnumerialbias.Afterareviewofthepolynomialhaos

identiationmethod,theinueneofthenumerialbiasontheidentiationaurayisquantied.

Thenewformulationisthendesribedindetails,andillustratedontwoexamples.

Keywords.polynomialhaosexpansion,highdimension,omputation.

AMSsubjet lassiations.60H35,60H15,60H25,60H40,65C50

1. Introdution. Inspiteofalwaysmoreauratenumerialsolvers,determin-

istimodelsarenotabletorepresentmostoftheexperimental data,whiharevari-

ableandoftenunertainbynature. Hene,theappliationeldsofnondeterministi

modeling,whihantakeintoaountthemodelparametersvariabilityaswellasthe

modelerrorunertainties,haskeptinreasing. Unertaintiesarethereforeintrodued

inomputationalmehanialmodelswithmoreandmoredegreesoffreedom. Inthis

ontext,theharaterizationoftheprobabilitydistribution

P

η

(dx)

of

N

η-dimension

randomvetor

η

fromsetsofexperimentalmeasurementsisboundtoplayakeyrole, inpartiular,inhighdimension,thatistosayforalargevalueof

N

η. Inthiswork,it

isassumed that

P

η

(dx) = p

η

(x)dx

inwhihtheprobabilitydensityfuntion(PDF)

p

η is afuntion in theset

F ( D , R

+

)

of all thepositive-valued funtions dened on anypart

D

of

R

Nη andforwhihintegralover

D

is1.

Two kinds of methods an be used to build suh a PDF: the diret and the

indiretmethods. Amongthediretmethods,thePriorAlgebraiStohastiModeling

(PASM) methods postulate an algebrai representation

η ≈ t

alg

(Ξ, w)

, with

t

alg a

prior transformation,

Ξ

a given random vetor and

w

a vetor of parameters to

identify. Inthe same ategory, the methods based on the Information Theory and

theMaximumEntropyPriniple (MEP) havebeendevelopped(see[13℄ and[27℄)to

ompute

p

ηfromtheonlyavailableinformationofrandomvetor

η

. Thisinformation anbeseenastheadmissibleset

C

adfor

p

η:

C

ad

=

p

η

∈ F ( D , R

+

) | Z

D

p

η

(x)dx = 1,

∀ 1 ≤ m ≤ M, Z

D

g

m

(x)p

η

(x)dx = f

m

,

(1.1)

UniversitéParis-Est, Modélisationet SimulationMulti-Éhelle (MSMEUMR8208 CNRS),5

Bd.Desartes,77454Marne-la-Vallée,Frane(hristian.soizeuniv-paris-est.fr).

UniversitéParis-Est,Navier(ENPC-IFSTTAR-CNRSUMR8205),EoleNationaledesPontset

Chaussées,6et8AvenueBlaisePasal,CitéDesartes,ChampssurMarne,77455Marne-la-Vallée,

Cedex2,Frane(denis.duhamelenp.fr)

SNCF,Innovation and Researh Department, Immeuble Lumière, 40avenue desTerroirs de

Frane,75611,Paris,Cedex12,Frane(guillaume.perrinsnf.fr,hristine.funfshillingsnf.fr).

(3)

where

{ f

m

, 1 ≤ m ≤ M }

gathers

M

givenvetorswhih arerespetivelyassoiated with a given vetor-valued funtions

{ g

m

, 1 ≤ m ≤ M }

. Hene, the MPE allows

building

p

η asthesolutionoftheoptimizationproblem:

p

η

= arg max

pη∈Cad

− Z

D

p

η

(x) log (p

η

(x)) dx

.

(1.2)

Ontheotherhand,theindiretmethodsallowtheonstrutionofthePDF

p

ηof

theonsidered random vetor

η

from atransformation

t

of aknownrandom vetor

ξ = ξ

1

, ..., ξ

Ng

ofgivendimension

N

g

≤ N

η:

η = t (ξ) ,

(1.3)

dening atransformation

T

between

p

η andthePDF

p

ξ of

ξ

:

p

η

= T (p

ξ

) .

