• Aucun résultat trouvé

Molards as an indicator of permafrost degradation and landslide processes

N/A
N/A
Protected

Academic year: 2021

Partager "Molards as an indicator of permafrost degradation and landslide processes"

Copied!
13
0
0

Texte intégral

(1)

HAL Id: hal-02268386

https://hal.archives-ouvertes.fr/hal-02268386

Submitted on 20 Aug 2019

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Molards as an indicator of permafrost degradation and

landslide processes

Costanza Morino, Susan Conway, Þorsteinn Sæmundsson, Jón Kristinn

Helgason, John Hillier, Frances Butcher, Matthew Balme, Colm Jordan, Tom

Argles

To cite this version:

Costanza Morino, Susan Conway, Þorsteinn Sæmundsson, Jón Kristinn Helgason, John Hillier, et

al.. Molards as an indicator of permafrost degradation and landslide processes. Earth and Planetary

Science Letters, Elsevier, 2019, 516, pp.136-147. �10.1016/j.epsl.2019.03.040�. �hal-02268386�

(2)

Contents lists available atScienceDirect

Earth

and

Planetary

Science

Letters

www.elsevier.com/locate/epsl

Molards

as

an

indicator

of

permafrost

degradation

and

landslide

processes

Costanza Morino

a

,

b

,

,

Susan

J. Conway

b

,

Þorsteinn Sæmundsson

c

,

Jón Kristinn Helgason

d

,

John Hillier

e

,

Frances

E.G. Butcher

f

,

Matthew

R. Balme

f

,

Colm Jordan

g

,

Tom Argles

a

aSchoolofEnvironment,Earth&EcosystemSciences,TheOpenUniversity,WaltonHall,MiltonKeynes,MK76AA,UK

bLaboratoiredePlanétologieetGéodynamiquedeNantesUMR-CNRS6112,2ruedelaHoussinière,BP92208,44322NantesCedex3,France cDepartmentofGeographyandTourism,UniversityofIceland,Askja,Sturlugata7,IS-101Reykjavík,Iceland

dIcelandicMeteorologicalOffice,AvalancheCentre,Suðurgata12,Ísafjörður,Iceland eGeographyandEnvironment,LoughboroughUniversity,Loughborough,LE113TU,UK fSchoolofPhysicalSciences,TheOpenUniversity,WaltonHall,MiltonKeynes,MK76AA,UK gBritishGeologicalSurvey,EnvironmentalScienceCentre,Keyworth,NottinghamNG125GG,UK

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received15February2018

Receivedinrevisedform20March2019 Accepted27March2019

Availableonline17April2019 Editor: J.P.Avouac Keywords: molards permafrost landslide Iceland Mars

Molards havebeendefinedinthepastasconicalmoundsofdebristhatcanformpart ofalandslide’s deposits.Wepresentthefirstconclusiveevidencethatmolardsinpermafrostterrainsareconesofloose debristhatresultfromthawingoffrozenblocksofice-richsedimentsmobilisedbyalandslide,andhence proposearigorousdefinition ofthislandforminpermafrostenvironments.Weshowthatmolards can beusedasanindicatorofpermafrostdegradation,andthattheirmorphometryandspatialdistribution givevaluableinsightsintolandslidedynamicsinpermafrostenvironments.Wedemonstratethatmolards arereadilyrecognisablenotonlyinthefield,butalsoinremotesensingdata;surveysofhistoricaerial imagery allowtherecognitionofrelictmolards,whichcanbeused asanindicatorofcurrentandpast permafrostconditions.The triggeringoflandslidesas aresultofpermafrostdegradationwillarguably occur more often as global atmospheric temperaturesincrease, so molards should be added to our armoury for tracking climate change, as well as helping us to understand landslide-related hazards. Finally, we have also identified candidate molards on Mars, so molards can inform about landscape evolutiononEarthandotherplanetarybodies.

©2019TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Glacial and periglacial environments are particularly sensitive to the effects of climate change (Haeberli and Beniston, 1998; Hinzman et al., 2005). However, few easily recognisable land-forms in cold landscapes are reliable indicators of increasing atmospheric temperature. Here, we propose that molards, land-forms poorly reported in the literature, can help to fill this gap. Molards have been defined as conical mounds occurring in landslide deposits (Brideau et al., 2009; Cassie et al., 1988; Cruden,1982; Geertsemaetal.,2006b; GoguelandPachoud,1972; Jermyn and Geertsema, 2015; Lyle et al., 2004; McConnell and Brock, 1903; Milana, 2016; Mollard and Janes, 1984; Xu et al.,

2012). They are generally

0.3-12 m high(Brideau et al., 2009;

*

Correspondingauthorat:LaboratoiredePlanétologieetGéodynamique, Univer-sitédeNantes,Bâtiment4,2ChemindelaHoussinière,44300Nantes,France.

E-mailaddress:costanza.morino@gmail.com(C. Morino).

Jermyn and Geertsema, 2015), up to 12 m wide (Milana, 2016), have a single, central, rounded to pointed summit (Jermyn and Geertsema, 2015; Xu et al., 2012), and flank slope angles of 27◦-45◦ (Cassieetal.,1988; McConnellandBrock,1903).Molards have been found in the distal zones, at the margins of the dis-placed mass,and/or belowthemain scarp of landslides(Cruden,

1982; Geertsemaetal.,2006b).

Molardshaverecentlybeenidentifiedinavarietyofperiglacial environments, including northern Canada, the Andes, and the peaks of south-east Tibet (Jermyn and Geertsema, 2015; Milana,

2016; Xu et al., 2012). Three recent studies have hypothesised a link between molards and permafrost degradation (Brideau et al., 2009; Lyle et al., 2004; Milana, 2016). It is proposed that movement of landslide material in permafrost regimes causes blocks of frozen material to detach and be transported downs-lope (Brideau et al., 2009; Lyle et al., 2004). When the blocks cometo rest,thegroundicecementingthem thaws,leaving con-ical mounds of rocks and debris. Although no previous studies have observedthe fullcycle ofmolard evolution,original ground

https://doi.org/10.1016/j.epsl.2019.03.040

(3)

C. Morino et al. / Earth and Planetary Science Letters 516 (2019) 136–147 137

Fig. 1. Thefieldsites. Inthecentre,aninsetofthecoastlineofIceland,withthelocationoftheMóafellshyrnalandslideas“a”andoftheÁrnesfjalllandslideas“b”.a, The Móafellshyrnalandslidephotographedinsummer2015,withaninsetshowingthemolards.b, TheÁrnesfjalllandslidephotographedinsummer2016,withaninsetshowing themolards.c,AmolardinÁrnesfjallphotographed2 yrsafterthelandslideeventandpreservingtheoriginalpreferentialorientationofthesourcematerial(fieldnotebook 19×13 cmasscale);notethatthesurfaceisclast-supported.d,AmolardfewdaysaftertheoccurrenceofÁrnesfjalllandside,preservingabundantfinedeposits,personfor scale.

icecontents of50-80%havebeenestimated(Brideauetal.,2009; Milana,2016) assufficientforblocksofice-cementedsedimentsto survivebothinitialfailureandtransport.

We studied molards found in two different landslides in Ice-land: the first is located on the north-western side of Móafell-shyrna Mountain (Tröllaskagi peninsula,Fig. 1a), and the second on the north-facing side of the Árnesfjall Mountain (Westfjords, Fig.1b).The bedrockofboth areasfallswithintheTertiaryBasalt Formation (Miocene-Lower Pliocene) (Jóhannesson, 2014), and is composedof basalts,rhyolites andweatheredtephra layers. Both landslides originated from ice-cemented talus deposits perched ontopographicbenches.The Móafellshyrna landslideoccurredon 20thSeptember2012at873ma.s.l.,travelled

1,300mand mo-bilised

310,000 m3 of material, while the Árnesfjall landslide occurredon14thJuly2014at418ma.s.l., travelled

560mand had a volume of

130,000 m3. The preparatory factor for both landslideswasintenseprecipitation,whilstpermafrostdegradation wasthemaintriggeringfactor,withaminorroleofseismic

activ-ity in the release of the Móafellshyrna landslide (Morino, 2018; Sæmundsson et al., 2018). Both landslides could be simply clas-sified asdebris slides (Varnes, 1978), butwe show that molards allowtheidentificationofadditionalfailuredynamics.

We combine field and remote sensing studies of molards to constraintheircompleteevolution,providingthefirstobservations beforeandaftericeloss.Theseobservationsallowustoproposea definitionofthetermtoadoptformolardsinpermafrostterrains: cones of loose debris that result from thawing of frozen blocks of ice-richsediments mobilised by a landslide inpermafrost ter-rains. Our data dispel anylingering doubts about the direct link betweentheselandforms andpermafrost degradationincold en-vironments. We show that molards in permafrost environments are a critical indicator of permafrost degradation, and they can reveal importantinformationon themobilityoflandslides in ter-rains affectedby permafrost.Wefinally detail characteristicsthat canbeusedtoidentifytheminthefieldandfromremotesensing data.

(4)

2. Methods

2.1. Fieldwork

We conducted fieldwork of the Móafellshyrna landslide nine daysafteritsoccurrenceandoftheÁrnesfjalllandslideoneday af-tertheevent.WerevisitedtheMóafellshyrnasiteinsummer2015, threeyearsafterthelandslideevent,toperformfieldobservations and ground-support for the collection of airphotos and airborne LiDAR(LightDetectionAndRanging)data.Werevisitedthe Árnes-fjallsiteinsummer2016toperformfieldobservationsandcollect a Structure fromMotion (SfM) photogrammetrydataset. Wealso performed differential GPS (dGPS) surveys of the landslides us-ing two GNSS LeicaSystem 1200units in theMóafellshyrna site andtwoGNSSLeicaVIVAGS10SystemunitsinÁrnesfjallsite.One was usedasaroverunit andtheother one asbasestation,with themeanaccuracyofmeasurements being1cminthehorizontal and2cmintheverticaldirection.Weinvestigatedtheinteriorof onemolardateachsitetodeterminetheir innercompositionand structure.

