• Aucun résultat trouvé

Pulse analysis and electric contact measurements in spark plasma sintering

N/A
N/A
Protected

Academic year: 2021

Partager "Pulse analysis and electric contact measurements in spark plasma sintering"

Copied!
8
0
0

Texte intégral

(1)

O

pen

A

rchive

T

OULOUSE

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in :

http://oatao.univ-toulouse.fr/

Eprints ID : 16781

To link to this article : DOI:10.1016/j.epsr.2015.06.009

URL :

http://dx.doi.org/10.1016/j.epsr.2015.06.009

To cite this version :

Manière, Charles and Pavia, Anthony and

Durand, Lise and Chevallier, Geoffroy and Bley, Vincent and

Afanga, Khalid and Peigney, Alain and Estournès, Claude Pulse

analysis and electric contact measurements in spark plasma

sintering. (2015) Electric Power Systems Research, vol. 127. pp.

307-313. ISSN 0378-7796

Any correspondence concerning this service should be sent to the repository

administrator:

staff-oatao@listes-diff.inp-toulouse.fr

(2)

Pulse

analysis

and

electric

contact

measurements

in

spark

plasma

sintering

C.

Maniere

a,b,c

,

A.

Pavia

a,b

,

L.

Durand

b,c

,

G.

Chevallier

a,b

,

V.

Bley

b,d,e

,

K.

Afanga

a,b

,

A.

Peigney

a,b

,

C.

Estournès

a,b,∗

aCNRS,InstitutCarnotCIRIMAT,Toulouse,France

bUniversitéPaulSabatier,118routedeNarbonne31062Toulouse,France

cCNRS-CEMES(Centred’ElaborationdeMatériauxetd’EtudesStructurales),29RueJeanneMarvig,31055Toulouse,France dUniversitédeToulouse,UPS,INPT,LAPLACE,118routedeNarbonneBât.3R3,F-31062Toulousecedex9,France eCNRS,LAPLACE,F-31062Toulouse,France

Keywords:

Sparkplasmasintering Currentpulses Jouleheating Electricalcontact Papyex® Experimentaldesign

a

b

s

t

r

a

c

t

Inordertomodelthecurrentdensitydistributionandthetemperaturechangesofthetoolsusedduring aspark-plasma-sintering(SPS)cycle,thevariationofthepowerdeliveredbyanSPSmachineandthe graphite-Papyex®-graphiteelectricalcontactswerestudiedexperimentally.Theelectricdevicewasalso

characterized;inparticularcurrentpulsecharacteristicsandtheirbehaviorwithtimewerestudiedin variousconditionsoftemperature,pulsessequences,materialsandtotalelectricpowerdissipated.It iswellknownthattheperformanceofanelectriccontactisdependentontheappliedpressureandthe temperature.First,byvaryingthepressureduringtheSPScycletheeffectoftheelectriccontactsisclearly seen.Secondly,inordertodeterminethebehaviorofsuchcontactsexperimentallyoverapressurerange of10–50MPaandtemperaturesof50–800◦C,aDœhlertexperimentaldesignwasused.

1. Introduction

Thespark-plasma-sintering(SPS)processisusedto manufac-turecomplexshapedsolidmaterialsfrompowder.Theinteresting partoftheprocessisitsabilitytosinterinafewminuteswhile maintainingafinemicrostructureintherefractorymaterials com-paredtohourswithhighpressure sinteringandseveraltensof hourswithnaturalsintering.Thisperformanceisduetothe simul-taneousapplicationofhighuniaxialpressureandtemperatureby Jouleheatingviapulsedcurrentpassingthroughthetoolsandalso thematerialtobesinteredifitconductselectricity.Moreover,the SPSmethodheatsthepartbeingmadeveryquicklycomparedto thehigh-pressuremethod.