(1.4)

The onstrution of the transformation

t

is thus the key point of these indi-

retmethods. Inthis ontext,theisoprobabilistitransformationssuh astheNataf

transformation(see[20℄)ortheRosenblatttransformation(see[23℄)haveallowedthe

developmentofinterestingresultsintheseondpartofthetwentiethenturybutare

stilllimitedtoverysmalldimensionasesandnottothehighdimensionaseonsid-

eredinthiswork. Nowadays,themostpopularindiretmethodsarethepolynomial

haosexpansion(PCE)methods,whihhavebeenrstintroduedbyWiener[33℄for

stohastiproesses,andpioneered byGhanemandSpanos[10℄ [11℄fortheuseof it

in omputational sienes. In thelast deade, this verypromising method has thus

been applied in many works (see, for instane [1℄, [2℄, [3℄, [4℄, [5℄, [7℄, [8℄, [9℄, [12℄,

[14℄,[15℄, [16℄,[19℄,[18℄,[17℄,[21℄,[22℄,[24℄, [26℄,[28℄,[31℄,[32℄, [25℄,[34℄). ThePCE

is basedon adiret projetionof therandom vetor

η

on ahosen hilbertian basis

B

orth

=

ψ

α

(ξ), α ∈ N

Ng ofalltheseond-orderrandomvetorswithvaluesin

R

Nη:

η = X

α∈NNg

y

(α)

ψ

α

(ξ),

(1.5)

ξ 7→ ψ

α

(ξ) = X

α1

1

) ⊗ ... ⊗ X

αNg

Ng

),

(1.6)

where

x 7→ X

α

(x)

isthenormalizedpolynomialbasisofdegree

α

assoiatedwiththe

PDF

p

ξ oftherandomvariable

ξ

,and

α

isthemulti-indexofthemultidimensional polynomialbasiselement

ψ

α

(ξ)

. Buildingthetransformation

t

requiresthereforethe

onstrutionoftheprojetionvetors

y

(α)

, α ∈ N

Ng .

Thepresentwork is devoted tothe identiationin high dimensionof thePCE

oeients

y

(α)

, α ∈ N

Ng , when the only available information on the random vetor

η

isasetof

ν

expindependentrealizations

η

(1)

, · · · , η

exp) .

Inpratie,thePCEof

η

hasrsttobetrunated:

(4)

η ≈ η

chaos

(N) = X

α∈Ap

y

(α)

ψ

α

(ξ),

(1.7)

A

p

=

 

 α = α

1

, ..., α

Ng

| | α | =

Ng

X

ℓ=1

α

≤ p

 

 = n

α

(1)

, · · · , α

(N)

o

,

(1.8)

where

η

chaos

(N)

is the projetion of

η

on the

N

-dimension subspae spanned by

{ ψ

α

(ξ), α ∈ A

p

} ⊂ B

orth. It an be notied that

N

inreases veryquikly with

respet tothe dimension

N

g of

ξ

and themaximumdegree

p

ofthetrunated basis

{ ψ

α

(ξ), α ∈ A

p

}

,as:

N = (N

g

+ p)!/ (N

g

! p!) .

(1.9)

Methodstoperformtheonvergeneanalysisinhighdimensionwithrespettoa

givenerrorthresholdonthePCEresidue

η − η

chaos

(N )

arethereforeofgreatonern

tojustifythetrunationparameters

N

g and

p

.

In this prospet, the artile [29℄ provides advaned algorithms to ompute the

PCEoeientsfromthe

ν

exp independentrealizations

η

(1)

, · · · , η

exp) byfous-

ing on the maximization of the likelihood. In partiular, one of the key point of

these algorithms is the alulation of

N × ν

chaos

real matrix

[Ψ]

of independent realizationsofthetrunatedPCEbasis

{ ψ

α

(ξ) , α ∈ A

p

}

:

[Ψ] = [Ψ (ξ (θ

1

) , p) · · · Ψ (ξ (θ

νchaos

) , p)] ,

(1.10)

Ψ (ξ, p) = ψ

α(1)

ξ

1

, · · · , ξ

Ng

, · · · , ψ

α(N)

ξ

1

, · · · , ξ

Ng

,

(1.11)

where the set

{ ξ (θ

1

) , · · · , ξ (θ

νchaos

) }

gathers

ν

chaos independent realizations of the randomvetor

ξ

.