2.2. Airbornedata

In September 2015, the U.K. Natural Environment Research Council’s Airborne Research Facility (NERC-ARF) on behalf ofthe European Facility for Airborne Research (EUFAR) collected aerial photographyandLiDARdatafortheMóafellshyrnaareainIceland, threeyears aftertheMóafellshyrna landslide occurred.170 aerial photographs were collected with a Leica RCD105 digital camera, and15lineswereflown tocollect126million LiDARpoints with 1.7points/m2 using a Leica ALS50-II. A GNSS LeicaSystem 1200 dGPS was used in a fixed location at 1 Hz during the flight to collect base station data for the on-board dGPS. The geometric correctionoftheLiDARpointcloudwas performedby NERC-ARF-DAN(Data Analysis Node) using the dGPSandnavigational data. We used the LAStools extension for ArcGIS to convert the point clouds into gridded Digital Elevation Model (DEM) at 1 m/pixel, using the return time of the last peak of light to reach the re-ceiverfromtheLiDAR lasershot(e.g.,Höfle andRutzinger, 2011; Jaboyedoffetal., 2012; Roering etal., 2013), whichisusually as-sumedtobethegroundreturn.WeusedAgisoftPhotoscan Profes-sional1.3.5toproduceaseamlessorthomosaicfromtheairphotos, wherethe position ofthe images was controlled usingten well-spreadgroundcontrolpoints (GCPs)derivedby locatingmatching positionsbetweenahillshadedversion oftheLiDARDEMandthe airphotos.ThecombineduncertaintyfromtheGCPplacementand theprocessingwithAgisoftis

1 mhorizontally.

2.3. Structurefrommotion

FortheÁrnesfjallsite,throughtheStructurefromMotion(SfM) photogrammetry technique (Carrivick et al., 2016; Smith et al.,

2015; Westobyetal.,2012) weproduceda3Dtopographicmodel, fromwhichwealsoderivedanorthomosaicat9cm/pixelandDEM at18 cm/pixel. Photos were taken usinga hand-heldsingle-lens reflex(SLR) camera(CanonEOS450D,12.2-megapixel image sen-sor) froma ground-based obliqueperspective atapproximately 3 kmfromthelandslide,usingafixedfocallengthof200mmwith automatic exposuresettings enabled.We identified clearly visible blocks andother features on the landslide — a total of 19 GCPs — and obtained their coordinates by using dGPS measurements. Priorto processing, photographs were inspected manually,blurry images were deleted, and the sky was masked out of each im-agemanually.The remaining 73photographs were importedinto Agisoft Photoscan Professional 1.4.1. We removed any misaligned photographs after the initial alignment stage and then identified

theGCPsintheimageset,importingtheircoordinatesrecordedin thefieldbydGPS.Themodelwasgeoreferencedusingthe19GCPs, forwhichweobtainedahorizontaluncertaintyof0.05mto0.08 m,andaverticaluncertaintyof0.05to0.15m.The3Dmodelhas reconstructionerrorsof0.9–1.8pixelsandanabsoluteprecisionof 0.5–1.5 m.We then imported theDEM andthe orthomosaicinto ArcGISforfurtheranalysis.

2.4. Morphometricanalysisofmolards

Inordertolinkthelandslides’processestothemorphologyof themolards,wei)analysedthemolards’distributionand geomor-phic characteristics, ii) compared the slope angle of their longer and shorter flanks, iii) calculated their eccentricity, and iv) plot-tedtheorientationoftheirlongaxeswithrespecttothoseofthe landslides.

2.4.1. Area,height,volumeandslopecharacteristics

The molards were first digitisedasa polygon in ArcGISusing theircontrastintermsoftextureandshadingintheorthomosaics. The areaofmolards wasestimatedby calculatingthearea ofthe resulting polygon (Fig. 6e). Tomeasure their height (Fig. 6e), for each molard we useda topographicprofile placedparallel to the contour lines outsidethat molard and passing through its peak; the peak’s elevation was read directly from the profile, with a representative elevationimmediatelyoutsidethe molardtakenas its base.The elevation datafor theseprofiles were derived from LiDARinthecaseofMóafellshyrnaandSfMinthecaseof Árnesf-jall.Thevolumeofmaterialcomposingthemolardswascalculated following Conway and Balme (2014), reconstructing the surface of thelandslide withoutthe molards,andderiving the deposited volumesbysubtractingthissurfacefromthesurfacewiththe mo-lards(Fig.6e).ErrorpropagationcalculationsbyConwayandBalme (2014) suggestthat suchvolume estimatesare accuratetowithin 15%. Slopeofthebasal area wheremolardsliewas calculatedby creating a slope map ofthe surface of thelandslide without the molardsandtakingthe meanvalue.The slopeangleforthe long andshortflanksofmolardswas themeanvalue oftheslope ob-tainedfromtheslopemapoftheoriginalDEMs(Fig.6e).

We performedtwo-samplet-testsassuming unequal variances for the volume, area, height, slope angle of the basal area and eccentricityofmolards,usingthevaluesofMóafellshyrnaand Ár-nesfjall respectivelyasvariables.We used thevaluesofeach site separately fortestingthe slopeanglesofshortandlongflanksof theirmolards(seeSupplementaryTable1).

A dispersion parameter

ψ

=

σ

/

μ

(where

σ

is the standard deviationand

μ

isthemean)forheight,axesandvolumesof mo-lards,showlesshomogeneoussizesinMóafellshyrnacomparedto thoseofÁrnesfjall(seeSupplementaryTable2).Thisisconfirmed by Pearson correlation coefficient calculatedfor height-long axis, height-shortaxisandlong-shortaxis,showingastrongcorrelation inMóafellshyrna,suggestingacircularshapeinplan-viewand ca-sually linkeddimensions, whileinÁrnesfjalllowervaluessuggest moreellipticalshapes(seeSupplementaryTable2).

The volume-frequencydistributionforthemolardsin Móafell-shyrnashowsapower-lawdistribution,whilethevolume-frequency distributionforthemolardsinÁrnesfjallconformstoan exponen-tialdistribution(seeSupplementaryFig.S1).Bothweredetermined bycomparingthreedifferentplotsofthevolume-frequency distri-bution(i.e.,linear-linear,logarithmic-linear,bi-logarithmic),where we consideredthe bestdistributiontheone fittingthemoretoa straightline.

2.4.2. Eccentricityanddirection

Tomeasure theeccentricityofthemolards,anellipsewas fit-tedtoapproximatetheperimeterofeachmolard,withtheareaof

(5)

C. Morino et al. / Earth and Planetary Science Letters 516 (2019) 136–147 139

Fig. 2. Theformationofmolards. Ineachpairofimages,ice-cementedblocksareontheleft;theresultingmolardsareontheright.a,Cubicandangularblocksofice-rich sediments(bluearrows)attheMóafellshyrnasitethatareperchedonthesourceareaandhavefallenontothetalusslopebelow(theblockintheforegroundis∼7mwide). Phototakenthedayafterthefailure(courtesyofG.Hansson).b,Similarperspectiveasin panela,butthreeyearsafterthefailure,withremnantsoftheblocksofice-rich sedimentspreservedasmolards(bluearrows;themolardintheforegroundis∼9mwide).c,Angularridgesgeneratedbytiltingofice-cementedtalusattheÁrnesfjallsite (upto∼4mhigh).Phototakentwodaysafterthefailure(courtesyofV.Benediktsson).d,Similarperspectiveas panelc,buttwoyearsafterthefailure,whereremnants oftheice-cementedridgeshavedegradedintodensely-packed,elongatedmoundsofdebris(upto3.7mhigh).e,Thelargestblockofice-richsedimentsthatfellduringthe Móafellshyrnaevent;notedifferentlayersofdepositscomposedofimbricatedboulders,cobbles,andpebblesembeddedinbrowntoredsandytosiltyclay(thewhitebar nexttothepersonasascaleindicates2mheight).f,Theremnantoftheblockin panele threeyearsafterthefailure,preservedasamolard(thewhitebarnexttothe personasascaleindicates2mheight).g,Side-viewschematicevolutionofamolard,fromtheblockofclast-supportedimbricatedtalusdepositscementedbyground-ice (bluishcolour)tothecollapsedconicalmoundofdebris,preservingsortedgraveldepositsonitssurface(darkbrown),withfinedeposits(lightbrown)beingleachedout. (Forinterpretationofthecoloursinthefigure(s),thereaderisreferredtothewebversionofthisarticle.)

(6)

Fig. 3. Mapsofthelandslides.a. AcontourmapwithalinemapoftheMóafellshyrnalandslide,withitsmainfeaturesandperimeterandlocationofthemolardsindicated. b. AcontourmapwithalinemapoftheÁrnesfjalllandslide,withitsmainfeaturesandperimeterandlocationofthemolardsindicated.

eachellipsebeingequaltotheareaoftheperimeterofthe repre-sentedmolard.Then,theeigenvalueandeigenvectorsofeachzone were calculated, with the orientation of the ellipse beingin the directionof the first eigenvector (Jorge and Brennand, 2017). Fi-nally, thegeometric characteristics oftheellipse were calculated, specificallythecentroids,themajorandtheminoraxes(the ratio ofthemajorandminoraxesoftheellipseisthesameastheratio oftheir eigenvalues). Weplottedthe orientationofthe longaxes ofthemolardsagainstthepropagationdirectionofthelandslides usingGeoRoseopen-sourcesoftware(Fig.6b,d).