Theaimofelectro-thermalmodelingthisprocesswastopredict thethermalgradientsinthesampleandtoexplaintheireffects onthefinalmicrostructure[1–3].In theliterature,most model-ingisperformedusingthefiniteelementsmethod(FEM).InFEM modelingauthorsoftenconsiderthatallthecontactsareperfect.

∗ Correspondingauthorat:CIRIMAT,118routedeNarbonne,31062Toulouse, France.Tel.:+33561556109;fax:+33561556163.

E-mailaddress:estournes@chimie.ups-tlse.fr(C.Estournès).

However,recent works,in particular thatof Pavia [4],where a rapidinfraredcamerawasusedtoobserveanopendieduringa wholeSPScycle,revealedthatheattransferatthePunch/Die inter-facehasapredominanteffectonthethermal-gradientparticularly wheninsulatingmaterialsaresintered[4].Usually,inSPStools,a graphitesheet(Papyex®fromMersenCo.,Gennevilliers,France)is

introducedbetweenthepunch,theinnerdiewallandthesample toensureeasysampleremoval,withalowfrictioncoefficientand goodthermalcontactbetweentheparts.

Thecontactphenomenaandelectricandthermaleffectsare typ-icallydependentnotonlyontheappliedpressurebutalsoonthe temperature[5–8].Theyareexplainedbythenon-idealsurfacedue totheroughnessofthematerialsinvolvedinthecontact[9].

Thechallengeofourpresentstudywastoevaluatethese electri-calcontactresistances(ECR)essentialinFEMmodelingoftheSPS process.Therearealreadysomeworkspublishedonthe determi-nationoftheelectriccontactbetweenthepartsoftheSPStools. Anselmi-Tamburini et al. [10] determined, by ambient electric resistancemeasurements,thepressuredependenceoftheelectric contactinaluminaandcoppersamplesandconcludedthatabove auniaxialappliedpressureof50MPa,itisuselesstoconsiderany contactphenomenainthevicinityofthesample.Buttheydodraw ourattentiontothecontactbetweenthepunchesandthediewhich

(3)

Fig.1. Representationofthetwoset-ups:withandwithoutcontacts[1,2].(Forinterpretationofthereferencestocolorinthisfigurecitationintext,thereaderisreferred tothewebversionofthisarticle.)

isassumedtoplayastrongerrolethantheglobalresistanceofthe tool.Vanmeenseletal.andMcWilliametal.[11,12]madesimilar studiesoftheelectriccontact.Theymeasuredtheelectric resis-tancesofdifferentSPSconfigurationswithandwithoutcontacts. Thenon-contactconfigurationisusedtosubtractallresistances excepttheelectricalcontactresistanceinthecontact configura-tion.ThisprocessisexplainedbelowinEq.(IV)usedtomeasure contactresistance.

In the present study, we chose the same strategy ask-ing them to determine the electric resistances of the graphite/Papyex®/graphite contact to follow the behavior of

the contact with temperature and pressure. Indeed previous studiesmainlyconsideredthepressuredependence oftheECR. Here,aDœhlertexperimentaldesignwasused.

2. Experimental

TheexperimentwascarriedoutontheSPSmachine(Dr.Sinter 2080,SPSSyntexInc,Japan)atthe“PlateformeNationaleCNRSde FrittageFlash”locatedatUniversityToulouseIII-PaulSabatier.

ThefirstpartofthispaperisdevotedtotheanalysisoftheDC pulsedcurrent given bythedevice usedconsideringtwo types ofmaterialstobesinteredrespectivelymore conducting (man-ganese)andinsulating(alumina)comparedtothegraphiteused forthetools(Ref.2333fromMersenCo.,Gennevilliers,France). The molds usedhave either 8 or 36mm inner diameters. Sen-sorswereselectedforsamplingthesignals(u(t)acrossthecolumn andi(t)passingthrough)withasufficientlyhighfrequency(upto 10,000Hz)todescribeeachpulsecorrectly.Fortheinstantaneous currentawidebandRogowskicoilsensor(PowerElectronic Mea-surements,CWT60)wasused.Tomeasurethevoltageacrossthe SPScolumn,thepotentialwasconsidereduniformovertheentire

contactsurface.Fromthesynchronizedvoltageandintensity mea-surements,averageandRMSvalues(Uave,Urms,IaveandIrms)were

calculatedusingaLabviewroutine(NationalInstrumentsoftware). Thesignalwasalsocalibratedusinganoscilloscopetoverifythe correspondencebetweenmeasuredandcalculatedmeanvalues.

