• Aucun résultat trouvé

Diametral dimension and property Omega Bar for spaces Snu

N/A
N/A
Protected

Academic year: 2021

Partager "Diametral dimension and property Omega Bar for spaces Snu"

Copied!
95
0
0

Texte intégral

(1)

Diametral dimension and property Ω for spaces Sν

Loïc Demeulenaere (FRIA-FNRS Grantee)

FNRS Group  Functional Analysis: Han-sur-Lesse

(2)

Introduction: spaces Sν and diametral dimension

The concave case

(3)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

Introduction: spaces Sν and diametral dimension

The concave case

(4)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

Spaces S

ν

Context

ˆ Multifractal analysis: study of signals (Holderian regularity, spectrum of singularities, wavelet decomposition, ...).

Denition

An admissible prole is a map ν : R → {−∞} ∪ [0, 1], increasing, right-continuous and s.t. αmin:=inf{α ∈ R : ν(α) ≥ 0} is nite. Some notations

ˆ αmax:=inf{α ∈ R : ν(α) = 1} ∈ R ∪{∞},

ˆ Λ := ∪j ∈N0(j, k) : k ∈ {0, ..., 2j −1} ,

(5)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

Spaces S

ν

Context

ˆ Multifractal analysis: study of signals (Holderian regularity, spectrum of singularities, wavelet decomposition, ...).

ˆ Introduction of spaces Sν (S. Jaard, 2004).

Denition

An admissible prole is a map ν : R → {−∞} ∪ [0, 1], increasing, right-continuous and s.t. αmin:=inf{α ∈ R : ν(α) ≥ 0} is nite. Some notations

ˆ αmax:=inf{α ∈ R : ν(α) = 1} ∈ R ∪{∞},

ˆ Λ := ∪j ∈N0(j, k) : k ∈ {0, ..., 2j −1} ,

(6)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

Spaces S

ν

Context

ˆ Multifractal analysis: study of signals (Holderian regularity, spectrum of singularities, wavelet decomposition, ...).

ˆ Introduction of spaces Sν (S. Jaard, 2004). Denition

An admissible prole is a map ν : R → {−∞} ∪ [0, 1], increasing, right-continuous and s.t. αmin:=inf{α ∈ R : ν(α) ≥ 0} is nite.

ˆ Λ := ∪j ∈N0(j, k) : k ∈ {0, ..., 2j −1} ,

(7)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

Spaces S

ν

Context

ˆ Multifractal analysis: study of signals (Holderian regularity, spectrum of singularities, wavelet decomposition, ...).

ˆ Introduction of spaces Sν (S. Jaard, 2004). Denition

An admissible prole is a map ν : R → {−∞} ∪ [0, 1], increasing, right-continuous and s.t. αmin:=inf{α ∈ R : ν(α) ≥ 0} is nite. Some notations

ˆ αmax:=inf{α ∈ R : ν(α) = 1} ∈ R ∪{∞},

ˆ Λ := ∪j ∈N0(j, k) : k ∈ {0, ..., 2j −1} ,

(8)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

Spaces S

ν

Context

ˆ Multifractal analysis: study of signals (Holderian regularity, spectrum of singularities, wavelet decomposition, ...).

ˆ Introduction of spaces Sν (S. Jaard, 2004). Denition

An admissible prole is a map ν : R → {−∞} ∪ [0, 1], increasing, right-continuous and s.t. αmin:=inf{α ∈ R : ν(α) ≥ 0} is nite. Some notations

ˆ αmax:=inf{α ∈ R : ν(α) = 1} ∈ R ∪{∞},

(9)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

Spaces S

ν

Context

ˆ Multifractal analysis: study of signals (Holderian regularity, spectrum of singularities, wavelet decomposition, ...).

ˆ Introduction of spaces Sν (S. Jaard, 2004). Denition

An admissible prole is a map ν : R → {−∞} ∪ [0, 1], increasing, right-continuous and s.t. αmin:=inf{α ∈ R : ν(α) ≥ 0} is nite. Some notations

ˆ αmax:=inf{α ∈ R : ν(α) = 1} ∈ R ∪{∞},

ˆ Λ := ∪j ∈N0(j, k) : k ∈ {0, ..., 2j −1} ,

(10)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

Denition and properties of spaces S

ν

Denition

The space Sν is the set of all ~c ∈ Ω s.t.

∀α ∈ R, ∀ε > 0, ∀C > 0, ∃J ∈ N0 :

#{k : |cj ,k| ≥ C2−αj} ≤2(ν(α)+ε)j ∀j ≥ J.

ˆ Metric spaces: topological vector spaces (tvs), separable, complete, Schwartz, non-nuclear.

ˆ If p0 :=min  1, inf αmin≤α<αmax∂ +ν(α) 

with ∂+ν(α) =lim inf

h→0+ ν(α+h)−ν(α)

h , then

I if p0>0, Sν is exactly locally p0-convex;

(11)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

Denition and properties of spaces S

ν

Denition

The space Sν is the set of all ~c ∈ Ω s.t.

∀α ∈ R, ∀ε > 0, ∀C > 0, ∃J ∈ N0 :

#{k : |cj ,k| ≥ C2−αj} ≤2(ν(α)+ε)j ∀j ≥ J. Properties

ˆ Metric spaces: topological vector spaces (tvs), separable, complete, Schwartz, non-nuclear.