3. Results

3.1. Molardformationinpermafrostterrains

Duringthefield observationsperformedimmediatelyafterthe failures,intheMóafellshyrna landslidedepositswefoundisolated pseudo-cubicandangularblocksofice-richsediments(Fig. 2a,e) thatcametorestatthefootofthetalusslopewherethe topogra-phyflattens(Fig.2a),295-390mbelowthesourcearea(Fig.3a).At Árnesfjall,we founda spatiallydense groupofangular,elongated ice-cementedridgesofdebris40-150mbelowthetopofthemain scarp ofthelandslide (Figs.2c,3b),andan isolated block of ice-rich sedimentsatthetoe ofthelandslide.Inboth landslides,the blocksandridgeswerecomposedofpoorly-sortedclast-supported talus deposits. Ground-ice was cementing the material, allowing theblocksandridgestopreserveacubicorangularshape(Fig.2a,

c) both during and immediately after the failure. We examined thelithologicalandgrain-sizecompositionoftheblocksandridges ofice-rich sediments.Theycomprisedslightlyimbricatedangular boulders, cobbles, andpebbles embedded ina variably abundant sandysilttosiltyclaymatrix.Thecolourofthematrixvariedfrom brownto red,andthe lithologyofthe clasts reflectsthe bedrock ofthearea (TertiaryBasaltFormation),withabundantfines origi-natingfromtheweatheredvolcaniclithologies.

WerevisitedtheMóafellshyrnaandÁrnesfjallsites2and3 yrs afterthefailures,respectively. InMóafellshyrna,we foundconical molards with rounded summits in the place of the original ice-cemented blocks (Fig. 2b, f). In Árnesfjall, the elongate ridges in a group below the main scarp had become smaller (with maxi-mumheightof3.7m)molardswiththesameelongatedshapeand pointedsummits(Fig.2d).Therefore,atbothsitesthemolardsare secondaryfeaturesgeneratedbythethawoftheicecementingthe frozenblocksorridges,whichwereproduced asprimaryfeatures by the twolandslides. At bothsites,atthe surface mostmolards areclast-supported(byboulders,cobblesandpebbles;Figs.1c,4a), withfinematerial sometimespresent, butthereare rarecasesof molardscomposed ofmatrix-supportedgravellysandtosilty clay material (Fig. 1d). However, the surface material does not nec-essarily reflectthe inner composition of molards; inthe interior, thedepositsare richerinmatrixjustafewdecimetresbelowthe surface (Fig. 4b). Oncetheblocks disaggregatedintomolards,we observed that some of them still preserved a faint hint of the original layering of thesource deposits(Fig. 1c), withimbricated

(7)

C. Morino et al. / Earth and Planetary Science Letters 516 (2019) 136–147 141

Fig. 4. Materialcomprisingmolards. a,AmolardinMóafellshyrnashowingcoarse depositsonthe surfacewith nogradationorpreferentialorientation(measuring tapeextendedto1masscale).b,Internalcompositionofamolard,comprising unsortedgravelinsandysilttosiltyclaymatrix(thepenis10cmlong). unsortedgravelinsandy silttosiltyclaymatrix,whichisfurther proof that thedeposits musthave beenice-cemented during the failure. However, in most of the cases, molards comprised non-stratifiedunsortedgraveltoclaymaterial,andwedidnotobserve anyradialgrainsizegradation(Fig.4a,b).

Aschematic evolution ofthedegradation ofice-cemented de-brismaterial into a molard has beenrecently proposed (Milana,

2016),wheretheauthorassumedasphereasthetheoreticalinitial shape ofthe frozen mass. We found that molards withdifferent shapesare a direct resultof the different shapes of the original blocks of ice-cemented material. From a cubic or angular block, theresultingmolardhasaroundedandsymmetricalconicalshape (Fig. 2e-g); alternatively, in the case of ice-cemented elongated ridges, the final molards preserve the elongated shape. In both cases,wefoundthatmolardscanhaveupto30%lowerreliefthan theinitial block,becausethawresultsinthedebrislocatedatthe topoftheblock/ridgecollapsingtoitsbase(Fig.2g).Assumingthat iceonlyfills thepore-space, we canestimate the original sizeof ablock ofice-rich sedimentsfromtheresultingmolard. Knowing theheight(h)andlength oftheflank (L)ofa molard,itis possi-bletoestimatethewidth(B)–andthentheareaandvolume–of theoriginalblockasshowninequation(1) (Fig.5):

B

=

2



L2

h2 (1)

Wehavetestedthismodelthroughfieldmeasurements ofthe sizeofthelargestblockofice-richsediment.AmolardofL

=

11

.

9 m and h

=

10

.

2 m will result from a block with B

=

12

.

2 m, whichisapproximatelythe measured lengthofthe biggest block inMóafellshyrnaafterthefailure.Soforexample,fromacubicand angularblock10.2to14.8mhighandwithanareafrom924.24to 1002 m2,theresultingmolardwouldhavearoundedand symmet-ricalconicalshape,wouldstand10.2mhighmaximumandcover anareaof1193m2.Ifmolardsobeythisrelation,thenthismodel givesan estimationofthemaximuminitialgroundicecontentof theoriginalblocks.

Fig. 5. Fromblocktomolard. Modelforestimatingthewidthoftheoriginalblock ofice-richsediment(assumedtohavearectangularsection)knowingheightand lengthoftheflankofthemolard,whichisassumedtohaveatriangularsection.

A similar surface lowering (35%) has been recorded in hum-mocks of thawing ice-cored moraines in the terminal region of outlet-glaciersin Iceland (Krüger andKjær, 2000). Hummocksof

ice-coredmorainesaresimilartomolardsnotonlyintheirconical shape,butalsointheirmodeofformation:ice-coredmoraines re-tain massive ice cores and form hummocks when the ice melts (Dyke and Savelle, 2000). Similarly to molards, the form of the hummocksisdeterminedbythawandgravitationalcollapse.They canhavesimilarflankslopeanglestomolardsofbetween25◦and 35◦ (Hambreyetal., 1997) orhigher.Many metersof icecanbe buriedunderonlyafewcentimetrestometersoftill(Schomacker andKjær,2008),meaningthat ice-coredhummockcaneasily dis-appearcompletelywhenall theiceismelted(Mercer,1963).The ratio of ice to debris within molards in Móafellshyrna is much lower (15-20% ground ice content estimated from visual inspec-tion;Sæmundssonetal.,2018),givingthemamuchhigher preser-vationpotentialthanhummocksinice-coredmoraines.Thisiswhy molardsremainrecognisableevenaftertheicehasgone.

We positthat molardsshould varyinshape andsize depend-ing oni) the slopeon whichthey form, ii)their icecontent and granulometry,andiii)theemplacementdynamicsofthehost land-slide. Circular molards withrounded summits are found on rel-atively low slopes (

<

17◦ in Móafellshyrna), whereas those with angularsummitsandelongateshapesarefoundonrelativelyhigh slopes (28◦ inÁrnesfjall).Based onargumentsof angleofrepose forloosegranular materials (Carrigy,1970; Pohlman etal., 2006; Van Burkalow,1945), molard shape should vary with granulom-etry, but we have no specific observations to substantiate these relationships. Ourobservations show that molards in permafrost terrainsderive fromthe thawof theground icecementing loose deposits,thereforemolards cannot formwithoutgroundice. This cementstheloosematerial,allowing ittobehavelikeasolid dur-ing transport, and once thawed induces collapseof the material intomolards.Our observationssuggest thatthe highertheinitial groundicecontentthelower thefinal heightofthemolard, com-paredtotheinitialfrozenblock, hence,thelowerits flankslopes andthe more domed its summit. Ifthe amount ofgroundice is far in excess of the pore space, we expect them to behave like hummocksinice-coredmoraines.Weinferthatthelackofmatrix observedatthesurfaceofthemolardsyearsaftertheirdeposition anddegradationisduetotheactionofprecipitation,washingout thefinesthroughthecoarsedebrisbypercolation(Fig.2g).Finally, theshapeandsizeofthemolardsalsodependsonthemechanism ofemplacementofthelandslide,andwereportonthisinthe fol-lowingsection.

3.2. Molarddistributionandmorphology:indicatorsoflandslide dynamics

The morphometry and the spatial distribution of molards in Móafellshyrna andÁrnesfjalllandslidesprovideinformationabout thefailuredynamicsofthelandslides.Molardsactliketracers, be-causeduring transportthey behavelikesolid blocksandthuswe know where they originate. Molards in Móafellshyrna have dif-ferent characteristics to those in Árnesfjall, although the average height,basalarea andvolumeofthemolardsdonot differ signif-icantly between the two landslides (Supplementary Table 1). For instance, the Móafellshyrna molards have a larger range in vol-umes(Fig.6e).Also, theslopeanglesoftheshortandlongflanks ofmolardsare roughlyequalinMóafellshyrna(Fig.6e), whilethe downslopefacesoftheÁrnesfjallmolardsarelongerandlesssteep thanthescarp-facingshortflanks(SupplementaryTable2,Fig.6e). TheÁrnesfjallmolardsareconsistentlyellipticalinshape(Figs.3b,

6e), whereasmolards inMóafellshyrna arevariable,butgenerally closer to circular (Figs. 3a, 6e). Finally, while Móafellshyrna mo-lards do not show a preferential orientation in their long axes withrespecttothelandslide’srunout-direction(Fig.6b), thelong axes ofthemolardsin Árnesfjallareorientedroughly perpendic-ular to the landslide’srunout direction, and parallel to themain scarp(Fig.6d).

