• Aucun résultat trouvé

Sequential upscaling of multiphase dispersion in porous media

N/A
N/A
Protected

Academic year: 2021

Partager "Sequential upscaling of multiphase dispersion in porous media"

Copied!
25
0
0

Texte intégral

(1)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is author’s version published in: http://oatao.univ-toulouse.fr/25188

To cite this version:

Guo, Jianwei and Laouafa, Farid and Quintard, Michel Sequential upscaling of multiphase dispersion in porous media. (2019) In: SITRAM 2019, Advances in the SImulation of reactive flow and TRAnsport in porous Media, 2 December 2019 - 3 December 2019 (Pau, France). (Unpublished)

(2)

Dissolution

1/24

M. Quintard

Sequential upscaling of

Sequential upscaling of

multiphase dispersion in porous

multiphase dispersion in porous

media

media

J. Guo

1

, F. Laouafa

2

and M. Quintard

3 1

Southwest Jiaotong University, P.R. China

2

INERIS, France

3

D.R.C.E. CNRS Emeritus - Université de Toulouse (Institut de Mécanique

(3)

Dissolution

2/24

M. Quintard

Outline

Outline

Introduction to dissolution applications, Multi-scale

aspects: coupling reaction and multiphase transport?

Pore to Darcy-scale upscaling:

Introduction

Various models

Effective properties

Darcy-scale behavior

Large-Scale upscaling

Conclusions

(4)

Dissolution

3/24

M. Quintard

Applications...

Applications...

Karsts

Mahr and Mewes (2007)

Pet engng: CO2

storage, acid

injection, etc...

(5)

Dissolution

4/24

M. Quintard

Generic Problems: 2-phase flow

Generic Problems: 2-phase flow

lβ L β-phase averaging volume V l γ γ-phase σ-phase

(6)

Dissolution

5/24

M. Quintard

Generic Problems: Reactive

Generic Problems: Reactive

transport

transport

lβ L β-phase averaging volume V l γ γ-phase σ-phase

Homogeneous reaction

Heterogeneous reaction:

Local Equilibrium:

+ other mass balance equations

(7)

Dissolution

6/24

M. Quintard

Upscaling: momentum equations

Upscaling: momentum equations

Decoupling between two-phase flow and

reaction?

Need to neglect terms involving w

βγ

If ρ, μ and σ depends on concentration: need

saturation front, λS

(8)

Dissolution

7/24

M. Quintard

Model

PDEs

Quasi-static, heuristic

(Muskat)

Quasi-static, low Re, with

cross terms

Quasi-static, inertia

effects, with cross terms

More dynamic models

(transient terms,

“pseudo-functions”, ...)

Decoupled momentum transfer:

Decoupled momentum transfer:

various models

(9)

Dissolution

8/24

M. Quintard

...cont.: hybrid models, N-eqs

...cont.: hybrid models, N-eqs

models

models

Trickle Bed (X-ray, IFP)

Mahr and Mewes (2007)

Phase

“splitting”

→ N-eqs

(Soulaine et al., 2014;

Pasquier, 2018)

PNM with

dynamic

laws!

(10)

Dissolution

9/24

M. Quintard

Upscaling Dispersion → various models!

Upscaling Dispersion → various models!

1D Macro-Scale

{

DNS

1-eq local equilibrium

2-equation, N-equation

rate or MRMT, ...

Mixed or Hybrid models

meso-scale Network model

Mixed or Hybrid Network

model (PNM+VOF)

3D µ-scale

1-eq non-eq: convolution,

asympt. 2-eq, frac. deriv.,

wave eq., CTRW,...

Mixed or Hybrid models

for front problems

Classical

dispersion

(11)

Dissolution

10/24

M. Quintard

Active Dispersion: specific

Active Dispersion: specific

aspects

aspects

Impact of n.w

Tortuosity and

dispersion ≠ from

passive dispersion

Effective reaction rate

Convective correction

(“drift”)

Importance of

non-local effects

This talk → mainly

trapped phase

2-φ VOF,

etc..

PNM

Large-scale

(12)

Dissolution

11/24

M. Quintard

Fully coupled micro-macro model with

Fully coupled micro-macro model with

“n.w” terms

“n.w” terms

dispersion

tortuosity

I.

II.

III.

IV.

V.

specific area:

+

(13)

Dissolution

12/24

M. Quintard

Macro-scale model and effective

Macro-scale model and effective

parameters (simplified closure, no n.w)

parameters (simplified closure, no n.w)

“Effective reaction”:

Mass exchange term:

Dispersion tensor ≠ from passive dispersion:

Additional convective terms:

(14)

Dissolution

13/24

M. Quintard

Effective “reaction rate” (ex.: linear reaction

Effective “reaction rate” (ex.: linear reaction

rate)

rate)

Pore-scale Damkhöler number:

Note: if

y

s l

x

H/2 R 0

Purely transport limited =

Local Non-Equilibrium Model

0 0.2 0.4 0.6 0.8 1 10-3 10-2 10-1 100 101 102 103 104 Da

= .2

.5

.9

(15)

Dissolution

14/24

M. Quintard

Dispersion

Dispersion

10-1 100 101 102 103 100 101 102 103 104 n=1, D a=1 n=3 n=5 n=1, D a=100 n=3 n=5 n=1, D a=1 n=3 n=5 n=1, D a=100 n=3 n=5

Pe

n=1, D a=1 n=3 n=5 n=1, D a=100 n=3 n=5

l i

s

l

s

s

l

i

Da=0 → passive case

Da → ∞ → uniform equil. conc. at A

βσ

Guo et al.,

2015

(16)

Dissolution

15/24

M. Quintard

Importance of non-local effects

Importance of non-local effects

and drift

and drift

fluid/solid repartition

fluid concentration

fluid x-velocity

h

0

y

x

L

H

h ( x , t )

Comparison with 1D averaged model

Note: need additional “convective” terms

Hyp.: Re~0  Darcy , Ra=0

Improvements: use of non local effective parameters...

