• Aucun résultat trouvé

THE APPROACH OF CHAOS IN DEFORMED NUCLEI

N/A
N/A
Protected

Academic year: 2021

Partager "THE APPROACH OF CHAOS IN DEFORMED NUCLEI"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: jpa-00224246

https://hal.archives-ouvertes.fr/jpa-00224246

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

THE APPROACH OF CHAOS IN DEFORMED

NUCLEI

J. Carbonell, F. Brut, R. Arvieu, J. Touchard

To cite this version:

(2)

JOURNAL

DE

PHYSIQUE

Colloque C6, supplCment au n06, Tome 45, juin 1984 page C6-371

THE APPROACH O F CHAOS IN D E F O R M E D NUCLEI

J . C a r b o n e l l , F. B r u t , R. Arvieu and J . ~ o u c h a r d *

I n s t i t u t des Sciences NucZe'aires,

5 3 ,

Avenue des Martyrs,

38026

GrenobZe Cedex, France

* I n s t i t u t de Physique NucZe'aire, Division de Physique The'orique,

B.P.

n o

1, 91406

Orsay, France

RQsume - On d e c r i t l ' o r g a n i s a t i o n d e l ' e s p a c e d e p h a s e pour un n e u t r o n dans un p o t e n t i e l d6form4 (A=16). La r b g i o n oh l ' o n t r o u v e l e s t r a j e c - t o i r e s c h a o t i q u e s e s t p r 6 c i s Q e . On c o n s t r u i t numdriquement l a s u r f a c e e n e r g i e - a c t i o n pour l a t o p o l o g i e l a p l u s s i m p l e . On c a l c u l e e n f i n des d n e r g i e s s e m i - c l a s s i q u e s .

A b s t r a c t - The p h a s e s p a c e of t h e t r a j e c t o r i e s of one n e u t r o n i n a de- formed s i n g l e p a r t i c l e p o t e n t i a l i s s k e t c h e d f o r A = 16. The r e g i o n of o c c u r r e n c e of t h e c h a o t i c t r a j e c t o r i e s i s found. The e n e r g y a c t i o n - s u r f a c e i s p l o t t e d f o r t h e s i m p l e s t t o p o l o g y . S e m i - c l a s s i c a l e n e r g i e s a r e d e r i v e d .

I - INTRODUCTION

The s e m i c l a s s i c a l method of q u a n t i z a t i o n W.K.B. o r E.B.K. i s w e l l a d a p t e d t o t h e s y s t e m s which a r e i n t e g r a b l e i n c l a s s i c a l m e c h a n i c s , i . e . which p o s s e s s a s many i n - t e g r a l s of m o t i o n i n i n v o l u t i o n a s i n d e p e n d e n t d e g r e e s of freedom. For t h o s e s y s - tems t h e t r a j e c t o r i e s a r e e s s e n t i a l l y d i v i d e d i n t o two c l a s s e s : t h e p e r i o d i c o r b i t s and t h e q u a s i - p e r i o d i c o n e s . It i s w e l l known t h a t i f t h e m a n i f o l d d e f i n e d by t h e i n t e r s e c t i o n of t h e c o n s t a n t s of motion i s compact and connex t h a t t h e t r a j e c t o r i e s l i e on t o r i / I / i n phase s p a c e . The c l a s s i c a l a c t i o n - a n g l e v a r i a b l e s a r e a d a p t e d t o t h i s s i t u a t i o n : t h e a c t i o n s c a n t h e n b e i n t e r p r e t e d a s t h e r a d i i of t h e t o r i . I n a n a n o t h e r c o m u n i c a t i o n t o t h i s workshop / 2 / we have shown t h a t t h e quantum mechani- c a l s p e c t r u m of t h e s i n g l e p a r t i c l e e n e r g i e s of one n e u t r o n i n a s p h e r i c a l p o t e n t i a l c a n b e u n d e r s t o o d by s t u d y i n g t h e g e o m e t r i c a l p r o p e r t i e s of t h e e n e r g y - - a c t i o n sur-- f a c e .