(8)

Fig. 6. Dimensionsanddistributionofmolards.a,ThetopographicprofileoftheMóafellshyrnalandslide,withthepositionofmolardsmarkedasgreypoints,andthemain scarpzonemarkedwithathickgreyline.b,Rosediagramoftheorientationofmolards’longaxeswheretheorientationoftheMóafellshyrnalandslideismarkedasa hatchedtextureandbyanarrow.c,ThetopographicprofileoftheÁrnesfjalllandslide,withthepositionofmolardsmarkedasgreytriangles,andthemainscarpzone markedwithathickgreyline.d,Rosediagramoftheorientationofmolards’longaxeswheretheorientationoftheÁrnesfjalllandslideismarkedasahatchedtexture andbyanarrow.e,Boxplotsofthevolume,area,height,slopeofthebasalarea,slopeoftheshortandlongflanks,andeccentricityofthemolardsinMóafellshyrnaand Árnesfjall;notethattheverticalaxisforvolumeandareausealogarithmicscale.Thewhiskersindicatethemaximumandminimumvalues,theboxesmarktheinterquartile range,andtheblacklinesarethemediansofeachpopulation.Forallthemeasurements,inMóafellshyrnan=17,inÁrnesfjalln=23.

InMóafellshyrna, the molardsare clusteredin an area witha meanslopeof17◦atthefootof,orbeyond,thetalusslopelocated belowthetopographicbench(Fig.6a).Theirpositionmatchesthat expectedforrockfalls,wherecompetentfragmentsdetachandfall, andcometoresteitherwithin,atthefoot,orbeyondthebaseof thetalusslope (EvansandHungr, 1993; Varnes, 1978). Thelarge size variation of molards in Móafellshyrna mirrors that in rock-fall processes(Fig. 6e), where their power-law frequency–volume distribution (Supplementary Fig. S1) is related to rock fragmen-tation (e.g., Dussage-Peisser et al., 2002; Dussauge et al., 2003; Einstein,1937).Theirfinalpositiononalowslopeallowedthe ice-cemented blockstodegrade intoisolated molardswitha circular base,radiallysymmetricalflankslopes(seeFig.6e,Supplementary Table2),andnopreferentialorientation.

Molards in Árnesfjall lie on an average slope of 26◦ and are concentrated lessthan 30 m belowthe baseof the failure scarp (Fig. 6c). This position is typical of the location of enechelon

concave-upward rupture surfaces in debris slides (Hungr et al.,

2001). Theseruptures are oriented perpendicular to the flow di-rection,and blocks ofmaterial often move downward withlittle internal deformation (Varnes, 1978). Molards inÁrnesfjall derive fromthedegradation ofdensely-grouped,elongatedice-cemented ridgesexposed bytherotational-slidingmotionofthesource ma-terial,cut byseveralcurvedplanesofmovement.Thesedynamics arereflectedintheir morehomogeneous size(seeSupplementary Table1)andtheirellipticalshape(Fig.6e),aresultofthe degrada-tionofelongatedcuspsofice-cementedprecursorunitsproduced by relatively coherentrotational sliding. This process can be de-ducedby theorientationofthemolards’longaxes,perpendicular to the main movement downslope (Fig. 6d). The steep

upslope-facing short flanks of these molards (Figs. 2c, d, 6e) reflects a common behaviour ofrotational slides, where the upper part of the unitsproduced by curvedrupturesurfaces tilt backwards to-wardthescarp.

Bymeasuringthesize,morphologyanddistributionofmolards, we havebeenabletodiscriminatebetweentheprocessesof sim-ple gravitational fall in the Móafellshyrna case and of rotational slidingintheÁrnesfjallcase.Werecognisethatothertypesof mo-tionmightalsotransportice-cementedmaterials,formingmolards, once theicehasthawed,withmorphometryanddistribution dif-ferenttothosedescribedhere.Forexample,molardswitha wide-rangeofdimensionsscatteredacrossthemobilised masscouldbe expectedinrock/debrisavalanchedeposits,duetotheentrainment oftheice-cementedblocksintheirextremelyrapidflow-like mo-tion(Hungretal.,2001).Molardsaccumulatedintheterminallobe ofdebris-flowdepositscouldresultfromthedegradationofblocks of ice-rich sediments transported by the flow, due to their ten-dencyofproducinglongitudinalsortingnearthefrontofthesurge (Iverson,1997).

3.3. Molardsinremotesensingdata

Identifyingmolardsreliablyiscrucialiftheyaretogiveinsights intothegeomorphologicalandclimaticconditionofthelandscape wheretheyform.

Inadditiontomolardsbeingreadilyidentifiableinthefield,we propose that inmostcasesthey canalsobe reliablyidentified in remote sensing data, although field studies would be needed to confirm their identificationasmolards.In Fig.7,we showa plan viewimageofmolardsinMóafellshyrnalandslide(Fig.7a,b),a

(9)

lo-C. Morino et al. / Earth and Planetary Science Letters 516 (2019) 136–147 143

Fig. 7. Molardsfromremotesensing.a,AerialimageofMóafellshyrnalandslide,withthewhiteboxoutliningtheextentof panelb. b,MolardsinMóafellshyrnalandslide. Whitearrowin panela indicatesthelightingdirectionin panelsa andb. c,AerialimageofarockavalancheonthesouthcoastofNuussuaq,westcoastofGreenland(image fromGoogleEarth)withthewhiteboxoutliningtheextentof paneld. d,CandidatemolardsinNuussuaq(imagefromGoogleEarth).Whitearrowin panelc indicates thelightingdirectionin panelsc andd. e,ImpactejectaflowdepositsfromHaleCrateronMars,(ContextCameraimagesG14_023858_1429andG19_025704_1431,credit NASA/JPL-Caltech/MSSS),withblackarrowsindicatingtheinferredflowdirectionsandwhiteboxindicatingthepositionof panelf. f,Conicallandformsintheejectablanket ofHaleCrateronMars(High-resolutionImagingScienceExperimentimageESP_052222_1425,creditNASA/JPL/UniversityofArizona).Whitearrowin panele indicatesthe lightingdirectionin panelse andf.

cationwithcandidatemolardselsewhereonEarth(Fig.7c,d),and possible candidates on Mars (Fig. 7e, f). In Fig. 7d, cone-shaped landformsof

1-46meters-diameterarescatteredacrossthe sur-face of deposits mobilised by a rock avalanche (Pedersen et al.,

2002) inGreenland.The failurefallswithin a regionwhere land-slideshavebeenactive forthelast 10,000 yrs(Dahl-Jensenetal.,

2004) and continuous permafrost hasbeen reported (Van Taten-hoveandOlesen,1994).Hence,weinferthattheseconicalmounds

(10)

aremolards,andinsitu investigationshaveconfirmedthis hypoth-esis(Benjaminetal.,2018; Pedersenetal.,2001;StuartDunning,

pers.comm.) providing strong evidence ofthe occurrence of

per-mafrost degradation in this area. Many more candidate molards areseenherethaninourIcelandicexamples,suggestingthatmore molardscould be produced inareas withmorepervasive ground ice.

Similarscatteredconical landformsare identifiablewithin im-pactejectaoriginatingfrom HaleCrater onMars (Fig. 7e,f). The ice-rich nature of the impact ejecta has already been proposed basedonotherlandforms(e.g.,Jonesetal.,2011).Weproposethat conicallandformswithinthe ejectaflow aremolards,whichwith furtherstudycouldyieldimportantconstraintsontheice-content oftheoriginalejectaflowandinsightsintorecentmodificationof groundicereservoirsonMars.

4. Discussion

Icelandhasdiscontinuouspermafrost(Rekacewicz,2005),which ingeneralis spatiallyandtemporally heterogeneous(Rödder and Kneisel, 2012), and mountain permafrost has been modelled at elevationsabove 800-900 m a.s.l. inthe central-northern regions ofthe island(Etzelmüller etal., 2007). Thispredictedpermafrost distributionhasbeenground-truthedbycomparisonwiththe dis-tribution of active rock glaciers and ice–cored moraines in the Tröllaskagipeninsula (Farbrot etal., 2007; Lilleøren etal., 2013). TheMóafellshyrnalandslidefallswithinthepredictedspatialzone andaltitudebandformountainpermafrost.Incontrast,the Árnes-fjalllandslideoccurredon thecoastlineoftheWestfjords, 400m belowthe predictedpermafrost altitude.However, atthe Árnesf-jall sitethe elevationfor permafrostcould be significantly lower thantheonepredictedbyEtzelmülleretal. (2007) andFarbrot et al. (2007), because oflower summer temperatures, shorter melt-ing season and the proximity at less than 25 km of the Dran-gajökull ice cap, around which the presence of permafrost has beenhypothesised,butneverconfirmed(Brynjólfssonetal.,2014; Hjort et al., 1985). Hence, the presence of molards here is the only unequivocal and pragmatically detectable indicator of per-mafrostconditions.Bothlandslidesoriginatedfromtalusmaterial. Ingeneral,coarseblockytalusmaterialisaparticularlyfavourable substratefor ice-rich permafrost (Etzelmüller etal., 2001; Harris and Pedersen, 1998). In talus slopes, ground ice can be formed by burial of snow by mass wasting debris, which protects the snow from ablation(Gruber andHoelzle, 2008), andcan lead to thedevelopment ofice-richpermafrost(Kenneretal., 2017). An-nual freeze-thaw cycles in talus slopes in mountain permafrost environmentscan reachdepthsof

3-7m,butrarelydecametres (Matsuokaetal., 1998).Theice-cementedblocksthatdetachedin theMóafellshyrnalandslidewere15-20mthick,muchlargerthan theexpected maximumdepths ofannually-formed, ice-cemented ground. Hence, the source talus slopes were perennially-frozen groundandthemolardshereindicatepermafrostdegradation. Fur-thermore,permafrost degradationdue toanomalous rise in tem-peraturehasbeenrecognisedasthemaintriggerforthe Móafell-shyrnalandslide(Sæmundssonetal.,2018).