ˆ If p0 :=min  1, inf αmin≤α<αmax∂ +ν(α) 

with ∂+ν(α) =lim inf

h→0+ ν(α+h)−ν(α)

h , then

I if p0>0, Sν is exactly locally p0-convex;

(12)

Denition and properties of spaces S

Denition

The space Sν is the set of all ~c ∈ Ω s.t.

∀α ∈ R, ∀ε > 0, ∀C > 0, ∃J ∈ N0 :

#{k : |cj ,k| ≥ C2−αj} ≤2(ν(α)+ε)j ∀j ≥ J. Properties

ˆ Metric spaces: topological vector spaces (tvs), separable, complete, Schwartz, non-nuclear.

ˆ If p0 :=min  1, inf αmin≤α<αmax∂ +ν(α) 

with ∂+ν(α) =lim inf

h→0+ ν(α+h)−ν(α)

h , then

I if p0>0, Sν is exactly locally p0-convex;

(13)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

Open question:

Are the spaces Sν isomorphic (when same local convexity)?

⇒ study of the diametral dimension... ⇒ study of the property Ω?

(14)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

Open question:

Are the spaces Sν isomorphic (when same local convexity)?

(15)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

Open question:

Are the spaces Sν isomorphic (when same local convexity)?

⇒ study of the diametral dimension... ⇒ study of the property Ω?

(16)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

Diametral dimension

Let E be a tvs and U be a basis of 0-neighbourhoods.

∆(E ) :=nξ ∈ CN0 : ∀U ∈ U , ∃V ∈ U , V ⊆ U, s.t. ξ

nδn(V , U) →0

o , with δn(V , U) :=inf {δ > 0 : ∃L ⊆ E, dim L ≤ n, s.t. V ⊆ δU + L}. Remark

∆is a topological invariant characterizing Schwartz and nuclear lcs.

Theorem(J.M. Aubry, F. Bastin, 2010) If Sν is locally p-convex, then

∆ (Sν) =nξ ∈ CN0 : ∀s >0, ξ

n(n +1)−s →0

o .

(17)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

Diametral dimension

Let E be a tvs and U be a basis of 0-neighbourhoods.

Denition

The diametral dimension of E is

∆(E ) :=nξ ∈ CN0 : ∀U ∈ U , ∃V ∈ U , V ⊆ U, s.t. ξ

nδn(V , U) →0

o , with δn(V , U) :=inf {δ > 0 : ∃L ⊆ E, dim L ≤ n, s.t. V ⊆ δU + L}.

Remark

∆is a topological invariant characterizing Schwartz and nuclear lcs.

Theorem(J.M. Aubry, F. Bastin, 2010) If Sν is locally p-convex, then

∆ (Sν) =nξ ∈ CN0 : ∀s >0, ξ

n(n +1)−s →0

o .

(18)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

Diametral dimension

Let E be a tvs and U be a basis of 0-neighbourhoods.

Denition

The diametral dimension of E is

∆(E ) :=nξ ∈ CN0 : ∀U ∈ U , ∃V ∈ U , V ⊆ U, s.t. ξ

nδn(V , U) →0

o , with δn(V , U) :=inf {δ > 0 : ∃L ⊆ E, dim L ≤ n, s.t. V ⊆ δU + L}. Remark

∆is a topological invariant characterizing Schwartz and nuclear lcs.

∆ (Sν) =nξ ∈ CN0 : ∀s >0, ξ

n(n +1)−s →0

o .

(19)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

Diametral dimension

Let E be a tvs and U be a basis of 0-neighbourhoods.

Denition

The diametral dimension of E is

∆(E ) :=nξ ∈ CN0 : ∀U ∈ U , ∃V ∈ U , V ⊆ U, s.t. ξ

nδn(V , U) →0

o , with δn(V , U) :=inf {δ > 0 : ∃L ⊆ E, dim L ≤ n, s.t. V ⊆ δU + L}. Remark

∆is a topological invariant characterizing Schwartz and nuclear lcs.

Theorem(J.M. Aubry, F. Bastin, 2010) If Sν is locally p-convex, then

∆ (Sν) =nξ ∈ CN0 : ∀s >0, ξ

n(n +1)−s →0

o .

(20)

Introduction: spaces Sν and diametral dimension

The concave case

(21)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

When ν is concave... it's nice! ,

Denition (Besov spaces)

For p > 0 and s ∈ R, bp,∞s :=      ~ c ∈ Ω : k~ckbs p,∞ := sup j ∈N0   2 (s−1p)j   2j1 X k=0 |cj ,k|p   1/p  < ∞      .

Proposition (J.M. Aubry, F. Bastin, S. Dispa, S. Jaard, 2006) If (pn)n∈N is a dense sequence of (0, ∞) and εm →0+, then

Sν = \ n∈N \ m∈N b η(pn) pn −εm pn,∞ ,

where η : p > 0 7→ infα≥αmin{αp − ν(α) +1}.

(22)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

When ν is concave... it's nice! ,

Denition (Besov spaces)

For p > 0 and s ∈ R, bp,∞s :=      ~ c ∈ Ω : k~ckbs p,∞:= sup j ∈N0   2 (s−1p)j   2j1 X k=0 |cj ,k|p   1/p  < ∞      . Sν = \ n∈N \ m∈N b η(pn) pn −εm pn,∞ ,

where η : p > 0 7→ infα≥αmin{αp − ν(α) +1}.