Reurrene formula or algebrai expliit representations are generally used to

omputesuhmatrix

[Ψ]

,whih aresupposedtoverifytheasymptotialproperty:

νchaos

lim

→+∞

1

ν

chaos

[Ψ][Ψ]

T

= [I

N

],

(1.12)

asadiretonsequeneoftheorthonormalityofthePCEbasis

{ ψ

α

, α ∈ A

p

}

,where

[I

N

]

isthe

N

-dimensionidentitymatrix.

However,fornumeriallyadmissiblevaluesof

ν

chaos(between1000and10000),it

hasbeenshownin[30℄thatthedierene

1

νchaos

[Ψ][Ψ]

T

− [I

N

]

anbeverysigniant

whenhigh valuesofthemaximumdegree

p

anbeenountered withsimultaneously signiantvaluesof

N

g. ThisdiereneinduesadetrimentalbiasinthePCEidenti-

(5)

In[30℄,itisthereforeproposedamethod usingsingularmatrixdeompositiontonu-

meriallyadaptlassialgenerationsof

[Ψ]

,and makethisdierenebezeroforany

valuesof

p

and

N

g. Nevertheless,thisonditionningon

[Ψ]

modiestheinitialstru-

tureof

[Ψ]

, and makestheidentied PCE oeients

y

(α)

, α ∈ A

p impossibleto bereusedonanothermatrix

]

of

ν

chaos, newrealizationsof

Ψ(ξ, p)

.

As an extension of the works desribed in [29℄ and [30℄, this artile proposes

anoriginal deomposition of the PCE oeients

y

(α)

, α ∈ A

p , that redues the numerial bias introdued during the identiation by the nite dimension of

[Ψ]

andfor largevaluesof degree

p

. Thisnewformulationispartiulary adaptedto the highdimension,andallowstheidentiedoeientstobereusedforothermatrixof

realizations

]

.

InSetion2,thePCEidentiationfromasetofexperimentaldatawithanarbi-

trarymeasureisdesribed. Inpartiular,theroleplayedbythematrixofindependent

realizations

[Ψ]

isemphasized. Setion3fousesontheonvergenepropertiesofthis matrix

[Ψ]

with respet to three statistial measures, and desribes an innovative

method togeneratethismatrixwithoutusing omputationalreurreneformulanor

algebraiexpliitrepresentation. InSetion4,thenewformulationofthePCEiden-

tiationproblemisgiven. Finally,arepresentedinSetion5twoappliationsofthe

formermethodwithaGaussianmeasure.

2. PCE identiation of random vetors from a set of independent

realizations. Inthissetion,adesriptionofthePCEidentiationwithrespetto

anarbitrarymeasureis given. The objetiveis tosummarizethedierentkeysteps

ofthePCEidentiationmethodandthewaytheyarepratiallyimplemented.

After having dened the theoretial frame of the PCE identiation, the ost-

funtion that leads to the omputation of the PCE oeients

y

(α)

, α ∈ A

p is presented, for given trunation parameters

N

g and

p

. At last, to justify the hoie

of these trunation parameters, a method to perform the onvergene analysis is

introdued.

2.1. Theoretialframe. Let

(Θ, T , P )

beaprobabilityspae. Let

L

2P

Θ, R

Nη

bethespaeofalltheseond-order

N

η-dimensionrandomvetorsdenedon

(Θ, T , P )

withvaluesin

R

Nη, equippedwiththeinnerprodut

h ., . i

:

h U , V i =

Z

Θ

U

T

(θ)V (θ)dP (θ) = E U

T

V

, ∀ U, V ∈ L

2P

Θ, R

Nη

,

(2.1)

where

E (.)

isthemathematialexpetation.

Let

η = η

1

, · · · , η

Nη

be an element of

L

2P

Θ, R

Nη

. It is assumed that

ν

exp

independent realizations

η

(1)

, · · · , η

exp) of

η

are known and gathered in the

(N

η

× ν

exp

)

real matrix

exp

]

:

exp

] = h

η

(1)

· · · η

exp)

i

.