Inthefewworkswherethey havebeenreported,molardsare generally defined as conical mounds occurring in landslide de-posits (Cassie et al., 1988; Goguel and Pachoud, 1972; Mollard andJanes, 1984). However, the applicationof the term “molard” has not been consistent. For example, Cassie et al. (1988) de-scribed“molards”intheFrankSlide,followingtheterminologyof Mollard andJanes (1984):“one ofa series ofconical moundsof brokenslide rock deposited along the typically lobate margin of rockavalanchespoildebris;adebriscone”.However,inlater liter-ature(e.g.,Charrièreetal.,2016),thesamemoundsatFrankSlide arecalled“hummocks”.Recently,Brideauetal. (2009) andMilana

(2016) moved from a morphological to a process-related defini-tionofmolards,astheyhypothesisedthatlandslidesinpermafrost terrainscould mobiliseblocksoffrozenmaterial,whichdegraded into cones ofdebris – molards– once at rest. Since in the past theterms“molards”and“hummocks”havebeenused interchange-ably, whichcan lead to confusion, andsince the majority of the cases ofmolardsintheliterature are reportedtohaveformed in permafrost/cold terrains (Brideauetal., 2009; Jermyn and Geert-sema, 2015; Lyleetal., 2004; Milana,2016; Schwabetal., 2003; Xu etal., 2012), a refinementof thedefinition ofmolards occur-ringinpermafrostenvironmentsisnecessary.Here,wedevelopon therecentdefinitionofmolardsofBrideauetal. (2009) andMilana (2016) byprovidingthemissingfieldevidencetodemonstratethe entire formation-history of molards in permafrost environments that allowustorefinetheir definition:conesofloosedebristhat derive from the thaw of blocks of ice-rich sediments mobilised by landslides inpermafrostterrains. Theyare secondary features, resulting from the primary emplacement of initially frozen ice-cementedblocks/ridgeswithinlandslides,whichdegradeinto con-ical mounds asthe ice thaws intheir newposition. Molards re-ported inlandslides haveoften involvedterrains that are known to be affected by discontinuous permafrost (Brideauet al., 2009; Lyle et al., 2004). In one case, the deposits of an active rock glacier were the source material for the landslide with molards (Milana, 2016). Aswe have shownthat molardsin cold environ-ments evolve from parent blocks of ice-rich sediments, insights from thisstudy allow previously reported molardsin permafrost environments to provide new information: they can be an indi-cator (perhaps the only indicator)of ongoing or past permafrost degradation inpermafrost terrains. InMóafellshyrna, molardsare the first direct indication of ongoing permafrost degradation in this region ofIceland,in an area already thoughtto host moun-tain permafrost (Etzelmüller et al., 2007; Farbrot et al., 2007; Lilleøren etal., 2013). InÁrnesfjall, molards markboth the pres-ence of permafrost in an area thought to have no perennially frozengroundanditsrecent/ongoingdegradation.

Ournewrecognitionthat molardsprovideawaytotrack per-mafrost degradation is important, as similar indicator-landforms (such asretrogressive-thaw slumps(Ashastinaet al., 2017), ther-mokarst lakes (Yoshikawa and Hinzman, 2003), baydjarakhs (Séjourné et al., 2015) are scarce, and generally occur only in zones of continuous permafrost. Other indicators of permafrost, such asactive rockglaciers,ice-cored moraines,compositeridges, ice-wedges, or palsas, need long-term monitoring of air/ground temperature to detect the state of permafrost, whereas molards directly reveal permafrost degradation. We propose that future studies can use molards with the purpose of mapping historic-permafrost conditions and geographically tracking past climate change.

Molards could perhaps be confused with hummocky terrains found in debris/rock-avalanchedeposits. Hummocks are mounds, blocksandridgesthatcharacterizelargelandslidesanddebris/rock avalanches (Paguican et al., 2014; Shea and van Wyk de Vries,

2008; Siebert, 1984; Ui, 1983; Yoshida et al., 2012). Hummocks resultfromthe formationof horstsandgrabens during transport andspreadingorby stretchingaround blocksby faults(Davieset al., 2013; Glicken, 1996; Glicken et al., 1981; Shea et al., 2008; Voight et al., 1981), and their shapescan be used to determine thekinematics ofa landslide(SheaandvanWykde Vries,2008). Hummocksin debris/rock-avalanchedepositsarecharacterisedby pervasiveshattering orjigsaw fracturingasresultofbrittle defor-mation associated with the transport of large rock masses (e.g., Calvari et al., 1998; Shreve, 1968; Ui et al., 1986; Yarnold and Lombard, 1989). Hence, hummocks should differ sedimentologi-cally frommolards inpermafrostterrains, butthiswouldrequire further data collection to fully substantiate. Many processes can

(11)

C. Morino et al. / Earth and Planetary Science Letters 516 (2019) 136–147 145 generateconical mounds, but molards inpermafrost terrains are

alwaysassociatedwithalandslide.Molardsinpermafrostterrains wouldnotformwithoutgroundice;thismakes thedebris mate-rial behavelike solid blocks during the failure and transport be-causeofitscementingaction,andallowstheformationofdiscrete moundsofloose debris(molards)via melting.No ice isinvolved orisnecessaryintheformationofhummocks,whileitisinstead theprimary factorintheformationofmolardsin permafrost en-vironments. When studying molards, it is important to consider the geomorphological and environmental setting where they are found.There are examplesin theliterature ofother mounds and ridges that have similar characteristics to the molards reported here. Some have been observed in mountainous non-permafrost terrains, others at the limits of discontinuous permafrost, or in paraglacialenvironments, buthavenotbeenlinked topermafrost degradation (Blais-Stevens et al., 2015; Dufresne et al., 2018; Geertsema et al., 2006a; Schwab et al., 2003). These includefor exampleridgesandhummockytopographythatareconsidered ev-idenceofspreadingduringthemotionoftheMinkCreeklandslide, north-westernBritishColumbia,involvingglaciomarinesediments in a non-permafrost area (Geertsema et al., 2006a), and simi-larridgeswere observed in other spreading processes inQuébec (Carson, 1979). Conical features and ridges up to 5 m high are thought to have been produced by the fragmentation of basalt-boulderstransportedbytheSutherlandlandslide,BritishColumbia, inan area notaffected by permafrost(Blais-Stevensetal., 2015). In 2015, a landslide occurredat the terminus of Tyndall Glacier inAlaska,traversed the widthof theTaan fjord,and re-emerged onto land depositing mounds andhummocks that preserved the sourcestratigraphy, butno icewas observedwithin the deposits (Dufresne et al., 2018). Molards have been reported in a recent rockavalancheinwestcentralBritishColumbia,wheretheroleof degradingmountainpermafrostinthereleaseofthefailureis in-ferred,butthepermafrostparameterswerenotstudied(Schwabet al.,2003).Inthelightofourstudy,thefeatureslistedabovemight beseenwithneweyesandreinterpretedasmolards,orconfirmed ashummocksoncollectingnewdata.Furtherstudiesshould there-forefocusondistinguishingmolardsfromotherconicalfeatureson landslidesinordertoavoidconfusionintheirinterpretation.

5. Conclusions

Bystudyinghowthedepositsoftwolandslidesinnorthern Ice-landevolvedthroughtime, wehaveshownforthefirsttime that molardsin permafrostterrainsare cones of loosedebris that re-sult from the degradation of blocks and ridges of ice-cemented depositsmobilised by landslides. Molards havedistinctive spatial and geomorphic characteristics that reveal the dynamics of the landslides that formed them. Isolated molards like those of the Móafellshyrna landslideindicate transportvia fall, while densely-grouped elongated molards below the main scarp like those of the Árnesfjall landslide are generated by sliding. We distinguish two different dynamic styles using molards, but future study is requiredtodetermineifmolard characteristicscould reveal other typesoflandslidemotion.Therelationbetweenpermafrost degra-dationandslopestabilityiswelldocumentedintheliterature(e.g., Beniston et al., 2018; Haeberli et al., 2010; Huggel et al., 2012; Kellerer-Pirklbauer et al., 2012; Phillips et al., 2017), but, in the light of our study, further efforts should be engaged indefining howmolardscanbeusedinhazardassessment.Thetypesof land-slidefrom which molards formare likely to become more com-monasgroundtemperaturesinice-richpermafrostzonesincrease, making thawandslope instabilities inperiglacial and glacial en-vironmentsmoreprobable. Giventhatthepresenceoficeenables longrunoutandhighvelocity inmassmovements(Huggel etal.,

2005),molardscouldbeusedtosignalareasatriskofpotentially

disastrousgroundicethaw-inducedlandslidesinvulnerableareas. We have demonstrated that molards are a landform that can be readily recognised in the field as a marker of recent and ongo-ing permafrost degradation. We found relatively few molards in Icelandcomparedtoinpreviousstudiesofmolardsin permafrost-rich terrains, hencethe number-density ofmolardsata sitemay reveal the abundance of ground ice at the time of the failure. One ofourstudysitesinnorthern Icelandfallsinan area where mountainpermafrostwas not predicted(Etzelmüller etal., 2007; Rekacewicz,2005),anduntilourstudytherewasscarcedirectfield evidenceofpermafrostand/orits condition.The recentformation ofmolardsrevealsthepresenceofpermafrostinthearea,andits ongoingdegradation.