(23)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

When ν is concave... it's nice! ,

Denition (Besov spaces)

For p > 0 and s ∈ R, bp,∞s :=      ~ c ∈ Ω : k~ckbs p,∞:= sup j ∈N0   2 (s−1p)j   2j1 X k=0 |cj ,k|p   1/p  < ∞      .

Proposition (J.M. Aubry, F. Bastin, S. Dispa, S. Jaard, 2006) If (pn)n∈N is a dense sequence of (0, ∞) and εm →0+, then

Sν = \ n∈N \ m∈N b η(pn) pn −εm pn,∞ ,

where η : p > 0 7→ infα≥αmin{αp − ν(α) +1}.

(24)

When ν is concave... it's nice! ,

Denition (Besov spaces)

For p > 0 and s ∈ R, bp,∞s :=      ~ c ∈ Ω : k~ckbs p,∞:= sup j ∈N0   2 (s−1p)j   2j1 X k=0 |cj ,k|p   1/p  < ∞      .

Proposition (J.M. Aubry, F. Bastin, S. Dispa, S. Jaard, 2006) If (pn)n∈N is a dense sequence of (0, ∞) and εm →0+, then

Sν = \ n∈N \ m∈N b η(pn) pn −εm pn,∞ ,

where η : p > 0 7→ infα≥αmin{αp − ν(α) +1}.

(25)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

When ν is concave... it's nice! ,

Topology dened by Pm(I )(~c) =sup i ∈I sup j ∈N0   2 η(pi ) pi −pi1−εm  j   2j1 X k=0 |cj ,k|pi   1/pi  

when I ⊆ N is nite and m ∈ N.

Numbers for weights j =0 (0, 0)

j =1 (1, 0) (1, 1)

(26)

When ν is concave... it's nice! ,

Topology dened by Pm(I )(~c) =sup i ∈I sup j ∈N0   2 η(pi ) pi −pi1−εm  j   2j1 X k=0 |cj ,k|pi   1/pi  

when I ⊆ N is nite and m ∈ N.

Numbers for weights j =0 (0, 0)

j =1 (1, 0) (1, 1)

(27)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

When ν is concave... it's nice! ,

Topology dened by Pm(I )(~c) =sup i ∈I j ∈Nsup0   2  η(pi ) pi −pi1−εm  j   2j1 X k=0 |cj ,k|pi   1/pi  

when I ⊆ N is nite and m ∈ N.

Numbers for weights

j =0 0

j =1 (1, 0) (1, 1)

(28)

When ν is concave... it's nice! ,

Topology dened by Pm(I )(~c) =sup i ∈I j ∈Nsup0   2  η(pi ) pi −pi1−εm  j   2j1 X k=0 |cj ,k|pi   1/pi  

when I ⊆ N is nite and m ∈ N.

Numbers for weights

j =0 0



j =1 1 (1, 1)

(29)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

When ν is concave... it's nice! ,

Topology dened by Pm(I )(~c) =sup i ∈I j ∈Nsup0   2  η(pi ) pi −pi1−εm  j   2j1 X k=0 |cj ,k|pi   1/pi  

when I ⊆ N is nite and m ∈ N.

Numbers for weights

j =0 0



j =1 1 //2

(30)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

When ν is concave... it's nice! ,

Topology dened by Pm(I )(~c) =sup i ∈I sup j ∈N0   2 η(pi ) pi −pi1−εm  j   2j1 X k=0 |cj ,k|pi   1/pi  

when I ⊆ N is nite and m ∈ N.

Numbers for weights

j =0 0  j =1 1 //2  j =2 3 //4 //5 //6 2 −1 ≤n≤2 −2.

(31)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

When ν is concave... it's nice! ,

Topology dened by Pm(I )(~c) =sup i ∈I sup j ∈N0   2 η(pi ) pi −pi1−εm  j   2j1 X k=0 |cj ,k|pi   1/pi  

when I ⊆ N is nite and m ∈ N.

Numbers for weights

j =0 0



j =1 1 //2



j =2 3 //4 //5 //6

Scalej associated to the numbern: j (n)s.t.

(32)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

A rst property

Proposition If I ⊆ N is nite and if k0 ≥ m, δn  B P(I ) k0 , B Pm(I )  ≤2(εk0−εm)j (n).

Reminder: δn(V , U) :=inf {δ > 0 : ∃L, dim L ≤ n, s.t. V ⊆ δU + L}.

Pm(I )(~c − πn(~c)) ≤sup i ∈I sup j ≥j (n)  2 η(pi ) pi −pi1−εm  j   2j1 X k=0 |cj ,k|pi   1/pi   ≤2(εk0−εm)j (n). ⇒ ~c = ~c − πn(~c) + πn(~c) ∈2(εk0−εm)j (n)BP(I ) m + πn(S ν).

(33)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

A rst property

Proposition If I ⊆ N is nite and if k0 ≥ m, δn  B P(I ) k0 , B Pm(I )  ≤2(εk0−εm)j (n).