Thesecondpartof this paperisdevoted tohighlightingthe importanceofelectriccontactsinSPStools.Inparticular,the elec-triccontactsgraphite/Papyex/graphitepresentmainlyattheinner interfacesofthemoldaredeterminedusingtheprincipledescribed byVanmeenseletal.[11].TwoSPScentralpunchconfigurations werestudied.Onewithtwographite/Papyex®/graphitecontacts

(inredinFig.1)andonewithoutcontacts.Theheightofthispartof thecolumnsisthesameinbothconfigurations.Theelectric resis-tancewasobtainedforeachofthetwoset-upsusingthecurrent andvoltagevaluesgivenbytheSPSmachine.

3. Resultsanddiscussions 3.1. Studyofmachinecurrent

Toknowwhatkindofcurrentvalueisgivenbythedisplayofthe SPSmachine,theRogowskicoilwasplacedbelowtheSPSchamber attheoutputofthecurrent.ThemeasurementsreportedinFig.2

showthatthevalueofcurrentgivenbythemachine(Isps)roughly

correspondstotheaveragecurrentcalculatedbytheRogowskicoil (Iave).

Forthermal effectstudies,it wouldbebettertousetherms ratherthantheaveragevalues.Thecoefficientusuallyusedto con-verttheaverageintormsvalues fortheoreticalrectifiedpulsed current,eitherUorI,issimpleandnear1.11[13].Inanycase,as theelectricalresistanceistheratioofthevoltagetothecurrent intensity,weshoulduseeithertheaverageorthermsvalues.

(4)

Fig.2.Comparisonofthedifferentcurrentmeasurements.

3.2. Studyofpulsedcurrentsequences

TheRogowskicoilsensorallowedustofollowtheintensityand shapeofthecurrentpulsesforvarioussequencesandduringthe wholeSPScycle.Thisrequiredan8mminnerdiametergraphitedie containingeitheraconductingorinsulatingpowderedmaterial(i.e. manganeseoraluminaseeTable1).Threetypesofsequences(Xis thenumberofpulsesandYthenumberofdeadtimes;i.e.X-Y= 12-2,9-5,7-7)weretestedatvarioustemperaturesbetween200and 1000◦Candforanappliedpressureof100MPa.Itwasfound(Fig.3)

thatforthesethreesequences,theactualnumberofpulseswas maintainedcomparedtothenumberaskedforalthoughChenetal.

[14]haveshownthatthisisnotthecaseforsequenceswithsmall numbersofpulses.Inagreementwiththeseauthors,itisshown herethatareductioninthenumberofpulsesatagiventemperature

Table1

Electricalresistivityofvarioussamplematerialsdependingontheabsolute temper-atureT[1;2].

Material Electricalresistivity(m)

Manganese 1.43×10−6+4.0×10−10T−3×10−13T2 Alumina 8.7×1019T−4.82

Graphite 2.14×10−5−1.34×10−8T+4.42×10−12T2

impliesahighermaximumintensity.Theintensityofthepulsesis alsoincreasedwhentemperatureisincreased.Thiseffectisshown inFig.3(g)–(i)whereImaxisplottedversustemperatureforvarious

sequencesforbothaluminaandmanganesepowders.Notethat thereisnottoomuchdifferenceinthevaluesofImaxirrespective

