• Aucun résultat trouvé

Find an example of a filtered probability space (Ω, F, F t ) t∈[0,T ] , P ) and an adapted process (M t ) t∈[0,T ] with E [M t ] = E [M 0 ] for all t = 0, . . . , T such that (M t ) t∈[0,T ] is not a martingale.

N/A
N/A
Protected

Academic year: 2022

Partager "Find an example of a filtered probability space (Ω, F, F t ) t∈[0,T ] , P ) and an adapted process (M t ) t∈[0,T ] with E [M t ] = E [M 0 ] for all t = 0, . . . , T such that (M t ) t∈[0,T ] is not a martingale."

Copied!
2
0
0

Texte intégral

(1)

Introduction to mathematical finance

Sheet 4 HS 2014

Hand-in your solutions until 15.10.2014, in Martina Dal Borgo’s mailbox on K floor (or give the sheet in person on the 15.10 in class).

Exercise 1

Find an example of a filtered probability space (Ω, F, F t ) t∈[0,T ] , P ) and an adapted process (M t ) t∈[0,T ] with E [M t ] = E [M 0 ] for all t = 0, . . . , T such that (M t ) t∈[0,T ] is not a martingale.

Exercise 2

Let (X n ) n∈ N be a sequence of i.i.d. random variables. Set F n = σ(X 1 , . . . , X n ) and define S n :=

X 1 + · · · + X n , n ∈ N .

i) Assume that for some α ∈ [0, 1 2 ],

P (X 1 = 1) = 1

2 + α, P (X 1 = −1) = 1 2 − α.

Show that for all k, n ∈ N , with k ≤ n,

E [S n |F k ] = S k + 2α(n − k).

ii) Assume that X 1 ∼ N (0,σ

2

) , with positive variance 0 < σ 2 < ∞. Set Z n u := exp

uS n − nu 2 σ 2 2

. Show that for every u ∈ R , the process (Z n u ) n∈ N is an (F n )-martingale

Note: The relation E (XY |G) = X E (Y |G) holds for X G-measurable, as soon as both XY and Y are integrable.

Exercise 3

Let (Ω, F, (F t ) t∈[0,T ] , P ) be a filtered probability space with F 0 = {∅, Ω}. Assume that (X t ) t∈[0,T] is an R d -valued adapted stochastic process and φ = (φ t ) t∈[1,T ] is an R d -valued predictable process. We set

V 0 = φ 1 · X 0 , V t = φ t · X t , t = 1, . . . , T and

G 0 = 0, G t =

t

X

k=1

φ k · (X k − X k−1 ) , t = 1, . . . , T.

In the following assume that X is a martingale. Show that i) If (φ t ) 1≤t≤T is bounded, then (G t ) 0≤t≤T is a martingale.

ii) If (φ t ) 1≤t≤T is bounded, then

φ t · X t = φ t+1 · X t , ∀t = 1, . . . , T − 1. (1) implies that (V t ) 0≤t≤T is a martingale.

1

(2)

Note: This exercise has the following economical interpretation: a market model consists of d risky assets whose discounted prices are denoted by X. Moreover, φ is a trading strategy with associated value process V and a gain process G, that is the sum of the variation of the portfolio’s values

G t =

t

X

k=1

V t − V t−1 .

Condition (1) is the self-financing condition which means that no funds are added or removed after time t = 0. If the probability measure is risk neutral, then X will be a martingale and the above exercise shows that also the gain and value process will be martingales under the self-financing condition.

Exercise 4

Let (Y t ) 1≤t≤T be a sequence of i.i.d. normal random variables on (Ω, F , P ) with E [Y t ] = 0, Var(Y t ) = σ 2 > 0.

For the sake of simplicity, interest rate is zero. We define the filtration F 0 = {∅, Ω} , F t = σ (Y 1 , . . . , Y t ) , t = 1, . . . , T and the (discounted) price process

S 0 = 1, S t = S 0 +

t

X

k=1

Y k .

We ignore the fact that S can take negative values. Furthermore we define another filtration ( G t ) 0≤t≤T by including the insider information about the final stock price S T , i.e. G t = σ(F t , S T ), t = 0, . . . , T.

i) Show that (S t ) is a (F t )-martingale, but not a (G t )-martingale. Moreover prove that the process S t := S t

t−1

X

k=0

S T − S k

T − k , t = 0, . . . , T, is a (G t )-martingale.

Hint: Use properties of the Gaussian to see that Y t+1 − α (S T − S t ) is independent from G t if and only if α = T 1 −t .

ii) Having additional information about S T allows one to create portfolios with positive expected profit.

Compute a trading strategy ( ˜ φ t ) t=1,...,T which maximizes the expected discounted profit E [G T ] for G T :=

T

X

k=1

φ k (S k − S k−1 ) ,

in the class of all (G t )-predictable trading strategy φ (describing the holdings in the stock) satisfying

t | ≤ 1 for all t = 1, ..., T.

Hint: begin using the Exercise 3 to deduce that

E

" T X

k=1

φ k (S k − S k−1 )

#

= E

" T X

k=1

φ k · S T − S k−1

T − (k − 1)

# .

2

Références

Documents relatifs

Dem: On vérifie aisément les stabilités... Théorème : Approximation des fonctions c.p.m. On considère g le prolongement continu sur [a,b] de f |]a,b[. g est continu sur [a,b]

Ce contre exemple prouve que le domaine de dérivabilité d’une fonction n’est pas la même chose que le domaine de définition de la formule de la

On déduit de la

On déduit de la

Attention, ce corrigé utilise des dénitions et des conditions de stabilité présentées dans le complément de cours 1 sur les suites dénies par récurrence.. Elle s'annule donc en

When is it profitable to exercise the

Propriété n°1 (Unicité et existence de la fonction exponentielle) Il existe une unique fonction f , définie et dérivable sur R , telle que

Formally prove that this equation is mass conser- vative and satisfies the (weak)