Reminder: δn(V , U) :=inf {δ > 0 : ∃L, dim L ≤ n, s.t. V ⊆ δU + L}. Proof: πn: Sν → Sν projection on the rst n −→ej ,k (from −→e0,0) and

~ c ∈ B P(I ) k0. Pm(I )(~c − πn(~c)) ≤sup i ∈I sup j ≥j (n)   2 η(pi ) pi −pi1−εm  j   2j1 X k=0 |cj ,k|pi   1/pi   ≤2(εk0−εm)j (n). ⇒ ~c = ~c − πn(~c) + πn(~c) ∈2(εk0−εm)j (n)BP(I ) m + πn(S ν).

(34)

A rst property

Proposition If I ⊆ N is nite and if k0 ≥ m, δn  B P(I ) k0 , B Pm(I )  ≤2(εk0−εm)j (n).

Reminder: δn(V , U) :=inf {δ > 0 : ∃L, dim L ≤ n, s.t. V ⊆ δU + L}. Proof: πn: Sν → Sν projection on the rst n −→ej ,k (from −→e0,0) and

~ c ∈ B P(I ) k0. Pm(I )(~c − πn(~c)) ≤sup i ∈I sup j ≥j (n)   2 η(pi ) pi −pi1−εm  j   2j1 X k=0 |cj ,k|pi   1/pi   ≤2(εk0−εm)j (n). ⇒ ~c = ~c − πn(~c) + πn(~c) ∈2(εk0−εm)j (n)BP(I ) m + πn(S ν).

(35)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

A rst property

Proposition If I ⊆ N is nite and if k0 ≥ m, δn  B P(I ) k0 , B Pm(I )  ≤2(εk0−εm)j (n).

Reminder: δn(V , U) :=inf {δ > 0 : ∃L, dim L ≤ n, s.t. V ⊆ δU + L}. Proof: πn: Sν → Sν projection on the rst n −→ej ,k (from −→e0,0) and

~ c ∈ B P(I ) k0. Pm(I )(~c − πn(~c)) ≤sup i ∈I sup j ≥j (n)   2 (εk0−εm)j2 η(pi ) pi −pi1−εk0  j   2j1 X k=0 |cj ,k|pi   1/pi   ≤2(εk0−εm)j (n). ⇒ ~c = ~c − πn(~c) + πn(~c) ∈2(εk0−εm)j (n)BP(I ) m + πn(S ν).

(36)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

A rst property

Proposition If I ⊆ N is nite and if k0 ≥ m, δn  B P(I ) k0 , B Pm(I )  ≤2(εk0−εm)j (n).

Reminder: δn(V , U) :=inf {δ > 0 : ∃L, dim L ≤ n, s.t. V ⊆ δU + L}. Proof: πn: Sν → Sν projection on the rst n −→ej ,k (from −→e0,0) and

~ c ∈ B P(I ) k0. Pm(I )(~c − πn(~c)) ≤sup i ∈I sup j ≥j (n)   2 (εk0−εm)j2 η(pi ) pi −pi1−εk0  j   2j1 X k=0 |cj ,k|pi   1/pi   ≤2(εk0−εm)j (n)P(I ) k0(~c) ≤2 (εk0−εm)j (n).

(37)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

A rst property

Proposition If I ⊆ N is nite and if k0 ≥ m, δn  B P(I ) k0 , B Pm(I )  ≤2(εk0−εm)j (n).

Reminder: δn(V , U) :=inf {δ > 0 : ∃L, dim L ≤ n, s.t. V ⊆ δU + L}. Proof: πn: Sν → Sν projection on the rst n −→ej ,k (from −→e0,0) and

~ c ∈ B P(I ) k0. Pm(I )(~c − πn(~c)) ≤sup i ∈I sup j ≥j (n)   2 (εk0−εm)j2 η(pi ) pi −pi1−εk0  j   2j1 X k=0 |cj ,k|pi   1/pi   ≤2(εk0−εm)j (n)P(I ) k0(~c) ≤2 (εk0−εm)j (n). ⇒ ~c = ~c − πn(~c) + πn(~c) ∈2(εk0−εm)j (n)BP(I ) m + πn(S ν). 

(38)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

A rst property

Proposition If I ⊆ N is nite and if k0 ≥ m, δn  B P(I ) k0 , B Pm(I )  ≤2(εk0−εm)j (n). Corollary n ξ ∈ CN0 : ∀s >0, ξn(n +1)−s 0 if n → ∞o⊆ ∆(Sν). Reminder: ∆(E ) :=nξ ∈ CN0 : ∀U ∈ U , ∃V ∈ U , V ⊆ U, s.t. ξ nδn(V , U) →0o. δn BP(I ) k0 , B Pm(I ) ≤2(εk0−εm)j (n)2εm−εk0(n +2)εk0−εm | {z } becausen ≤ 2j (n)+1−2 ≤2εm−εk0(n +1)εk0−εm. 

(39)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

A rst property

Proposition If I ⊆ N is nite and if k0 ≥ m, δn  B P(I ) k0 , B Pm(I )  ≤2(εk0−εm)j (n). Corollary n ξ ∈ CN0 : ∀s >0, ξn(n +1)−s 0 if n → ∞o⊆ ∆(Sν). Reminder: ∆(E ) :=nξ ∈ CN0 : ∀U ∈ U , ∃V ∈ U , V ⊆ U, s.t. ξ nδn(V , U) →0o. Proof: If k0 > m, δn  B P(I ) k0 , B Pm(I )  ≤2(εk0−εm)j (n)2εm−εk0(n +2)εk0−εm | {z } becausen ≤ 2j (n)+1−2 ≤2εm−εk0(n +1)εk0−εm. 