I n t h i s communication we want t o d i s c u s s t h e problems which a r i s e when a d e f o r m a t i s n of t h e p o t e n t i a l i s i n t r o d u c e d .We have a l r e a d y b r i e f l y s k e t c h e d / 3 / t h e c l a s s i c a l s i t u a t i o n on which t h e r e h a s a l s o been a t h e s i s by one of u s 141. Our aim w i l l b e f i r s t t o r e v i e w a few r e s u l t s of r e f . 4 , a n d , s e c o n d l y , t o g i v e a n example, t h e s i m p l e s t p o s s i b l e o n e , i n which t h e e n e r g y a c t i o n s u r f a c e h a s b e e n c o n s t r u c t e d and t h e s e m i c l a s s i c a l energsees o b t a i n e d . When t h e Buck-Pilt p o t e n t i a l a l s o u s e d i n r e f . 2 i s g i v e n an e l l i p s o i d a l d e f o r m a t i o n by making t h e t r a n s f o r m a t i o n K, n i 1 ( i n t h e f o l l o w i n g we w i l l u s e JJ = RI/R2; h = 3 0 a t h e t o t a l a n g u l a r mo- mentum i s n o t c o n s e r v e d and t h e r e 1 s no new c o n s t a n t of motion i n p l a c e of L. Howe- v e r L, i s c o n s e r v e d . I f we c o n s i d e r t h e p l a n e t r a j e c t o r i e s ( w i t h L Z = 0 ) of c o n s t a n t e n e r g i e s we need t o e x p l o r e n u m e r i c a l l y t h e p h a s e s p a c e ( 3 d i m e n s i o n a l ) i n o r d e r t o examine t h e dimension of t h e m a n i f o l d on which l i e t h e t r a j e c t o r i e s .

(3)

C6-372 J O U R N A L

DE

PHYSIQUE

The numerical and t h e t h e o r e t i c a l works performed d u r i n g t h e l a s t twenty y e a r s on t h e t h e o r y of dynamical systems have l e d t o a q u a l i t a t i v e d e s c r i p t i o n of t h e phase space of q u a s i i n t e g r a b l e systems. The work by Henon and H e i l e s /5/ i s o f t e n quoted a s one of t h e f i r s t numerical experiment on a simple b u t non i n t e g r a b l e system f o r which t h i s d e s c r i p t i o n was d i s c o v e r e d . Let us b r i e f l y mention t h e known r e s u l t s .

Let E be any parameter which c h a r a c t e r i z e s t h e non l i n e a r i t y l i k e t h e e x c i t a t i o n energy, o r t h e deformation o r t h e s i z e of t h e p o t e n t i a l . There e x i s t s a c r i t i c a l v a l u e E which allows t o s e p a r a t e t h e t o p o l o g i c a l flow i n t o two p a r t s

.

a ) f o r E

<

EC t h e system looks mostly l i k e an i n t e g r a b l e one : t h e r e e x i s t s p e r i o d i c o r b i t s and q u a s i - p e r i o d i c o r b i t s . The c h a o t i c o r b i t s e x i s t only a t a microscopic l e v e l . Because of t h e q u a s i - - i n t e g r a b i l i t y and t h e dominance of t h e

t o r i i n phase space t h e EBK s e m i c l a s s i c a l method of q u a n t i z a t i o n i s p o s s i b l e t h e r e 161. However t h e r e i s a c o n s i d e r a b l e complication of t h e phase space. Indeed every p e r i o d i c o r b i t b i f u r c a t e s and g i v e s r i s e , f o r any i n f i n i t e s i m a l change of E , t o new p e r i o d i c o r b i t s and t o new t o r i . As we w i l l s e e below t h e r e e x i s t s techniques which a l l o w t o l o c a t e t h e v a l u e of E f o r which a given b i f u r c a t i o n o c c u r s . The main problem, s t i l l unsolved t o our knowledge, l i e s i n t h e maximum s i z e of t h e t o r i which surround a given p e r i o d i c o r b i t and of t h e l o c a t i o n of t h e s e p a r a t i x between t h e d i f f e r e n t f a m i l i e s .

b) f o r E

>

E~ t h e volume of t h e t o r i d e c r e a s e s r a p i d l y w i t h E t o t h e b e n e f i t of t h e c h a o t i c o r b i t s which tend t o occupy t h e whole of phase space. I n t h i s r e g i o n of parameters t h e phase space i s even more complex t h a n i n t h e preceding one. So complex t h a t i t becomes h a r d l y p o s s i b l e t o f i n d t o r i which f u l z i l l t h e s e m i c l a s s i c a l c o n d i t i o n s .