Finally,wehavedemonstratedthatmolardsarenotonly read-ilyrecognisableinthefield,butalsoviaremotesensing.Thisopens up thepossibilityofefficientlyidentifyingtheselandformsacross large and remote areas, revealing the influence of ice thaw not only in mountain permafrost environments, but also on plane-tary surfaces such as Mars, where the role of volatiles in land-scapeevolution is vigorously debated (Conwayand Balme, 2016; Dundasetal.,2017; Leverington,2011).

Authorcontributions

C.M., S.J.C., Þ.S., J.K.H., andM.R.B. conceived anddesigned the research.C.M.collected,processed,andanalysedthedata,and pre-pared the manuscript. S.J.C. significantly contributed to data col-lection and analysis and manuscript preparation. Þ.S. and J.K.H. contributed to data collection and manuscript preparation. J.H. contributed to data analysis and manuscript preparation. F.E.G.B. collected data for Mars and contributed to manuscript prepara-tion.M.R.B.andC.J.contributedtodataprocessingandmanuscript preparation.T.A.contributedtomanuscriptpreparation.

Competing interests: The authors declare no competing inter-ests.

Acknowledgements

Thisworkhasbeenfundedbyapostgraduatestudentshipgrant (NE/L002493/1)fromtheCentralEnglandNaturalEnvironment Re-search Council Training Alliance (CENTA).This projectforms part of and is funded by a British Geological Survey BUFI CASE Stu-dentship (GA/14S/024, Ref: 284). We thank the Natural Environ-mentResearchCouncilAirborneResearchFacility(NERCARF)and their Data Analysis Node(NERC-ARF-DAN)plus the EUropean Fa-cility for AirborneResearch (EUFAR) forthe airphotography and LiDAR data on which this paper relies.Thanks go to NERC Geo-physical Equipment Facility (GEF) for the Loans 1048 and 1064 through which differential GPS surveys were possible.We thank theGeoPlanetwritingresidentialschemeforthesupportin writ-ing this manuscript. C. Jordan publishes with permission of the Executive Director of BGS. S. J. Conway is funded by the French Space Agency, CNES, for her HiRISE related work. We gratefully acknowledgethecontributionofGesturHansson(Icelandic Meteo-rologicalOffice)andofourfieldassistantsFrancescoGiuntoli,Silvia Crosetto,andSydneyGunnarson.Theauthorsthankthereviewers AnjaDufresne, MartenGeertsema andGioachino Robertifortheir insightfulcomments.

Appendix A. Supplementarymaterial

Supplementarymaterialrelatedtothisarticlecanbefound on-lineathttps://doi.org/10.1016/j.epsl.2019.03.040.

(12)

References

Ashastina,K.,Schirrmeister,L.,Fuchs,M.,Kienast,F.,2017.Palaeoclimate character-isticsininteriorSiberiaofMIS6-2:firstinsightsfromtheBatagaypermafrost mega-thaw slump in the Yana Highlands. Clim.Past 13, 795–818. https:// doi.org/10.5194/cp-13-795-2017.

Beniston,M.,Farinotti,D.,Stoffel,M.,Andreassen,L.M.,Coppola,E.,Eckert,N., Fan-tini,A.,Giacona,F.,Hauck,C.,Huss,M.,Huwald,H.,2018.TheEuropean moun-taincryosphere:a reviewofitscurrent state, trends,and futurechallenges. Cryosphere 12(2),759–794.

Benjamin,J.,Rosser,N.J.,Dunning,S.A.,Hardy,R.J.,Kelfoun,K.,Szczuci ´nski,W.,2018. Transferabilityofacalibratednumericalmodelofrockavalancherun-out: appli-cationto20rockavalanchesontheNuussuaqPeninsula,WestGreenland.Earth Surf.Process.Landf..https://doi.org/10.1002/esp.4469.

Blais-Stevens, A., Geertsema, M., Schwab, J.W., Van Asch, T.W.J., 2015. Complex landslidetriggeredinanEocenevolcanic-volcaniclasticsuccessionalong Suther-landRiver,BritishColumbia,Canada.Environ.Eng.Geosci. 21,35–45.https:// doi.org/10.2113/gseegeosci.21.1.35.

Brideau,M., Stead,D., Hopkinson,C., Demuth,M., Barlow,J., Evans,S., Delaney, K.,2009.Preliminarydescriptionandslopestabilityanalysesofthe2008 Lit-tleSalmonLakeand 2007Mt.Steelelandslides, Yukon.YukonExplor.Geol., 119–134.

Brynjólfsson,S.,Schomacker,A.,Ingólfsson,Ó.,2014.Geomorphologyandthe Lit-tleIceAgeextentoftheDrangajökullicecap,NWIceland,withfocusonits threesurge-typeoutlets.Geomorphology 213,292–304.https://doi.org/10.1016/ j.geomorph.2014.01.019.

Calvari,S.,Tanner,L.H.,Groppelli,G.,1998.Debris-avalanchedepositsoftheMilo LaharsequenceandtheopeningoftheValledelBoveonEtnavolcano(Italy).J. Volcanol.Geotherm.Res. 87(1–4),193–209.

Carrigy,M.A.,1970.Experimentsontheanglesofreposeofgranularmaterials. Sed-imentology 14,147–158.

Carrivick,J.L.,Smith,M.W.,Quincey,D.J.,2016.StructurefromMotioninthe Geo-sciences.JohnWiley&Sons.

Carson,M.A.,1979.LeglissementdeRigaud(Québec)du3mai1978:une interpré-tationdumodederuptured’aprèslamorphologiedelacicatrice.Géogr.Phys. Quat. 33,63.https://doi.org/10.7202/1000323ar.

Cassie,J.W.,VanGassen,W.,Cruden,D.M.,1988.Laboratoryanalogueofthe forma-tionofmolards,conesofrock-avalanchedebris.Geology 16,735–738.https:// doi.org/10.1130/0091-7613(1988)016<0735:LAOTFO>2.3.CO;2.

Charrière,M.,Humair,F.,Froese,C.,Jaboyedoff,M., Pedrazzini,A.,Longchamp,C., 2016.Fromthesourceareatothedeposit:collapse,fragmentation,and prop-agationof the Frank Slide.GSA Bull. 128, 332–351. https://doi.org/10.1130/ B31243.1.

Conway,S.J.,Balme,M.R.,2016.Anoveltopographicparameterizationscheme indi-catesthatmartiangulliesdisplaythesignatureofliquidwater.EarthPlanet.Sci. Lett. 454,36–45.https://doi.org/10.1016/j.epsl.2016.08.031.

Conway,S.J.,Balme,M.R.,2014.Decameterthickremnantglacialice depositson Mars.Geophys.Res.Lett. 41,5402–5409.https://doi.org/10.1002/2014GL059980. Cruden,D.M.,1982.TheBrazeauLakeslide,JasperNationalPark,Alberta.Can.J.

EarthSci. 19,975–981.https://doi.org/10.1139/e82-081.

Dahl-Jensen,T., Larsen,L.M., Pedersen,S.A.S., Pedersen,J., Jepsen,H.F.,Pedersen, G.K.,Nielsen,T., Pedersen, A.K., Von Platen-Hallermund, F.,Weng,W.,2004. Landslideand tsunami21November2000 inPaatuut,West Greenland.Nat. Hazards 31,277–287.https://doi.org/10.1023/B:NHAZ.0000020264.70048.95.

Davies,T., Phillips,C., Warburton, J.,2013. Processes, Transport,Deposition,and Landforms:Flow,TreatiseonGeomorphology.ElsevierLtd.

Dufresne,A.,Geertsema,M.,Shugar, D.H.,Koppes,M., Higman,B.,Haeussler,P.J., Stark,C., Venditti, J.G., Bonno, D., Larsen,C., Gulick, S.P.S., McCall,N., Wal-ton,M.,Loso,M.G.,Willis,M.J.,2018.Sedimentologyandgeomorphologyofa largetsunamigeniclandslide,TaanFiord,Alaska.Sediment.Geol. 364,302–318.

https://doi.org/10.1016/j.sedgeo.2017.10.004.

Dundas,C.M.,McEwen,A.S.,Diniega,S.,Hansen,C.J.,Byrne,S.,McElwaine,J.N.,2017. TheformationofgulliesonMarstoday.Geol.Soc.(Lond.)Spec.Publ. SP467.5.

https://doi.org/10.1144/SP467.5.

Dussage-Peisser,C.,Helmstetter,A.,Grasso,J.,Hantz,D.,Desvarreux,P.,Jeannin,M., Giraud,A.,2002.Probabilisticapproachtorockfallhazardassessment:potential ofhistoricaldataanalysis,15–26.

Dussauge,C.,Grasso,J.-R.,Helmstetter,A.,2003.Statisticalanalysisofrockfall vol-umedistributions: implications for rockfalldynamics. J.Geophys. Res., Solid Earth 108.https://doi.org/10.1029/2001JB000650.

Dyke,A.S.,Savelle,J.M.,2000.MajorendmorainesofYoungerDryasageon Wol-lastonPeninsula,VictoriaIsland,CanadianArctic:implicationsforpaleoclimate andforformationofhummockymoraine.Can.J.EarthSci. 37,601–619.https:// doi.org/10.1139/e99-118.

Einstein,H.A., 1937. Bedload transport asa probability problem. Sedimentation, 105–108.

Etzelmüller,B.,Farbrot,H.,Guðmundsson,Á.,Humlum,O.,Tveito,O.E.,Björnsson, H.,2007.TheregionaldistributionofmountainpermafrostinIceland.Permafr. Periglac.Process. 18,185–199.https://doi.org/10.1002/ppp.583.

Etzelmüller,B.,Hoelzle, M.,Flo Heggem,E.S., Isaksen,K.,Mittaz,C., Mühll,D.V., Ødegård, R.S.,Haeberli, W.,Sollid,J.L.,2001. Mappingandmodelling the oc-currenceanddistributionofmountainpermafrost.Nor.Geogr.Tidsskr.–Nor.J. Geogr. 55,186–194.https://doi.org/10.1080/00291950152746513.