(40)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

And for the other inclusion?

We need another assumption...

lim

p→0+

η(p)

p = αmax.

Reminders: η(p) = infα≥αmin{αp − ν(α) +1}, αmax=inf{α ∈ R : ν(α) = 1}.

Assumption: αmax< ∞

Examples

ˆ When Sν is locally p-convex, α

max < ∞. ˆ 0.5 1.0 1.5 2.0 0.2 0.4 0.6 0.8 1.0

Pseudoconvexity, with αmax < ∞ (blue) and αmax= ∞(orange).

(41)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

And for the other inclusion?

We need another assumption...

Lemma (L.D., 2017) lim

p→0+

η(p)

p = αmax.

Reminders: η(p) = infα≥αmin{αp − ν(α) +1}, αmax=inf{α ∈ R : ν(α) = 1}.

Assumption: αmax< ∞

Examples

ˆ When Sν is locally p-convex, α

max < ∞. ˆ 0.5 1.0 1.5 2.0 0.2 0.4 0.6 0.8 1.0

Pseudoconvexity, with αmax < ∞ (blue) and αmax= ∞(orange).

(42)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

And for the other inclusion?

We need another assumption...

Lemma (L.D., 2017) lim

p→0+

η(p)

p = αmax.

Reminders: η(p) = infα≥αmin{αp − ν(α) +1}, αmax=inf{α ∈ R : ν(α) = 1}.

Assumption: αmax< ∞

ˆ When S is locally p-convex, αmax .

ˆ 0.5 1.0 1.5 2.0 0.2 0.4 0.6 0.8 1.0

Pseudoconvexity, with αmax < ∞ (blue) and αmax= ∞(orange).

(43)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

And for the other inclusion?

We need another assumption...

Lemma (L.D., 2017) lim

p→0+

η(p)

p = αmax.

Reminders: η(p) = infα≥αmin{αp − ν(α) +1}, αmax=inf{α ∈ R : ν(α) = 1}.

Assumption: αmax< ∞

Examples

ˆ When Sν is locally p-convex, α

max< ∞. ˆ 0.5 1.0 1.5 2.0 0.2 0.4 0.6 0.8 1.0

Pseudoconvexity, with αmax < ∞ (blue) and αmax= ∞(orange).

(44)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

Construction of the I

ε

's

We x ε ∈ Q+. 0 < p < pi0 ⇒ p − i0 pi0 ≤ ε. NB: p > 0 7→ η(p) p =infα≥αmin n α +1−ν(α)p o is decreasing and (pn)n∈N≡ Q+. 2. ∃` ∈ N0 s.t. `ε < p1 i0 ≤ (` +1)ε. For k = 0, ..., `, we dene ik ∈ N by 1 pik = 1 pi0 − kε. 3. Iε:= {i0, ..., i`}.

(45)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

Construction of the I

ε

's

We x ε ∈ Q+.

1. Because αmax < ∞, ∃i0 ∈ N s.t.

0 < p < pi0 ⇒ η(p) p − η(pi0) pi0 ≤ ε. NB: p > 0 7→ η(p) p =infα≥αmin n α +1−ν(α)p o is decreasing and (pn)n∈N≡ Q+. 2. ∃` ∈ N0 s.t. `ε < p1 i0 ≤ (` +1)ε. For k = 0, ..., `, we dene ik ∈ N by 1 pik = 1 pi0 − kε. 3. Iε:= {i0, ..., i`}.

(46)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

Construction of the I

ε

's

We x ε ∈ Q+.

1. Because αmax < ∞, ∃i0 ∈ N s.t.

0 < p < pi0 ⇒ η(p) p − η(pi0) pi0 ≤ ε. NB: p > 0 7→ η(p) p =infα≥αmin n α +1−ν(α)p o is decreasing and (pn)n∈N≡ Q+. 2. ∃` ∈ N0 s.t. `ε <p1 i0 ≤ (` +1)ε. For k = 0, ..., `, we dene ik ∈ N by 1 pik = 1 pi0 − kε.

(47)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

Construction of the I

ε

's

We x ε ∈ Q+.

1. Because αmax < ∞, ∃i0 ∈ N s.t.

0 < p < pi0 ⇒ η(p) p − η(pi0) pi0 ≤ ε. NB: p > 0 7→ η(p) p =infα≥αmin n α +1−ν(α)p o is decreasing and (pn)n∈N≡ Q+. 2. ∃` ∈ N0 s.t. `ε <p1 i0 ≤ (` +1)ε. For k = 0, ..., `, we dene ik ∈ N by 1 pik = 1 pi0 − kε. 3. Iε:= {i0, ..., i`}.

(48)

The main property of the I

's

Proposition (L.D., 2017) If m, n ∈ N and ~c ∈ Sν, k~ck bpn,∞η(pn)/pn−εm ≤sup i ∈Iε sup j ∈N0   2  η(pi ) pi −pi1+ε−εm  j   2j1 X k=0 |cj ,k|pi   1/pi  . Proof: Admitted. 