The c r i t i c a l v a l u e E, i s o f t e n quoted a s t h e t h r e s h o l d of macroscopic s t o c h a s t i c i - t y . For E

<

€ c i t i s r a t h e r d i f f i c u l t t o f i n d o u t c h a o t i c o r b i t s n u m e r i c a l l y .

-

The e v o l u t i o n j u s t d e s c r i b e d has a so c a l l e d "generic" c h a r a c t e r , i . e . it i s q u a l i t a t i v e l y c o r r e c t f o r most of t h e q u a s i . i n t e g r a b l e systems whatever i s t h e p o t e n t i a l o r t h e parameter E .

I n t h e f o l l o w i n g we want t o s k e t c h f i r s t how t h i s behaviour i s seen f o r t h e phase space of L, = 0 t r a j e c t o r i e s i n A = 16, i . e . A = 4.898 and 1

<

JJ

<

2 . For

t h e sake of space l i m i t a t i o n we w i l l not d i s c u s s o t h e r v a l u e s of A nor t h e o t h e r v a l u e s of L (which would correspond t o non p l a n a r t r a j e c t o r i e s ) s e e r e f . 4.

I1

-

THE PHASE SPACE OF DEFORMED j60

a ) The f i r s t q u e s t i o n i s whether t h e deformed p o t e n t i a l i s i n t e g r a b l e o r n o t . I f t h e non i n t e g r a b i l i t y p r e v a i l s it i s n e c e s s a r y t o l o c a t e t h e t h r e s h o l d i n terms of t h e e x c i t a t i o n energy

n=

1

-

o r of t h e deformation JJ.

vo

Fig. 1 p r e s e n t s an example of a c h a o t i c t r a j e c t o r y . I n t h e bottom 01 t h e f i g u r e t h e t r a j e c t o r y i s p l o t t e d i n t h e c o n f i g u r a t i o n space (p means x o r y , . The upper p a r t r e p r e s e n t s t h e Poincare s e c t i o n of t h e same t r a j e c t o r y , i . e . t h e s e t of t h e succes- s i v e v a l u e s of i t s i n t e r a c t i o n s ( p) and p r o j e c t i o n s of momentum (pp j on t h e y a x i s (with t h e r e s t r i c t i o n t h a t p,

>

0;. The s e t of p o i n t s so o b t a i n e d c l e a r l y do not form an i n v a r i a n t curve, t h e t r a j e c t o r y belongs t o a manifold of higher dimension The e x i s t e n c e of c h a o t i c t r a j e c t o r i e s i s u s u a l l y taken a s a numerical i n d i c a t i o n t h a t t h e p o t e n t i a l i s not i n t e g r a b l e . The l a r g e v a l u e s of t h e parameters : I.I = 1.5 and

rj

= 0.99 ( i . e . n e a r t h e d i s s o c i a t i o n energy) i n d i c a t e t h a t i t has been n e c e s s a r y t o look f o r r a t h e r extreme c o n d i t i o n s i n o r d e r t o observe a chaocic t r a j e c t o r y . In o t h e r words t h e v a l u e s j~ and

n

a r e r a t h e r l a r g e . I n t h e c a s e of

(4)

appear i n t h e domain

The p r e c i s e l o c a t i o n of t h e t h r e s h o l d n e c e s s i t a t e s an extremely d e t a i l e d study of t h e Poincare p l a n e such a s F i g . 4 of Ref. 3 which shows t h a t q~ N 0.95 f o r j.~ = 1 . 5

w h i l e F i g . 4 of t h e p r e s e n t paper shows t h a t qr:

-

>

0.95 f o r p = 1.4. I n o t h e r words t h e c h a o t i c r e g i o n corresponding t o t h e Lz = 0 t r a j e c t o r i e s of A = 16 i s l i m i - - t e d t o a r a t h e r t h i n s k i n of v a l u e s of rl of width Aq ~ 0 . 0 5 f o r p

>

1.3. F i g . 1

- A c h a o t i c

t r a j e c t o r y of t h e defor- med w e l l f o r A = 16. The upper. p a r t i s t h e Poin- c a r 4 s e c t i o n of t h e t r a - j e c t o r y r e p r e s e n t e d i n t h e lower p a r t i n c o n f i - g u r a t i o n space.