(2.2)

Equation(1.7)anberewrittenas:

η

chaos

(N ) = [y]Ψ(ξ, p),

(2.3)

(6)

[y] = h

y

(1))

· · · y

(N))

i

.

(2.4)

Theorthonormalitypropertyoftheprojetionbasis

{ ψ

α

(ξ), α ∈ A

p

}

yieldsthe

ondition:

E Ψ(ξ, p)Ψ(ξ, p)

T

= [I

N

].

(2.5)

Sine

ψ

α(1)

(ξ) = 1

,itanbeseenthat:

E η

chaos

(N )

= y (

α(1)

) .

(2.6)

Let

[R

η

]

and

[R

chaosη

(N)]

betheautoorrelationmatrixoftherandomvetors

η

and

η

chaos

(N )

:

[R

η

] = E ηη

T

,

(2.7)

R

chaosη

(N)

= E

η

chaos

(N ) η

chaos

(N )

T

= [y]E Ψ(ξ, p)Ψ(ξ, p)

T

[y]

T

= [y][y]

T

.

(2.8)

2.2. Identiation of the polynomial haos expansion oeients. In

thissetion,partiularvaluesofthetrunationparameters

N

g and

p

areonsidered.

Let

M

NηN bethespaeofallthe

(N

η

× N )

realmatries. Foragivenvalueof

[y

]

in

M

NηN, therandomvetor

U ([y

]) = [y

]Ψ (ξ, p)

isa

N

η-dimensionrandomvetor,

forwhihtheautoorrelationisequalto

[y

][y

]

T. Let

p

U([y])beitsmultidimensional PDF.

Whentheonlyavailableinformationon

η

isasetof

ν

expindependentrealizations, theoptimaloeientsmatrix

[y]

ofitstrunated PCE,

η

chaos

(N ) = [y]Ψ(ξ, p)

,an

beseenastheargumentwhihmaximizesthelog-likelihood

L

U([y])

([η

exp

])

of

U ([y

])

:

[y] = arg max

[y]∈MNη N

L

U([y])

([η

exp

]) ,

(2.9)

L

U([y])

([η

exp

]) =

ν

X

exp

i=1

ln p

U([y])

η

(i)

.

(2.10)

2.3. Pratial solving ofthe log-likelihoodmaximization.

2.3.1. Theneedforstatistialalgorithmstomaximizethelog-likelihood.

Thelog-likelihood

L

U([y])

([η

exp

])

beingnon-onvex,deterministialgorithmssuhas gradient algorithms annot be applied to solveEq. (2.9), and random searh algo-

rithms have to beused. Hene, thepreision ofthe PCE has to beorrelated to a

numerial ost

M

, whih orresponds to a number of independent trials of

[y

]

in

M

NηN. Let

Y =

[y

]

(r)

, 1 ≤ r ≤ M

be a set of

M

elements, whih have been

(7)

hosenrandomly in

M

NηN. Foragiven numerialost

M

,the mostauratePCE

oeientsmatrix

[y]

isapproximatedby:

[y] ≈ [y

Y

] = arg max

[y]∈Y

L

U([y])

([η

exp

]) .

(2.11)

2.3.2. Restritionofthemaximizationdomain. Fromthe

ν

expindependent realizations

η

(1)

, · · · , η

exp) ,themeanvalue

E(η)

andtheautoorrelationmatrix

[R

η

]

of

η

anbeestimatedby:

E (η) ≈ η(ν b

exp

) = 1 ν

exp

νexp

X

i=1

η

(i)

,

(2.12)

[R

η

] ≈ [ R b

η

exp

)] = 1 ν

exp

νexp

X

i=1

η

(i)

η

(i)

T

= 1

ν

exp

exp

][η

exp

]

T

.

(2.13)

Agoodwaytoimprovetheeienyofthenumerialidentiationof

[y]

isthen

torestrittheresearhsetto

O

η

⊂ M

NηN,with:

O

η

= n [y] = h

y

(1))

, · · · , y

(N))

i

∈ M

NηN

| y

(1))

= b η(ν

exp

), [y][y]

T

= [ R b

η

exp

)] o

,

(2.14)

whih,takingintoaountEqs. (2.6)and(2.8),guaranteesbyonstrutionthat:

[R

chaosη

(N )] = [ R b

η

exp

)], E η

chaos

(N )

= η(ν b

exp

).