(49)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

Consequences

Proposition

Let m, k0∈ N be given, k0 ≥ m. If Iε⊆ J ⊆ N, J nite, then,

δn  BP(J) k0 , BP(Iε) m  ≥2(εk0−εm−ε)j(n).

Proof: Follows from:

Proposition (A. Pietsch, 1972)

Let (E, k.k) be a normed space, with closed unit ball U, and B be bounded. If ∃ P : E → E proj. with kPk ≤ 1, dim P(E) = n + 1, then ∃δ >0 : δU ∩ P(E) ⊆ B ⇒ δn(B, U) ≥ δ. Here: U = B Pm(Iε),B = BP (J) k0, P = πn+1 projection on the rst n + 1 −→ ej ,k andδ =2(εk0−εm−ε)j(n).

(50)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

Consequences

Proposition

Let m, k0∈ N be given, k0 ≥ m. If Iε⊆ J ⊆ N, J nite, then,

δn  BP(J) k0 , BP(Iε) m  ≥2(εk0−εm−ε)j(n).

Proof: Follows from:

Proposition (A. Pietsch, 1972)

Let (E, k.k) be a normed space, with closed unit ball U, and B be bounded. If ∃ P : E → E proj. with kPk ≤ 1, dim P(E) = n + 1, then

(51)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

Consequences

Proposition

Let m, k0∈ N be given, k0 ≥ m. If Iε⊆ J ⊆ N, J nite, then,

δn  BP(J) k0 , BP(Iε) m  ≥2(εk0−εm−ε)j(n).

Proof: Follows from:

Proposition (A. Pietsch, 1972)

Let (E, k.k) be a normed space, with closed unit ball U, and B be bounded. If ∃ P : E → E proj. with kPk ≤ 1, dim P(E) = n + 1, then

∃δ >0 : δU ∩ P(E) ⊆ B ⇒ δn(B, U) ≥ δ. Here: U = B

Pm(Iε),B = BPk0(J),P = πn+1 projection on the rst n + 1 −→

(52)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity Thesis 2(εk0−εm−ε)j(n)B Pm(Iε) ∩ πn+1(Sν) ⊆ B P(J) k0 ⇔ Pk(J) 0 (~c) ≤2 (εm+ε−εk0)j (n)P(Iε) m (~c) ∀~c ∈ πn+1(Sν). Pk(J) 0 (~c) ≤sup i ∈Iε sup j ∈N0  2  η(pi ) pi −pi1+ε−εk0  j  2−1 X k=0 |cj ,k|pi    ≤2(εm+ε−εk0)j (n)sup i ∈Iε sup j ≤j (n)   2  η(pi ) pi −pi1−εm  j   2j1 X k=0 |cj ,k|pi   1/pi   =2(εm+ε−εk0)j (n)P(Iε) m (~c).

(53)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity Thesis 2(εk0−εm−ε)j(n)B Pm(Iε) ∩ πn+1(Sν) ⊆ B P(J) k0 ⇔ Pk(J) 0 (~c) ≤2 (εm+ε−εk0)j (n)P(Iε) m (~c) ∀~c ∈ πn+1(Sν).

But, by last Proposition, if ~c ∈ πn+1(Sν)

Pk(J) 0 (~c) ≤sup i ∈Iε sup j ∈N0   2  η(pi ) pi −pi1+ε−εk0  j   2j1 X k=0 |cj ,k|pi   1/pi   ≤2(εm+ε−εk0)j (n)sup i ∈Iε sup j ≤j (n)   2  η(pi ) pi −pi1−εm  j   2j1 X k=0 |cj ,k|pi   1/pi   =2(εm+ε−εk0)j (n)P(Iε) m (~c).

(54)

Thesis 2(εk0−εm−ε)j(n)B Pm(Iε) ∩ πn+1(Sν) ⊆ B P(J) k0 ⇔ Pk(J) 0 (~c) ≤2 (εm+ε−εk0)j (n)P(Iε) m (~c) ∀~c ∈ πn+1(Sν).

But, by last Proposition, if ~c ∈ πn+1(Sν)

Pk(J) 0 (~c) ≤sup i ∈Iε sup j ≤j (n)   2  η(pi ) pi −pi1+ε−εk0  j   2j1 X k=0 |cj ,k|pi   1/pi   ≤2(εm+ε−εk0)j (n)sup i ∈Iε sup j ≤j (n)   2  η(pi ) pi −pi1−εm  j   2j1 X k=0 |cj ,k|pi   1/pi   =2(εm+ε−εk0)j (n)P(Iε) m (~c).

(55)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity Thesis 2(εk0−εm−ε)j(n)B Pm(Iε) ∩ πn+1(Sν) ⊆ B P(J) k0 ⇔ Pk(J) 0 (~c) ≤2 (εm+ε−εk0)j (n)P(Iε) m (~c) ∀~c ∈ πn+1(Sν).

But, by last Proposition, if ~c ∈ πn+1(Sν)

Pk(J) 0 (~c) ≤sup i ∈Iε sup j ≤j (n)   2( εm+ε−εk0)j2  η(pi ) pi −pi1−εm  j   2j1 X k=0 |cj ,k|pi   1/pi   ≤2(εm+ε−εk0)j (n)sup i ∈Iε sup j ≤j (n)   2  η(pi ) pi −pi1+εm  j   2j1 X k=0 |cj ,k|pi   1/pi   =2(εm+ε−εk0)j (n)P(Iε) m (~c).