(5)

JOURNAL

DE

PHYSIQUE I F i g . 2

-

The upper p a r t i s t h e PoincarG s e c t i o n { p ,pp} of t h e deformed w e l l f o r p = 1 . 2 ; i

4

TI

= 0.99. The f o u r lower f i g u -

-

I r e s r e p r e s e n t L i s s a j o u s l i k e

I

t r a j e c t o r i e s found a t t h e p l a c e

i

i n d i c a t e d above.

A numerical procedure has been developed i n Ref. 4 which a l l o w s t o study t h e proper- t i e s of t h e mapping i n t h e v i c i n i t y of t h e l i n e a r p e r i o d i c t r a j e c t o r i e s . The t r a - j e c t o r i e s which a r i s e through t h e b i f u r c a t i o n s of t h e l i n e a r t r a j e c t o r i e s a r e L i s - s a j o u s - l i k e f i g u r e s . Some a r e r e p r e s e n t e d on F i g . 2. These curves a r e surrounded by t o r i which form i n t h e PoincarG plane i s l a n d s of dif'erent s i z e s . Some of t h e

i s l a n d s ( t h e m a j o r i t y !) a r e s o t i n y t h a t t h e y cannot be d e t e c t e d numerically, how- ever a few i s l a n d s c a n always be d e t e c t e d l i k e i n F i g . 2 . The c e n t e r of t h e i s l a n d s i s t h e p l a c e of t h e p e r i o d i c t r a j e c t o r y . The v a l u e of t h e parameter where t h e L i s - s a j o u ~ f i g u r e i s degenerate with t h e l i n e a r t r a j e c t o r y marks t h e b i r t h of t h i s f i - gure. It i s fouad by t h e f o l l o w i n g method :

Let M p . be t h e non l i n e a r mapping i n t h e { p , p p } PoincarG plane which makes t h e

iteration between t h e kth and t h e ( k + l ) t h I n t e r s e c t i o n s : M (0 )k= ( g p I k + , . PP

Let us c o n s i d e r t h i s mapping near t h e o r i g i n which i s a f i x e d p o i n t of t h e mapping. If p and pp a r e very small M c o i n c i d e s w i t h i t s l i n e a r p a r t . It i s known t h a t

P.

i T / ~ r M p l

<

2 t h e f i x e d p o ~ n t i s e l l i p t i c a l while i f ( ~ r M ~ /

>

2 t h e f i x e d p o i n t i s h y p e r b o l i c . A b i f u r c a t i o n o c c u r s whenever

IT^

M ~ (

,

o r any of i t s power

/

Tr Mp n \ , equal 2 . ( I t can b e proved

/

4 / t h a t i n our p o t e n t i a l T r M Z -2, the- r e f o r e t h e s i n g u l a r v a l u e i s + 2 ) . I f Tr M i s w r i t t e n a s 2 c o s

a

.

f o r y ~ r M p l

<

2,

P

t h e v a l u e of

a

i s a continuous f u n c t i o n of t h e parameters p and f)

.

It i s then e a s y t o f i n d t h e p o i n t s where

a

= 2 ~ r !! f o r which T r M; = 2. At each of t h e s e

(6)

F i g . 3 - E a c h c u r v e r e p r e s e n t s t h e va- l u e s of q and JJ where e q u a t i o n (2) i s s a t i s f i e d f o r v a l u e s of "indicated a t n t h e b o t t o m . M i s t h e mapping i n t h e v i c i n i t y of t g e l i n e a r t r a j e c t o r y a l o n g t h e l o n g ( z ) a x i s . Or, F i g . 3 t h e p o i n t s where T r M ( p , q ) = 2 c o s 271 P (2) 1 1

a r e p l o t t e d w i t h JJ and q a s c o o r d i n a t e s a x i s f o r =

5,

+,

-i; and

-

a s w e l l a s t h e

5

c u r v e s w i t h m = n . The l a t t e r c u r v e s d e f i n e r e g i o n s i n which T r