(2.15)

Hene,thePCE oeientsmatrix

[y]

anbeapproximatedastheargumentin

O

η that maximizes the log-likelihood

L

U([y])

([η

exp

])

. By dening

W

the set that

gathers

M

randomlyraisedelementsof

O

η,

[y]

anthen be assessedasthesolution

ofthenewoptimization problem:

[y] ≈ [y

W

] = arg max

[y]∈W

L

U([y])

([η

exp

]) .

(2.16)

2.3.3. Approximation of the log-likelihood funtion. From a partiular

matrix of realizations

[Ψ]

(whih is dened in Eq. (1.10)), if

[y

]

is an element of

O

η,

ν

chaos independent realizations

U ([y

], θ

n

) = [y

]Ψ (ξ(θ

n

), p) , 1 ≤ n ≤ ν

chaos

oftherandomvetor

U ([y

])

anbeomputedandgatheredinthematrix

[U ]

:

[U ] = [U ([y

], θ

1

) · · · U ([y

], θ

νchaos

)] = [y

][Ψ].

(2.17)

Hene,usingGaussian Kernels,thePDF

p

U([y])of

U ([y

])

anbediretlyesti-

matedbyitsnonparametriestimator

p b

U:

(8)

∀ x ∈ R

Nη

, p

U([y])

(x) ≈ b

p

U

(x) = 1

(2π)

Nη/2

ν

chaos

Q

Nη

k=1

h

k ν

X

chaos

n=1

exp

 − 1 2

Nη

X

k=1

x

k

− U

k

([y

], θ

n

) h

k

2

 ,

(2.18)

where

h = h

1

, · · · , h

Nη

isthemultidimensionnaloptimalSilvermanbandwithvetor

(see[6℄)oftheKernelsmoothingestimationof

p

U([y]):

∀ 1 ≤ k ≤ N

η

, h

k

= b σ

Uk

4 (2 + N

η

exp

1/(Nη+4)

,

(2.19)

where

b σ

Uk is theempirial estimation of thestandard deviation of eah omponent

U

k of

U

. Ithastobenotied that

p b

U onlydependsonthebandwidthvetor

h

,and

thetwomatries

[y

]

and

[Ψ]

. Hene,aordingtotheEqs. (2.10),(2.17)and(2.18),

for a given value of

ν

chaos, the maximizationof the log-likelihood funtion

L

U([y])

anbereplaedbythemaximizationoftheost-funtion

C ([η

exp

], [y

], [Ψ])

suhthat:

[y] ≈ [y

Oη

] = arg max

[y]∈Oη

C ([η

exp

], [y

], [Ψ]),

(2.20)

where:

C ([η

exp

], [y

], [Ψ]) = C

C

+ C

V

([η

exp

], [y

], [Ψ]),

(2.21)

C

C

= − ν

exp

ln

(2π)

Nη/2

ν

chaos

Nη

Y

k=1

h

k

 ,

(2.22)

C

V

([η

exp

], [y

], [Ψ]) =

ν

X

exp

i=1

ln

ν

X

chaos

n=1

exp

 − 1 2

Nη

X

k=1

η

k(i)

− U

k

([y

], θ

n

) h

k

!

2

 .

(2.23)

Hene,theoptimization problem dened byEq. (2.16)annallybeestimated

by:

[y] ≈ [y

OMη

] = arg max

[y]∈W

C ([ν

exp

], [y

], [Ψ]) .

(2.24)

The optimization problem dened by Eq. (2.24) is now supposed to be solved

withtheadvanedalgorithmsdesribedin[29℄tooptimizethetrialsoftheelementsof

W

foragivenomputationost

M

. Thehigherthevalueof

M

is,thebetterthePCE

identiation should be. Therefore, this value has to behosenas high aspossible

(9)

2.3.4. Auray of the PCE identiation. For agiven omputation ost

M

, let

[y

MOη

]

be an optimal solution of Eq. (2.24).