ofthetypematerialstudied. 3.3. Studyofthepulseintensity

Comparisonof thepulsepatternsacquired atdifferent tem-peraturesfora12-2sequenceallowedustostudythedurations ofthepulsesandthedeadtimes.Pulsedurationincreasedwith temperatureandhencewiththecurrentintensity(Fig.4a).In con-trast,thedeadtime decreasedwithincreasingtemperatureand intensity(Fig.4b)whiletheglobalperiodofthesignalremained unchangedwhateverthetemperature.Thiswasobservedforan 8mminnerdiameterdieconfigurationwitheitheranaluminaora manganesesample,aconfigurationthatdoesnotrequireelevated electricpowertoheatthetools.Itwasalsoobservedon increas-ingthepowerdemandthat,foran8mmdie,whenImaxwasnear

andabove1000A,thesignalnolongerreturnedtozerobetween twosuccessivepulses.McWilliamset al.[12]have shownthat increasingthevolumeof thedieimpliesincreasingtheelectric

g)

200 400 600 800 1000 400 600 800 1000 1200 1400 Intens ity ( A) Temperature (°C) 12-2 Alumina 12-2 Manganese

h)

200 400 600 800 1000 400 600 800 1000 1200 1400 In te n si ty ( A ) Temperature (°C) 9-5 Alumina 9-5 Manganese

i)

200 400 600 800 1000 400 600 800 1000 1200 1400 In te n si ty ( A ) Temperature (°C) 7-7 Alumina 7-7 Manganese

Fig.3. Recordofthecurrentpulseintensityatdifferenttemperaturesandpulsessequences,((a)–(c))200◦C,((d)–(f))1000C,(a,b)12-2,(b,e)9-5,(c,f)7-7,(g–i)Imax measuredinvariouspulsesequencesandtemperatures.

(5)

-10 -8 -6 -4 -2 0 2 4 6 8 10 0 250 500 750 1000 1250 I ( A ) Time (ms) 200°C 400°C 600°C 800°C 1000°C 1000 800 600 400 200 1,5 2,0 2,5 3,0 3,5 4,0 T im e ( m s) Temperature (°C) Alumina Manganese

Fig.4. Studyofpulsetimestep:(a)pulseformatdifferenttemperatures;(b)pulse timeversustemperature.

powernecessarytoattainthesametemperatureinthesame con-figuration.Thisimpliesthatthephenomenonpreviouslyobserved (Fig.4)isamplifiedfora36mmdiewhichincreasesthegraphite volumeandtheelectricpowerneededtoheattheassembly. Con-sequentlytheresultingsignalisnolongersimplypulsedbutlooks likeasquarewave(seeFig.5).

3.4. Electricalresistanceofthecolumn

The RMS value of the current (Irms) was obtained using a

RogowskicoilsensorandtheRMSvoltage(Vrms)usingtwo

elec-trodeslocatedbetweenthelargestspacersandtheInconelram cover.TheglobalelectricalresistanceoftheSPScolumncanthus beobtainedbycalculatingtheratioUrms/Irms.Fig.6representsthe

variationoftheelectricalresistanceofthecolumn(Rcalc=Urms/Irms)

versustime intwo SPScycles.Thefirstisobtainedwitha pres-sureof5MPathroughoutthecyclewhilethesecondat100MPa wasappliedbeforethebeginningoftheincreaseintemperature withaheatingrateof100◦C/minupto1000Cand4minofdwell.

480,00 480,03 480,06 480,09 0 1000 2000 3000 4000 I (A) Time (s)

Fig.5.Currentpulseshapeathighintensity.

0 200 400 600 800 1000 0 1 2 3 4 5 6 7 R ( 1 0 -3 .O h m ) Time (s)

Fig.6.Electricresistanceofthecolumnwithauniaxialpressureof5MPa(red)or 100MPa(black).(Forinterpretationofthereferencestocolorinthisfigurelegend, thereaderisreferredtothewebversionofthisarticle.)

0 200 400 600 800 1000 0 1 2 3 R ( 1 0 -3 .O h m ) Time (s)

P Before the cycle P Beginning of the cycle P at 500°C P at 1000°C

Fig.7.Electricalcolumnresistanceinvariouspressurecycles.