>

2 where no b i f u r c a t i o n s a r e p o s s i b l e . The P o i n c a r e s e c t i o n shown i n Big. 2

31

r

s r a e s

5

5

this

s i t u a t i o n . P e r i o d i c t r a j e c t o r i e s c o r r e s p o n d i n g r e s p e c t i v e l y t o

2

=

-,-,

n 2 3

T 9 T a r e

met when g o i n g away from t h e c e n t e r of t h e mapping f o r JJ = 1.2. The l o c a t i o n of t h e c o r r e s p o n d i n g b i f u r c a t i o n s a r e made by o r d e r of d e c r e a s i n g e n e r g y on F i g . 3 . The c h a o t i c r e g i o n s a r e n o t r e p r e s e n t e d o n F i g . 3 which h a s been o b t a i n e d o n l y by a l o c a l s t u d y of t h e mapping n e a r p = 0.

I n t h e r e g i o n where t h e c e n t e r of t h e mapping b i f u r c a t e s t h e c e n t e r i s a n e l l i p t i c p o i n t l i k e f o r t h e harmonic o s c i l l a t o r . It t u r n s o u t t h a t i n t h i s r e g i o n t h e r e i s a v e r y b r o a d r a n g e of v a l u e s of p a r a m e t e r s f o r which t h e t o r i a r o u n d t h e L i s s a j o u s c u r v e s a r e v e r y s m a l l . It i s p o s s i b l e t o s a y t h a t i n t h i s r e g i o n t h e t o p o l o g y i s t h a t of t h e harmonic o s c i l l a t o r . An example i s g i v e n w i t h F i g . 4 where no o t h e r t o r u s i s s e e n f o r q

<

0.85 b u t t h o s e d e f i n e d by t h e i n v a r i a n t c u r v e s which look l i k e o v a l s s u r r o u n d i n g t h e c e n t e r .

I n F i g . 4 t h e t o r i i s s u e d from b i f u r c a t i o n s of f i r s t g e n e r a t i o n a r e s e e n o n l y f o r

q = 0.90. I f q

<

0.85 t h e p i c t u r e of t h e P o i n c a r e map r e s e m b l e s much t h e l e f t u p p e r s i d e of F i g . 4 .

F i g . 3 shows t h a t t h i s p i c t u r e i s v a l i d l o c a l l y , i n d e e d two p a r t s of phase s p a c e w i t h a c o m p l e t e l y d i f f e r e n t t o p o l o g y a r e shown a s t h e dashed a r e a i s s u e d from

JJ = 2 and t h e o t h e r one around JJ = 1.

A p r e l i m i n a r y c o n c l u s i o n i s t h a t f o r 1 . 3

<

JJ

<

2 t h e r e i s a r e g i o n where t h e topo- l o g y of t h e harmonic o s c i l l a t o r i s dominant and t h e r e f o r e t h e motion c a n b e quan t i z e d w i t h t h e r u l e s used f o r t h e harmonic o s c i l l a t o r .

T,.

(7)

C6-376

JOURNAL

DE

PHYSIQUE ,. . ... . .

--

..

-

-- - - - . ., :. .:

-

F+g. 4 - PoincarC sec-

q=

0.8s

'7

=

0.30

t l o n d f o r j~ = 1.4 a t / s e v e r a l e n e r g i e s . - - - - F i g . 5

-

Two t r a j e c t o r i e s w i t h d i f f e r e n t t o p o l o g i e s i n c o n f i g u r a t i o n space (up- p e r p a r t ) and t h e i r Poinca- r6 s e c t i o n (lower p a r t ) . Here j~ = 1.06 and q = 0.7 f o r both t r a j e c t o r i e s .