[y

MOη

]

is a numerialestimation

of the PCE oeients matrix

[y]

. For a new

N × ν

chaos,

real matrix

]

of

independentrealizations(

ν

chaos, anbe higherthan

ν

chaos),therobustnessof

[y

MOη

]

regardingthehoieof

[Ψ]

anthenbeestimated byomparing

C

exp

], [y

OMη

], [Ψ]

and

C

exp

], [y

MOη

], [Ψ

]

. In addition, if

ν

exp new independent realizations of

η

wereavailableandgatheredin thematrix

exp,new

]

,theover-learningofthemethod ould be measured by omparing

C

exp

], [y

MOη

], [Ψ]

and

C

exp,new

], [y

OMη

], [Ψ]

.

Atlast,forthesameomputationost

M

,if

[y

M,newOη

]

isanewoptimalsolutionofEq.

(2.24), the globalauray ofthe identiationstems from theomparison between

C

exp,new

], [y

MOη

], [Ψ

]

and

C

exp,new

], [y

M,newOη

], [Ψ

]

.

2.4. Identiation of the PCE trunation parameters. As shown in In-

trodution, two trunation parameters,

N

g and

p

, appear in the trunated PCE,

η

chaos

(N ) = [y]Ψ(ξ, p)

, of

η

. Thevaluesofthese parametershaveto bedetermined

from aonvergene analysis. Theobjetiveofthis setionisthus togivethe funda-

mentalelementstoperformsuhaonvergeneanalysis.

2.4.1. Denitionof a log errorfuntion. Foreahomponent

η

kchaos

(N)

of

the trunated PCE,

η

chaos

(N ) = [y]Ψ(ξ, p)

, of

η

, the

L

1-log error funtion

err

k is

introduedasdesribedin [29℄:

∀ 1 ≤ k ≤ N

η

, err

k

(N

g

, p) = Z

BIk

| log

10

(p

ηk

(x

k

)) − log

10

p

ηchaos

k

(x

k

)

| dx

k

,

(2.25)

where:

• BI

k isthesupportof

η

expk ;

• p

ηk and

p

ηchaos

k

arethePDF of

η

k and

η

chaosk respetively.

Themultidimensional errorfuntion

err(N

g

, p)

isthen dedued from theunidi-

mensional

L

1-logerrorfuntion as:

err(N

g

, p) =

Nη

X

k=1

err

k

(N

g

, p).

(2.26)

The parameters

N

g and

p

havethus to be determined to minimizethe multidi-

mensional

L

1-logerrorfuntion

err(N

g

, p)

.

For given values of trunation parameters

N

g and

p

, it is reminded that PCE

oeients matrix

[y]

is searhed in order to maximize the multidimensional log- likelihoodfuntion,whihallowsustoonsideraprioristronglyorrelatedproblems.

One this matrix

[y]

is identied, it is possible to generate as many independent realizationsoftrunatedPCE

η

chaos

(N )

asneededtoestimateaspreiselyaspossible

thenon parametriestimator

p b

U of its multidimensionalPDF. Thenumber

ν

exp of

available experimentalrealizationsof

η

ishoweverlimited. Thisnumberisgenerally

toosmall for thenon parametri estimatorof multidimensional PDF

p

η of

η

to be

relevant,whereasit ismostof thetime largeenoughtodene theestimatorsof the

marginalsof

p

η. Therefore,thelog-errorfuntions denedbyEqs. (2.25)and(2.26)

Références

Documents relatifs

In this paper, we extended the classical approach of stochas- tic TRNG modeling by replacing the initial assumptions concerning the raw random analog signal by a model based on

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

We find this part of his paper is very hard to read, and the purpose of our work is to use Talagrand’s generic chaining instead, this simplifies significantly Lata la’s proof..

For each subgroup B of A such that A/B has Q-rank 1, the number of ho- momorphisms of A/B onto Z is 2, and we choose one of the two as u B. So, using the maximality of B, the near

The main objective of the paper is not directly related to the construction of a polynomial chaos expansion of stochastic processes or random fields in order to solve a stochastic

As Γ is an increasing bipartite map with as many black vertices as faces, each of degree n, and with white vertices labelled from 1 to n, then by erasing every 1-valence vertex of Γ,

The measurements of the roughness, resistivity and reflectivity of the ZrN films have pointed a substrate temperature and bias voltage limits. Over these limits, these three