Theresistancecalculatedforthecycleat5MPawassignificantly higherthanthatobtainedforapressureof100MPa,whichis prob-ablyduetothedifferenceinelectricalcontactresistances(ECR)at thecolumninterfaces.Withthethermalexpansionofthegraphite partsduringtheSPScycle,thepressureincreaseswithtemperature andconsequentlytheECRandtheglobalresistanceofthecolumn decrease,whichisclearlyseenforthelowuniaxialpressure(red curveinFig.6),theinstabilityat300scorrespondingtothe shrink-agezoneduetothesintering.Byvaryingthetimeatwhichthe loadof100MPaisapplied(Fig.7),theresistancewasseentobe higherbeforepressureapplicationbuttendedtoconvergetothe samevalueattheendofthecycle.Thisclearlyshowsthe correla-tionbetweenthepressureandtheECR:anincreaseoftheuniaxial pressureresultsinadecreaseoftheECR.

3.5. MethodofECRdetermination

In the configurations in Fig. 1, all the electrical resis-tancesare in series. Therefore, theelectrical contact resistance graphite/Papyex®/graphite(R

c)canbedeterminedbyremovingthe

valueoftotalelectricalresistanceofthecolumnwithoutcontact (Rtot)fromthatwithcontact(Rtotc),atagivendwelltemperature.

AsintheequivalentschemespresentedinFig.8,whereRc is

thecontactresistanceandRa+Rbisthesumofallotherresistances

presentinthesystem(RatheupperpartandRbthelowerpart):

Rtotc,andRtot,thesumofallseriesresistances,respectivelywith

andwithoutthecentralgraphite/Papyex®/graphitecontacts,from

theratiovoltage(U)/intensity(I). Rtotc= Ra+ Rc+ Rb=Uc Ic (I) Rtot= Ra+ Rb= Ub Ib (II)

(6)

Fig.8. Electricalequivalentmodel.

ByreplacingRa+Rbin(I)weobtain:

Rtotc= Rtot+ Rc (III)

Rc= Rtotc− Rtot= Uc Ic

−Ub Ib

(IV) ThevaluesUc,Ub,Ic andIb areaveragevaluesgivenbytheSPS

machineandweredeterminedinthestationarystate(dwell tem-perature).

TodeterminethebehavioroftheECRwiththeappliedpressure andtemperatureanexperimentaldesignwasused.Tosolvethis problemitispossibletouseeitherTaguchi,Dœhlertorcomposite experimentaldesignapproach.Dœhlert’sapproachwaspreferred becauseitgivesusandfutureauthorsthepossibilitytoeasilymove theexperimentaldomaintohigherpressuresand temperatures withaminimumofthreemoreSPSexperiments.

ThedifferentexperimentsinFig.9werecarriedoutapplyingthe Dœhlertexperimentaldesign[15,16].Withthismethod,thechoice ofstudyrangeiscrucial.Indeedthistypeofexperimentaldesign isbasedonthegeneralprincipleofinterpolationofexperimental resultsbyaseconddegreepolynomialfunction.Therefore,ifthe rangeofstudyistoohighthereisariskofhavinganinterpolation functionthatisnotsuitabletodescribeorfittheexperimentaldata points.Ontheotherhand,doingtheinterpolationovertooshorta rangewillnotberepresentative.Therangeofappliedpressureswas

Fig.9. Dœhlertexperiments.

Table2

(a)Thetableofexperimentsand(b)coefficientsofthemodel.