(56)

Thesis 2(εk0−εm−ε)j(n)B Pm(Iε) ∩ πn+1(Sν) ⊆ B P(J) k0 ⇔ Pk(J) 0 (~c) ≤2 (εm+ε−εk0)j (n)P(Iε) m (~c) ∀~c ∈ πn+1(Sν).

But, by last Proposition, if ~c ∈ πn+1(Sν)

Pk(J) 0 (~c) ≤sup i ∈Iε sup j ≤j (n)   2( εm+ε−εk0)j2  η(pi ) pi −pi1−εm  j   2j1 X k=0 |cj ,k|pi   1/pi   ≤2(εm+ε−εk0)j (n)sup i ∈Iε sup j ≤j (n)   2  η(pi ) pi −pi1−εm  j   2j1 X k=0 |cj ,k|pi   1/pi   =2(εm+ε−εk0)j (n)P(Iε) m (~c).

(57)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity Thesis 2(εk0−εm−ε)j(n)B Pm(Iε) ∩ πn+1(Sν) ⊆ B P(J) k0 ⇔ Pk(J) 0 (~c) ≤2 (εm+ε−εk0)j (n)P(Iε) m (~c) ∀~c ∈ πn+1(Sν).

But, by last Proposition, if ~c ∈ πn+1(Sν)

Pk(J) 0 (~c) ≤sup i ∈Iε sup j ≤j (n)   2( εm+ε−εk0)j2  η(pi ) pi −pi1−εm  j   2j1 X k=0 |cj ,k|pi   1/pi   ≤2(εm+ε−εk0)j (n)sup i ∈Iε sup j ≤j (n)   2  η(pi ) pi −pi1−εm  j   2j1 X k=0 |cj ,k|pi   1/pi   =2(εm+ε−εk0)j (n)P(Iε) m (~c). 

(58)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

Diametral dimension and spaces S

ν Theorem(L.D., 2017)

If ν is concave and αmax< ∞,

∆ (Sν) = n ξ ∈ CN0 : ∀s >0, ξn(n +1)−s 0o. Reminder: ∆(E ) :=nξ ∈ CN0 : ∀U ∈ U , ∃V ∈ U , V ⊆ U, s.t. ξ nδn(V , U) →0o.

By def., ∃k0≥ m and Iε⊆ J ⊆ N, J nite, s.t.

ξnδn  B P(J) k0 , B Pm(Iε)  →0. But, by last Proposition,

δn  B P(J) k0 , B Pm(Iε)  ≥2(εk0−εm−ε)j(n).

(59)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

Diametral dimension and spaces S

ν Theorem(L.D., 2017)

If ν is concave and αmax< ∞,

∆ (Sν) = n ξ ∈ CN0 : ∀s >0, ξn(n +1)−s 0o. Reminder: ∆(E ) :=nξ ∈ CN0 : ∀U ∈ U , ∃V ∈ U , V ⊆ U, s.t. ξ nδn(V , U) →0o. Proof: ⊇ OK! ⊆ ξ ∈ ∆(Sν), s > 0. We take m ∈ N s.t. ε m≤ s/2 and ε := εm.

By def., ∃k0≥ m and Iε⊆ J ⊆ N, J nite, s.t.

ξnδn  B P(J) k0 , B Pm(Iε)  →0. But, by last Proposition,

δn  B P(J) k0 , B Pm(Iε)  ≥2(εk0−εm−ε)j(n).

(60)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

Diametral dimension and spaces S

ν Theorem(L.D., 2017)

If ν is concave and αmax< ∞,

∆ (Sν) = n ξ ∈ CN0 : ∀s >0, ξn(n +1)−s 0o. Reminder: ∆(E ) :=nξ ∈ CN0 : ∀U ∈ U , ∃V ∈ U , V ⊆ U, s.t. ξ nδn(V , U) →0o. Proof: ⊇ OK! ⊆ ξ ∈ ∆(Sν), s > 0. ξnδn  B P(J) k0 , B Pm(Iε)  →0. But, by last Proposition,

δn  B P(J) k0 , B Pm(Iε)  ≥2(εk0−εm−ε)j(n).

(61)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

Diametral dimension and spaces S

ν Theorem(L.D., 2017)

If ν is concave and αmax< ∞,

∆ (Sν) = n ξ ∈ CN0 : ∀s >0, ξn(n +1)−s 0o. Reminder: ∆(E ) :=nξ ∈ CN0 : ∀U ∈ U , ∃V ∈ U , V ⊆ U, s.t. ξ nδn(V , U) →0o. Proof: ⊇ OK! ⊆ ξ ∈ ∆(Sν), s > 0. We take m ∈ N s.t. ε m≤ s/2 and ε := εm.

By def., ∃k0≥ m and Iε⊆ J ⊆ N, J nite, s.t.

ξnδn  B P(J) k0 , B Pm(Iε)  →0. But, by last Proposition,

δn  B P(J) k0 , B Pm(Iε)  ≥2(εk0−εm−ε)j(n).