Evans,S.G.,Hungr,O.,1993.Theassessmentofrockfallhazardatthebaseoftalus slopes.Can.Geotech.J..https://doi.org/10.1139/t93-054.

Farbrot,H.,Etzelmüller,B.,Guðmundsson,Á.,Humlum,O., Kellerer-Pirklbauer,A., Eiken, T.,Wangensteen,B.,2007.RockglaciersandpermafrostinTröllaskagi, northernIceland.Z.Geomorphol. 51,1–16.https://doi.org/10.1127/0372-8854/ 2007/0051S2-0001.

Geertsema,M.,Cruden,D.M.,Schwab,J.W.,2006a.Alargerapidlandslidein sen-sitive glaciomarinesediments atMinkCreek, northwesternBritishColumbia, Canada.Eng.Geol. 83,36–63.https://doi.org/10.1016/j.enggeo.2005.06.036. Geertsema,M.,Hungr,O.,Schwab,J.W.,Evans,S.G.,2006b.Alargerockslide–

de-brisavalancheincohesivesoilatPinkMountain,northeasternBritishColumbia, Canada.Eng.Geol. 83,64–75.https://doi.org/10.1016/j.enggeo.2005.06.025.

Glicken,H.,1996.Rockslide-debrisAvalancheofMay18,1980,MountSt.Helens Volcano,Washington.

Glicken,H.,Voight,B.,Janda,R.J.,1981.Rockslide-debrisavalancheofMay18,1980, MountSt.Helensvolcano.In:IAVCEISymposiumonArcVolcanism.Terra Sci-entificPublishingCo.,TokyoandHakone,pp. 109–110.

Goguel, J., Pachoud,A., 1972.Géologie et dynamique del’écroulementduMont Granier:dansleMassifdeChartreuse,ennovembre1248.Bull.duBur.Rech. Geol.MinieresIII 1,29–38.

Gruber,S.,Hoelzle,M.,2008.Thecoolingeffectofcoarseblocksrevisited:a mod-elingstudyofapurelyconductivemechanism.In:Proc.9thInt.Conf.Permafr, pp. 557–561.

Haeberli, W.,Beniston, M.,1998.Climatechangeanditsimpactsonglaciersand pemafrostintheAlps.Ambio 27,258–265.

Haeberli,W.,Noetzli,J.,Arenson,L.,Delaloye,R.,Gärtner-Roer,I.,Gruber,S.,Isaksen, K.,Kneisel,C.,Krautblatter,M.,Phillips,M.,2010.Mountainpermafrost: devel-opmentandchallengesofayoungresearchfield.J.Glaciol. 56(200),1043–1058.

Hambrey,M.J.,Huddart,D.,Bennet,M.R.,Glasser,N.F.,1997.Genesisof“hummocky moraines”bythrustinginglacierice: evidencefromSvalbardand Britain.J. Geol.Soc.Lond. 154,623–632.https://doi.org/10.1144/gsjgs.154.4.0623. Harris,S.A.,Pedersen,D.E.,1998.Thermalregimesbeneathcoarseblocky

materi-als. Permafr.Periglac.Process. 9,107–120.https://doi.org/10.1002/(SICI)1099 -1530(199804/06)9:2<107::AID-PPP277>3.0.CO;2.

Hinzman,L.D.,Bettez,N.D.,Bolton,W.R.,Chapin,F.S.,Dyurgerov,M.B.,Fastie,C.L., Griffith,B.,Hollister,R.D.,Hope,A.,Huntington,H.P.,Jensen,A.M.,Jia,G.J., Jor-genson,T.,Kane,D.L.,Klein,D.R.,Kofinas,G.,Lynch,A.H.,Lloyd,A.H.,McGuire, A.D.,Nelson,F.E.,Oechel,W.C.,Osterkamp,T.E.,Racine,C.H.,Romanovsky,V.E., Stone,R.S.,Stow, D.A.,Sturm,M., Tweedie, C.E.,Vourlitis,G.L.,Walker, M.D., Walker,D.A.,Webber,P.J.,Welker,J.M.,Winker,K.S.,Yoshikawa,K.,2005. Evi-denceandimplicationsofrecentclimatechangeinNorthernAlaskaandother Arcticregions.Clim.Change 72,251–298.https://doi.org/10.1007/s10584-005 -5352-2.

Hjort,C.,Ingólfsson,Ó.,Norðdahl,H.,1985.LateQuaternarygeologyandglacial his-toryofHornstrandir,northwestIceland:areconnaissancestudy.Jökull 35,e29.

Höfle, B., Rutzinger,M., 2011. Topographic airborne LiDAR ingeomorphology: a technologicalperspective.Z.Geomorphol.,Suppl.bd 55,1–29.https://doi.org/10. 1127/0372-8854/2011/0055S2-0043.

Huggel, C.,Zgraggen-Oswald,S., Haeberli, W.,Kääb,A.,Polkvoj, A.,Galushkin, I., Evans,S.G.,2005.The2002rock/iceavalancheatKolka/Karmadon,Russian Cau-casus:assessmentofextraordinaryavalancheformationandmobility,and ap-plicationofQuickBirdsatelliteimagery.Nat.HazardsEarthSyst.Sci. 5,173–187.

https://doi.org/10.5194/nhess-5-173-2005.

Huggel,C.,Clague,J.J.,Korup,O.,2012.Isclimatechangeresponsibleforchanging landslideactivityinhighmountains?EarthSurf.Process.Landf. 37(1),77–91.

Hungr,O.,Evans,S.G., Bovis,M.J.,Hutchinson,J.N.,2001.Areviewofthe classifi-cationoflandslidesoftheflowtype.Environ.Eng.Geosci. 7,221–238.https:// doi.org/10.2113/gseegeosci.7.3.221.

Iverson,R.M.,1997.Thephysicsofdebrisflows.Rev.Geophys. 3,245–296.

Jaboyedoff,M.,Oppikofer,T.,Abellán,A.,Derron,M.H.,Loye,A.,Metzger,R., Pedrazz-ini,A.,2012.UseofLIDARinlandslideinvestigations:areview.Nat.Hazards 61, 5–28.https://doi.org/10.1007/s11069-010-9634-2.

Jermyn,C.,Geertsema,M., 2015.AnoverviewofsomerecentlargeLandslide59 TypesinNahanniNationalPark,NorthwestTerritories,Canada.Eng.Geol.Soc. Territ. 1,315–320.https://doi.org/10.1007/978-3-319-09300-0_59.

Jóhannesson, H., 2014. Geological Map of Iceland. Bedrock Geology. Scale: 1:600 000 [WWW Document]. 2nd ed. Náttúrufræðistofnun Íslands – Icelandic Inst. Nat. Hist. http://www.arcgis.com/home/item.html?id= c56c70100e21467891fde8f534da96c3#overview.

Jones,A.P.,McEwen,A.S., Tornabene, L.L.,Baker,V.R.,Melosh, H.J.,Berman, D.C., 2011. Ageomorphic analysisofHalecrater, Mars:the effectsofimpact into ice-richcrust.Icarus 211,259–272.https://doi.org/10.1016/j.icarus.2010.10.014. Jorge,M.G.,Brennand,T.A.,2017.Measuring(subglacial)bedformorientation,length,

and longitudinalasymmetry–method assessment.PLoSONE 12. https://doi. org/10.1371/journal.pone.0174312.

(13)

C. Morino et al. / Earth and Planetary Science Letters 516 (2019) 136–147 147

Kellerer-Pirklbauer,A.,Lieb,G.K.,Avian,M.,Carrivick,J.,2012.Climatechangeand rockfalleventsinhighmountainareas:numerousandextensiverockfallsin 2007atMittlererBurgstall,CentralAustria.Geogr.Ann.,Ser.A 94(1),59–78.

Kenner,R., Phillips, M., Hauck,C., Hilbich,C., Mulsow,C., Bühler, Y.,Stoffel, A., Buchroithner,M.,2017.Newinsightsonpermafrost genesisandconservation intalusslopesbasedonobservationsatFlüelapass,EasternSwitzerland. Geo-morphology 290,101–113.https://doi.org/10.1016/j.geomorph.2017.04.011. Krüger,J.,Kjær,K.H.,2000.De-icingprogressionofice-coredmorainesinahumid,

subpolarclimate,Kötlujökull,Iceland.Holocene 10,737–747.https://doi.org/10. 1191/09596830094980.

Leverington,D.W.,2011.Avolcanicoriginforthe outflowchannelsofMars:key evidenceandmajorimplications.Geomorphology 132,51–75.https://doi.org/ 10.1016/j.geomorph.2011.05.022.

Lilleøren,K.S.,Etzelmüller,B.,Gärtner-Roer,I.,Kääb,A.,Westermann,S., Gumunds-son,Á., 2013.The distribution,thermalcharacteristics anddynamics of Per-mafrostinTröllaskagi,NorthernIceland,as Inferredfromthe Distributionof RockGlaciersandIce-CoredMoraines.Permafr.Periglac.Process. 24,322–335.

https://doi.org/10.1002/ppp.1792.

Lyle,R.R.,Hutchinson,D.J.,Preston,Y.,2004.Landslideprocessesindiscontinuous permafrost,LittleSalmonLake(NTS105L/1and2),south-centralYukon.Yukon Explor.Geol.,193–204.

Matsuoka,N.,Hirakawa,K.,Watanabe,T.,Haeberli,W.,Keller,F.,1998.Theroleof diurnal,annualandmillennialfreeze-thawcycles incontrolling Alpineslope instability.In:Proc.7thInt.Conf.,vol. 55.Permafrost,Yellowknife,23–27June 1998,pp. 711–717.