(a)

Pressure(MPa) Temperature(◦

C) ECR() 30 425 1.07E−03 30 425 1.03E−03 50 425 8.99E−04 40 800 4.50E−04 20 800 4.04E−04 10 425 9.67E−04 20 50 3.51E−03 40 50 2.15E−03 (b) Coefficients +/− a0 1.05E−03 3.59E−04

P(a1) −2.41E−04 2.93E−04

T(a2) −1.39E−03 2.93E−04

PT(a12) 8.11E−04 5.86E−04

P2(a11) −1.19E−04 5.08E−04

T2(a22) 8.09E−04 5.08E−04

chosenherebetween10and50MPa.Indeed,inthisconfiguration (diameterofthepart=10mm)thelowthresholdloadleadingtoa stablevaluethattakesintoaccountthedilationofthestack, corre-spondstoaminimumappliedpressureof10MPa.Asreportedby Anselmi-Tamburinietal.,itisuselesstogoabove50MPabecause thecontacttendstobeperfectoverthishighthreshold.The tem-peraturerangeislimitedfrom50upto800◦Cinordertolimitthe

interpolationproblem(seeabove).

Thepolynomialseconddegreemodelis:

y= a0+ a1x1+ a2x2+ a12x1x2+ a11x21+ a22x22 (V) Where,aiaretheeffectcoefficientsofpressure,temperature,the

interaction betweenpressure and temperature,and thesecond degreeeffectsonthepressureandtemperature,ytheresponsehere itistheelectricalcontactresistance,x1isthepressureandx2the

temperature.

3.6. ECRexperimentaldesign

Thepresentmodelhasacorrelationcoefficient(R2)of0.97,i.e.

near1,theinterpolationfunctionoftheresultsisthereforecorrect. Theexperimentaltabletodeterminetheelectricalcontact resis-tances(ECR)ofa10mmdiameterpunchisrepresentedinTable2a. Thecoefficientsofthemodelandtheirstandarddeviation(+/−)are reportedinTable2b.ThecomparisonofthecoefficientsinFig.10

showsapredominanteffectoftemperature(thea2 coefficientis

thehighestandis negativewhichtellsusthat thetemperature decreases theelectrical contact) and that there is a significant pressure/temperatureinteraction(a12).Thepositiveseconddegree

coefficienta12showsthattheincreasesofpressureand

tempera-turehaveapositivecurvature.

Fig.10.Representationofeachvalueofthecoefficientsandtheirstandard devia-tions.

(7)

Fig.11.Electricalcontactresistanceversuspressureandtemperature(a)3D repre-sentation(b)2Dprojection.

Fig.11aisa3DgraphoftheinterpolationfonctionoftheECR inandFig.11btheprojectionin2D.Thesefiguresshowthat, asexpected,theECRdecreaseswithappliedpressure and tem-peratureandreachesavaluenearzeroathightemperaturesand pressures.Moreover,thefunctionseemstobeasymptoticwithan increaseoftemperatureandpresureatroughly800◦Cand50MPa

probablyduetothepositiveinterractioncoefficient(a12orPT).In

mostSPScycles,inparticularforsinteringofceramics,the exper-imentalconditionsaresuchthatthevaluesof800◦Cand50MPa

areexceeded.HenceitisperfectlyacceptedthattheECRvaluecan beignoredaroundthesamplewherethepresureandtemperature aremaximum(higherthan50MPaand800◦C).However,forthe

frictionzonewherethecontactbetweenpunches/Papyex® inner

wallofthedieismoving,thepressureisverylowandisnotinthe pressurerangeofthisexperimentaldesignrequiringdetermination usingadifferentapproach.

Theequationofmodel(V)isexpressedincenteredandreduced variableswithmaximumandminimumequalto1and−1.These variablesareusedinexperimentaldesigntobeabletocomparethe effectsofeachoftheexperimentalparameters(suchasPandTin

Fig.10).TorewriteEq.(V)inaformthatcanbeeasilyincludedin electro-thermalmedialization,theECR(m2)canbeexpressedas

afunctionofthepressureP(Pa)andthetemperatureT(K): ECR= 5.85∗ 10−7− 4.68∗ 10−15P− 9.45∗ 10−10T

+ 7.36∗ 10−18PT− 2.33∗ 10−23P2+ 3.39∗ 10−13T2 (VI)