I11

--

QUANTIZATION I N THE CASE OF THE SIMPLEST TOPOLOGY

I f t h e m a j o r i t y of t h e o r b i t s of t h e deformed p o t e n t i a l a r e s i m i l a r t o t h o s e of Fig. 4 f o r q = 0.80, they can b e q u a n t i z e d w i t h t h e same r u l e s a s t h e harmonic o s c i l l a t o r . Let pp and pz be t h e p r o j e c t i o r s o f t h e momentum of t h e p a r t i c l e on t h e

p and z a x i s w h i l e i t i n t e r s e c t s t h e p and z a x i s r e s p e c t i v e l y and l e t Cp and Cz b e t h e s e t of v a l u e s of p and z taken d u r i n g t h e s e i n t e r s e c t i o n s , t h e a c t l o n s a r e d e f i n e d a s

(8)

Using K.A.M. theorem, "most o f t h e t r a j e c t o r i e s l i e o n t o r i " , and s i n c e t h e t o p o l o - gy ( a t l e a s t t h e "macroscopic ones" I ) i s t h a t o f t h e harmonic o s c i l l a t o r we a r e a b l e t o d e f i n e a s u r f a c e e n e r g y a c t i o n :

(9)

C6-378

JOURNAL

DE

PHYSIQUE

F i g . 6 i l l u s t r a t e s i n a v e r y r e m a r k a b l e way t h e power of t h e K.A.M. theorem. It c a n b e compared t o F i g . 7 which r e p r e s e n t s t h e e n e r g y a c t i o n s u r f a c e E(Ir,!L) of 160 f o r p = 1 . B o t h F i g . 6 and 7 s h a r e t h e same p r o p e r t y and giv.e t h e same messa- ge : e x c e p t n e a r r1-0.90 t h e e n e r g y a c t i o n s u r f a c e i s p l a n a r and t h e s p e c t r u m i s harmonic. T h i s p r o p e r t y i s c o n s e r v e d even i n t h e non i n t e g r a b l e s i t u a t i o n !

However n e a r q - 0 . 9 0 t h e s u r f a c e i s non p l a n a r f o r p = 1 t h i s means t h a t t h e r e a r e n o n l i n e a r i t y i n t h e m o t i o n . F o r p = 1 . 4 t h i s n o n l i n e a r i t y p r o d u c e s a d e s t r u c - t i o n o f t h e e n e r g y a c t i o n s u r f a c e and t h e i m p o s s i b i l i t y o f u s i n g p r o p e r l y t h e EBK method.

The comparison of t h e s e m i c l a s s i c a l and quantum e i g e n v a l u e s o f IJ = 1 a n d 1.4 i s made i n T a b l e 1 . T h i s t a b l e shows t h a t t h e r e i s no e s s e n t i a l d i f f e r e n c e between t h e two c a s e s e x c e p t i n t h e c h a o t i c r e g i o n .

I V

-

CONCLUSION

I n c o n c l u s i o n i t seems t h a t b e l o w t h e t h r e s h o l d o f s t o c h a s t i c i t y i t i s p o s s i b l e t o u s e p r o p e r l y t h e s e m i c l a s s i c a l EBK method of q u a n t i z a t i o n and t h a t t h i s method i s a b l e t o e x p l a i n t h e p r o p e r t i e s o f t h e s p e c t r u m w i t h t h e same q u a l i t y a s f o r t h e i n t e g r a b l e c a s e . However i n o r d e r t o r e a l i z e w h o l l y t h i s program we n e e d t o f a c e t h e c h a n g e s of t o p o l o g i e s l i k e t h o s e o f F i g . 5 . ( i n t e g r a b l e )

/

( n o t i n t e g r a b l e )

I

-20.71 8 - 0 . 3 6 4 - 8.901 - 0 . 8 3 2 - 1.615 c h a o s T a b l e 1 REFERENCES

/ I / ARNOLD V . I . , Mkthodes Mathkmatiques d e l a Mbcanique C l a s s i q u e , E d i t i o n s MIR - Moscou (1967)

/ 2 / CARBONELL J . , BRUT F . , TOUCNARD J. and ARVIEU R . , communication t o t h i s workshop

/ 3 / CARBONELL J . a n d ARVIEU R., N u c l e a r f l u i d dynamics, (1983) T r i e s t e 141 / 4 / CARBONELL J. t h e s e de 36me C y c l e

-

U n i v e r s i t k de G r e n o b l e (1983)

ISN 83-07

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to