McConnell,R.G.,Brock,R.W.,1903.ReportonthegreatlandslideatFrank,Alberta, 1903.Dom.Canada,Dep.Inter.Annu.Rep.VIII,3–17.

Mercer,J.H.,1963.GlacialGeologyofOhioRange,CentralHorlickMountains, Antarc-tica.

Milana,J.P.,2016.Molardsandtheirrelationtolandslidesinvolvingpermafrost fail-ure.Permafr.Periglac.Process. 27,271–284.https://doi.org/10.1002/ppp.1878.

Mollard,J.,Janes,J.,1984.AirphotoInterpretationandtheCanadianLandscape. En-ergy,Mines,Resour.Canada.415p.

Morino,C.,2018.TheHiddenHazardofMeltingGroundIceinNorthernIceland. TheOpenUniversity.

Paguican, E.M.R., de Vries,B.V.W., Lagmay, A.M.F., 2014. Hummocks: how they formandhowtheyevolveinrockslide-debrisavalanches.Landslides 11,67–80.

https://doi.org/10.1007/s10346-012-0368-y.

Pedersen,S.A.S., Larsen,L.M.,Dahl-jensen,T., Jepsen,H.F.,Krarup, G.,Nielsen,T., Pedersen,A.K.,vonPlaten-Hallermund,F.,Weng,W.,2002.Tsunami-generating rockfallandlandslideonthesouthcoastofNuussuaq,centralWestGreenland. Geol.Greenl.Surv.Bull. 191,73–83.

Pedersen,S.A.S.,Dahl-Jensen,T.,Jepsen,H.,Larsen,L.M.,Pedersen,G.K.,Nielsen,T., Pedersen,K.A.,Weng,W.,2001.FjeldskredvedPaatuut.Rep.2001/99. Copen-hagen.

Phillips,M.,Wolter,A.,Lüthi,R.,Amann,F.,Kenner,R.,Bühler,Y.,2017.Rockslope failureinarecentlydeglaciatedpermafrostrockwallatPizKesch(EasternSwiss Alps),February2014.2017EarthSurf.Process.Landf. 42(3),426–438.

Pohlman, N.A., Severson, B.L., Ottino, J.M., Lueptow,R.M., 2006. Surface rough-ness effects in granular matter: influence on angle of repose and the ab-senceofsegregation.Phys.Rev.E,Stat.NonlinearSoftMatterPhys. 73.https:// doi.org/10.1103/PhysRevE.73.031304.

Rekacewicz, P., 2005. Permafrost distribution in the Arctic [WWW document]. UNEP/GRID-Arendal.http://www.grida.no/resources/7000.

Rödder,T.,Kneisel,C.,2012.Influenceofsnowcoverandgrainsizeontheground thermalregimeinthediscontinuouspermafrostzone,SwissAlps. Geomorphol-ogy 175–176,176–189.https://doi.org/10.1016/j.geomorph.2012.07.008. Roering,J.J.,Mackey, B.H.,Marshall,J.A.,Sweeney,K.E.,Deligne,N.I.,Booth,A.M.,

Handwerger, A.L., Cerovski-Darriau, C., 2013. “You are HERE”: connecting thedotswith airborne lidar for geomorphicfieldwork. Geomorphology 200, 172–183.https://doi.org/10.1016/j.geomorph.2013.04.009.

Sæmundsson,Þ.,Morino,C.,Helgason,J.K.,Conway,S.J.,Pétursson,H.G.,2018.The triggeringfactorsoftheMóafellshyrnadebrisslideinnorthernIceland:intense precipitation,earthquakeactivityandthawingofmountainpermafrost.Sci.Total Environ. 621,1163–1175.https://doi.org/10.1016/j.scitotenv.2017.10.111. Schomacker,A.,Kjær, K.H.,2008.Quantificationofdead-icemeltinginice-cored

moraines at the high-Arctic glacier Holmströmbreen, Svalbard. Boreas 37, 211–225.https://doi.org/10.1111/j.1502-3885.2007.00014.x.

Schwab,J.W.,Geertsema,M.,Evans,S.G.,2003.Catastrophicrockavalanches, west-centralBC,Canada.In:3rdCanadianConferenceonGeotechniqueandNatural Hazards.Edmonton,AB,pp. 52–259.

Séjourné,A.,Costard,F.,Fedorov,A.,Gargani,J.,Skorve,J.,Massé,M.,Mège,D.,2015. EvolutionofthebanksofthermokarstlakesinCentralYakutia(CentralSiberia) duetoretrogressivethawslumpactivitycontrolledbyinsolation. Geomorphol-ogy 241,31–40.https://doi.org/10.1016/j.geomorph.2015.03.033.

Shea,T.,vanWykdeVries,B.,2008.Structuralanalysisandanaloguemodelingof thekinematicsanddynamicsofrockslideavalanches.Geosphere 4,657.https:// doi.org/10.1130/GES00131.1.

Shea,T.,vanWykdeVries,B.,Pilato,M.,2008.Emplacementmechanismsof con-trastingdebrisavalanchesatVolcánMombacho(Nicaragua),providedby struc-turaland faciesanalysis. Bull.Volcanol. 70,899–921.https://doi.org/10.1007/ s00445-007-0177-7.

Shreve,R.L.,1968.TheBlackhawkLandslide,vol.108.GeologicalSocietyofAmerica. Siebert,L.E.E.,1984.Largevolcanicdebrisavalanches:characteristicsofsourceareas,

depositsandassociatederuptions.J.Volcanol.Geotherm.Res. 22,163–197.

Smith,M.W.,Carrivick,J.L.,Quincey,D.J.,2015.Structurefrommotion photogram-metryinphysicalgeography.Prog.Phys.Geogr. 40,247–275.https://doi.org/10. 1177/0309133315615805.

Ui,T.,1983.Volcanicdryavalanchedeposits—identification andcomparisonwith nonvolcanicdebrisstreamdeposits.J.Volcanol.Geotherm.Res. 18,135–150. Ui,T., Kawachi,S., Neall, V.E.,1986. Fragmentation ofdebrisavalanche material

duringflowage—EvidencefromthePungarehuFormation,MountEgmont,New Zealand.J.Volcanol.Geotherm.Res. 27(3–4),255–264.

VanBurkalow,A.,1945.Angleofreposeandangleofslidingfriction:an experimen-talstudy.Geol.Soc.Am.Bull. 56,669–707.

Van Tatenhove,F.G.M., Olesen,O.B., 1994. Groundtemperature and related per-mafrostcharacteristicsinwestGreenland.Permafr.Periglac.Process. 5,199–215. Varnes,D.J.,1978.SlopeMovementTypesandProcesses.Transp.Res.BoardSpec. Rep.11–33.Specialreport176:Landslides:AnalysisandControl,Transportation ResearchBoard,Washington,D.C.https://doi.org/In.

Voight, B., Glicken, H., Janda, R.J., Douglass, P.M., 1981. Catastrophic rockslide avalancheofMay18.In:Lipman,P.W.,Mullineaux,D.R.(Eds.),The1980 Erup-tionsofMountSt.Helens,Washington:U.S..In:GeologicalSurveyProfessional Paper,vol. 1250,pp. 347–377.

Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., Reynolds, J.M., 2012. “Structure-from-motion”photogrammetry: a low-cost,effective tool for geo-science applications. Geomorphology 179,300–314. https://doi.org/10.1016/j. geomorph.2012.08.021.

Xu,Q., Shang,Y.,vanAsch,T.,Wang,S.,Zhang, Z.,Dong,X.,2012.Observations fromthelarge,rapidYigongrockslide–debrisavalanche,southeastTibet.Can. Geotech.J. 49,589–606.https://doi.org/10.1139/t2012-021.

Yarnold,J.C.,Lombard,J.P.,1989.Afaciesmodelforlargerock-avalanchedeposits formedindryclimates.In:Abbott,P.,Colburn,I.E.(Eds.),ConglomeratesinBasin Analysis:ASymposiumDedicatedtoA.O.Woodford:SocietyofEconomic Pale-ontologistsandMineralogistsPacificSection,vol. 62,pp. 9–31.

Yoshida,H.,Sugai,T.,Ohmori,H.,2012.Size-distancerelationshipsforhummocks onvolcanicrockslide-debrisavalanchedepositsinJapan.Geomorphology 136, 76–87.https://doi.org/10.1016/j.geomorph.2011.04.044.

Yoshikawa,K.,Hinzman,L.D.,2003.Shrinkingthermokarstpondsandgroundwater dynamicsindiscontinuouspermafrostnearCouncil,Alaska.Permafr.Periglac. Process. 14,151–160.https://doi.org/10.1002/ppp.451.

Références

Documents relatifs

On s’intéresse dans cette contribution à l’utilisation de sédiments de dragage portuaire issus de lagunage actif dans la formulation de bétons autoplaçants (BAP) avec

Au bistrot, un canon en ligne de mire, un capitaine crochet conte à rebours des périples au long cours, des voyages sans retour ; Peter Pan, lui, a mis les bouts, hissé les voiles,

Es wurde bei allen drei Vergleichen auch ein ungepaarter Vergleichs- test (ungepaarter t-Test bei Normalverteilung, Mann-Whitney-U-Test bei nicht-Normalvertei- lung) zu

Keywords: Arabidopsis, AtMYB30, hypersensitive response, MYB transcription factor, plant defense, stress responses, transcriptional

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

This architecture is driven by an ac voltage power sup- ply applied to the driving part at a frequency close to the length extensional modes frequency. As a consequence, by

/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur. Access

Because changes in atmospheric CO 2 and temperature from 1960 to 2009 did not vary substantially among the forcing data sets used to drive models, the responses of the simulated