...or hybrid formulations!

Entrance effects

D

N

S

(17)

Dissolution

16/24

M. Quintard

Darcy-Scale → Large-Scale

Darcy-Scale → Large-Scale

ω η lω

l

d dissolution front

L

pore soluble insoluble pore soluble insoluble

1

st

upscaling

Pore-scale model

Darcy-scale model

Large-scale model

DNS

2

nd

upscaling

α=s,i,l

s : soluble phase

i: insoluble material

l: liquid phase (water + dissolved

species)

(18)

Dissolution

17/24

M. Quintard

Darcy-scale model (ex.: gypsum)

Darcy-scale model (ex.: gypsum)

l

η R0 L ω η

l

ωs l i

r

0 ll ls li

Darcy-scale

Pore-scale

Large-scale?

Damköhler number

(19)

Dissolution

18/24

M. Quintard

Dissolution of heterogeneous

Dissolution of heterogeneous

systems: scale separation?

systems: scale separation?

x C x C 10.+4 10.-5 10.-4 10.-3 10.-2 10.-1 10.+0 10.+1 10.+2 10.+3 10.-4 10.-3 10.-2 10.-1 10.+0 10.+1 10.+2 10.+3 Conical Wormhole Dominant Wormhole Ramified Wormhole Uniform Compact

Péclet Number

D

amköhl

er

N

umber

after Golfier et al., 2000

Dissolution instabilities?

Front Thickness?

(20)

Dissolution

19/24

M. Quintard

Heterogeneous systems: properties

Heterogeneous systems: properties

of the Darcy-Scale fields (cont.)

of the Darcy-Scale fields (cont.)

local equilibrium dissolution

→ sharp front

non-local equilibrium dissolution

→ diffused front!

x

C

x

x

x

C

C*

C

~

or

or

(21)

Dissolution

20/24

M. Quintard

L-S Upscaling of a simple dissolution

L-S Upscaling of a simple dissolution

model, small “Damköhlers” (case Pe>1)

model, small “Damköhlers” (case Pe>1)

Definitions for large-scale averages:

(22)

Dissolution

21/24

M. Quintard

Coupled Darcy-Scale and

Coupled Darcy-Scale and

Large-Scale problem (case Pe>1)

Scale problem (case Pe>1)

L

.-S

.

D

.-S

.

+ problem for Darcy’s law with heterogeneous permeability

(induced by variation of soluble material saturation!)

Dissolution

history!

(23)

Dissolution

22/24

M. Quintard

Large-Scale properties: Preliminary

Large-Scale properties: Preliminary

calculations of effective coefficients

calculations of effective coefficients

Tools developed

for spatially

distributed

Darcy-scale parameters!

(24)

Dissolution

23/24

M. Quintard

Comparison DNS ↔ Theory

Comparison DNS ↔ Theory

Robust

theory!

(25)

Dissolution

24/24

M. Quintard

Conclusions

Conclusions

N-phase flow:

Coupling has been marginally studied

Classical generalized Darcy’s law mostly used. What about models with

cross terms, dynamic models, etc...?

Multicomponent, reactive

Complex chemistry and/or multicomponent thermodynamics

Instabilities

Sequential upscaling:

Limited homogenization results for low Da numbers

Large Da?

History and memory effects

Coupling with heat transfer (combustion, pyrolysis), geomechanics, ...

Mostly about OPEN

PROBLEMS!

Références

Documents relatifs

Using a new algorithm for repeated tomography, we have found a prominent seismic anomaly with high values of the Vp/Vs ratio at depths of 2–5 km below the surface, which is

In SFD98, the FIR optical depth is derived from the IRAS 100 µm brightness using an e ffective temperature for a line of sight.. It is not equivalent to the sum of the optical

1. a) Le roman [qu’elle a lu la semaine dernière] était passionnant. a) Parmi les romans [qui m’ont le plus ému] figure La perle, de John Steinbeck. a) Les romans [qu’ils

(Circles would have rather rough surfaces on a lattice and are known from earlier simulations [4] to have approximately the same drag coefficients.) In most of the simulations, the

Pour le problème à deux corps, aprés avoir exposé en détail les solutions exactes d’un nouveau modèle intégrable de type Calogero dont l’Hamiltonien représente un système de

Correlation energy of the ground state solution of a system of 32 particles distributed over 64 equispaced doubly degenerate levels, in function of the number of 2-pair

رلا تدهش ًاروضح ةرصاعملا ةيرئازجلا ةياو ًايعون رلا جاتنلإا ثيح نم روضحلاو يئاو نفلا رهظ ذإ ،ي ةلحرم اوزواجت نويئاور تلا م تاو نر اوهج نوكتل ديدج وه ام

Given a graph G = (V, E), the traditional problem of influence maximization (IM) is to select a set of seed nodes I ⊆ V , under a cardinality constraint |I| = L, such that the