TheECRvaluesobtainedinthepresentstudyareabout3× 10−7 (m2)atlowpressureandtemperatureandoftheorderof7× 10−8

(m2)athighpressureandtemperature.Thesevaluesareofthe

sameordermagnitudeasthoseobtained,forothergraphite refer-ences,byZavaliangaos[5]andMaizzaetal.[8]whoobtainedECR valuesof1.3× 10−7(m2)ontheverticalcontact(lowpressure) and8× 10−8(m2)onthehorizontalcontact(highpressure). 4. Summaryandconclusion

ThepulsedcurrentoftheDr.Sinter2080SPSmachineandthe electriccontactinsidetheSPStoolshavebeenstudied.

Thecurrentpulsesshowedthattheincreaseintemperatureis obtainedbyincreasingthemaximumintensityofthepulsewhile respectingthedesiredpulsepattern.

Theincreaseofthemaximumintensityofthepulsesgoeswith anincreaseof theirstep timeand adecrease ofthedeadtime. Moreover,thepulsecurrentrepresentationathighelectricpower hasshownthattheafterroughly3000Aofmaximumintensitythe shapeofthecurrentcorrespondstoasquarewave.

Measurementsoftheelectricalresistanceofthecolumnshow thatECRexistsanddecreaseswithbothpressureandtemperature. Theexperimentaldesignhelpedustounderstandhowthe elec-triccontactresistance(ECR)workswithpressureandtemperature bythefollowingpoints:

-ECRdecreaseswithpressureandtemperature.

-ECRdecreasesasymptoticallytozeronear800◦Cand50MPa.

-ThelastpointsuggeststhattheseECRarenegligiblearoundthe samplebecausethetemperatures andpressuresarehigher in commoncycles(asshownbyAnselmietal.[10]).

Theelectriccontactsbetweenthepunchesandthedieareina placeofverylowpressure(lowerthan10MPa)andareexpected tohaveastrongerrole.

Acknowledgements

ThesupportoftheLAPLACEfortheinstrumentationandfruitful discussionsandthePlateformeNationaleCNRSdeFrittageFlash (PNF2/CNRS)weregratefullyappreciated.C.MandC.E.thankthe FrenchNationalResearchAgency(ANR)forthefinancialsupportof thisstudywithintheprojectANR09MAPR-007Impulsé.

References

[1]A.Pavia,L.Durand,F.Ajustron,V.Bley,G.Chevallier,A.Peigney,C.Estournes,

Electro-thermal measurementsand finiteelementmethodsimulationsof

a spark plasma sintering device, J. Mater. Process. Technol.213 (2013)

1327–1336.

[2]G.Molénat,L.Durand,J.Galy,A.Couret,Temperaturecontrolinsparkplasma

sintering:anFEMapproach,J.Metall.2010(2010),ArticleID145431.

[3]Th.Voisin,L.Durand,N.Karnatak,S.LeGallet,M.Thomas,Y.LeBerre,J.-F.

Castagné,A.Couret,Temperaturecontrolduringsparkplasmasinteringand

applicationtoup-scalingandcomplexshaping,J.Mater.Process.Technol.213

(2013)269–278.

[4]A.Pavia,Etudefondamentalespourlacompréhensiondesmecanismesdes

matériauxparlatechnologieSparkPlasmaSintering(PhDThesis),Université

ToulouseIIIPaulSabatier,2012.

[5]A.Zavaliangaos,J.Zhang,M.Krammer,J.R.Groza,Temperatureevolutionduring

fieldactivatedsintering,Mater.Sci.Eng.A379(2004)218–228.

[6]D.Tiwari,B.Basu,K.Biswas,Simulationofthermalandelectricfieldevolution

duringsparkplasmasintering,Ceram.Int.35(2009)699–708.

[7]J.Zhang,Numericalsimulationofthermoelectricphenomenainfieldactivated

sintering(Ph.D.thesis),DrexelUniversity,Philadelphia,PA,2004.

[8]G.Maizza,S.Grasso,Y.Sakka,Movingfinite-elementmeshmodelforaiding

sparkplasmasinteringincurrentcontrolmodeofpureutrafineWCpowder,J.

Mater.Sci.44(2009)1219–1236.

[9]R.Holm,ElectricContacts:TheoryandApplications,4thed.,Springer/Verlag

(8)

[10]U.Anselmi-Tamburini,S.Gennari,J.E.Garay,Z.A.Munir,Fundamental

investi-gationsonthesparkplasmasintering/synthsisprocess.II.Modelingofcurrent

andtemperaturedistributions,Mater.Sci.Eng.A394(2005)139–148.

[11]K.Vanmeensel,A.Laptev,J.Vleugels,O.VanDerBiest,Modellingofthe

tem-peraturedistributionduringfieldassistedsintering,ActaMater.53(2005)

4379–4388.

[12]B.A.McWilliams,Numericalsimulationofelectricfieldassistedsintering(Ph.D.

thesis),DrexelUniversity,Philadelphia,PA,2008.

[13]R.Mercier,H.Sauvignet,R1015,1986,http://www.techniques-ingenieur.fr/ res/pdf/encyclopedia/tiare-r1015-version1.pdf

[14]U.Chen,U.Anselmi-Tamburini,J.E.Garay,J.R.Groza,Z.A.Munir,Fundamental

investigationsonthesparkplasmasintering/synthesisprocess:I.Effectofdc

pulsingonreactivity,Mater.Sci.Eng.A394(2005)132–138.

[15]D.Vjnovic,D.Chicco,H.El,Zenary,Doehlertexperimentaldesignappliedto

optimisationandquantityofagranulationprocessinhighshearmixer,Int.J.

Pharm.145(1996)203–213.

[16]D.Gazquez, M.Sanchez-Vinas, M.GraciaBagur,G. Garcia,Applicationof

Doehlertdesignsintheoptimisationofexperimentalvariablesassociatedwith

thesimultaneoussolventextractionofseveralmetals,J.Anal.At.Spectrom.13

Figure

Fig. 1. Representation of the two set-ups: with and without contacts [1, 2]. (For interpretation of the references to color in this figure citation in text, the reader is referred to the web version of this article.)
Fig. 3. Record of the current pulse intensity at different temperatures and pulses sequences, ((a)–(c)) 200 ◦ C, ((d)–(f)) 1000 ◦ C, (a, b) 12-2, (b, e) 9-5, (c, f) 7-7, (g–i) I max
Fig. 5. Current pulse shape at high intensity.
Fig. 8. Electrical equivalent model.
+2

Références

Documents relatifs

Pour ma part, je suivais les évolutions du monde tropical, surtout dans les pays que l’on appelait alors péjorativement « sous- développés » et qui devinrent rapide- ment « en

Higher-order, non-linear terms involving the sway velocity 'v' must be incorporated into the expressions for the hydrodynamic loads (in the equations of motion) in

In order to address this concern, a platform or walkway was proposed to make getting from one side of the test frame to the other easier and safer.. The walkway was required to

For this specific boundary condition we can construct a generalized minimizer using the construction of the previous section which realizes smaller action than any deterministic

Dans notre étude descriptive, nous nous sommes concentrés sur quatre paris qui déterminent les caractéristiques de ces interactions et, par conséquent, les avantages de cet

Ainsi, l’objectif de cette présentation sera de vous montrer comment et sous quelles conditions, l’agriculture urbaine peut être un moteur de

(1991) Temperature-Dependent Regulation by Molybdenum and Vanadium of Expression of the Structural Genes Encoding Three Nitrogenases in Azotobacter vinelandii.. Walmsley,

Parmi les probables crash césariennes, plus de la moitié est représentée par les ARCF associées à une anesthésie générale lors de la césarienne ; un tiers est