(62)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

Diametral dimension and spaces S

ν Theorem(L.D., 2017)

If ν is concave and αmax< ∞,

∆ (Sν) = n ξ ∈ CN0 : ∀s >0, ξn(n +1)−s 0o. Reminder: ∆(E ) :=nξ ∈ CN0 : ∀U ∈ U , ∃V ∈ U , V ⊆ U, s.t. ξ nδn(V , U) →0o. Proof: ⊇ OK! ⊆ ξ ∈ ∆(Sν), s > 0. We take m ∈ N s.t. ε m≤ s/2 and ε := εm.

By def., ∃k0≥ m and Iε⊆ J ⊆ N, J nite, s.t.

ξnδn  B P(J) k0 , B Pm(Iε)  →0. δn BP(J) k0 , B Pm(Iε) ≥2 .

(63)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

Diametral dimension and spaces S

ν Theorem(L.D., 2017)

If ν is concave and αmax< ∞,

∆ (Sν) = n ξ ∈ CN0 : ∀s >0, ξn(n +1)−s 0o. Reminder: ∆(E ) :=nξ ∈ CN0 : ∀U ∈ U , ∃V ∈ U , V ⊆ U, s.t. ξ nδn(V , U) →0o. Proof: ⊇ OK! ⊆ ξ ∈ ∆(Sν), s > 0. We take m ∈ N s.t. ε m≤ s/2 and ε := εm.

By def., ∃k0≥ m and Iε⊆ J ⊆ N, J nite, s.t.

ξnδn  B P(J) k0 , B Pm(Iε)  →0. But, by last Proposition,

δn  B P(J) k0 , B Pm(Iε)  ≥2(εk0−εm−ε)j(n).

(64)

Diametral dimension and spaces S

Theorem(L.D., 2017)

If ν is concave and αmax< ∞,

∆ (Sν) = n ξ ∈ CN0 : ∀s >0, ξn(n +1)−s 0o. Reminder: ∆(E ) :=nξ ∈ CN0 : ∀U ∈ U , ∃V ∈ U , V ⊆ U, s.t. ξ nδn(V , U) →0o. Proof: ⊇ OK! ⊆ ξ ∈ ∆(Sν), s > 0. We take m ∈ N s.t. ε m≤ s/2 and ε := εm.

By def., ∃k0≥ m and Iε⊆ J ⊆ N, J nite, s.t.

ξnδn  B P(J) k0 , B Pm(Iε)  →0. But, by last Proposition,

δn  B P(J) k0 , B Pm(Iε)  ≥2(εk0−2εm)j (n).

(65)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

Diametral dimension and spaces S

ν Theorem(L.D., 2017)

If ν is concave and αmax< ∞,

∆ (Sν) = n ξ ∈ CN0 : ∀s >0, ξn(n +1)−s 0o. Reminder: ∆(E ) :=nξ ∈ CN0 : ∀U ∈ U , ∃V ∈ U , V ⊆ U, s.t. ξ nδn(V , U) →0o. Proof: ⊇ OK! ⊆ ξ ∈ ∆(Sν), s > 0. We take m ∈ N s.t. ε m≤ s/2 and ε := εm.

By def., ∃k0≥ m and Iε⊆ J ⊆ N, J nite, s.t.

ξnδn  B P(J) k0 , B Pm(Iε)  →0. But, by last Proposition,

δn  B P(J) k0 , B Pm(Iε)  ≥2−2εmj (n).

(66)

Diametral dimension and spaces S

Theorem(L.D., 2017)

If ν is concave and αmax< ∞,

∆ (Sν) = n ξ ∈ CN0 : ∀s >0, ξn(n +1)−s 0o. Reminder: ∆(E ) :=nξ ∈ CN0 : ∀U ∈ U , ∃V ∈ U , V ⊆ U, s.t. ξ nδn(V , U) →0o. Proof: ⊇ OK! ⊆ ξ ∈ ∆(Sν), s > 0. We take m ∈ N s.t. ε m≤ s/2 and ε := εm.

By def., ∃k0≥ m and Iε⊆ J ⊆ N, J nite, s.t.

ξnδn  B P(J) k0 , B Pm(Iε)  →0. But, by last Proposition,

δn  B P(J) k0 , B Pm(Iε)  ≥2−sj (n).

(67)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

Diametral dimension and spaces S

ν Theorem(L.D., 2017)

If ν is concave and αmax< ∞,

∆ (Sν) = n ξ ∈ CN0 : ∀s >0, ξn(n +1)−s 0o. Reminder: ∆(E ) :=nξ ∈ CN0 : ∀U ∈ U , ∃V ∈ U , V ⊆ U, s.t. ξ nδn(V , U) →0o. Proof: ⊇ OK! ⊆ ξ ∈ ∆(Sν), s > 0. We take m ∈ N s.t. ε m≤ s/2 and ε := εm.

By def., ∃k0≥ m and Iε⊆ J ⊆ N, J nite, s.t.

ξnδn  B P(J) k0 , B Pm(Iε)  →0. But, by last Proposition,

δn  B P(J) k0 , B Pm(Iε)  ≥2−sj (n)≥ (n +1)−s (2j (n)−1 ≤ n).

(68)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

Property Ω

Denition

A Fréchet space E, with a fundamental system of semi-norms (k.kn)n∈N, has the property Ω if

∀m ∃k ∀j ∃C >0 : kx0k∗k2

≤ C kx0k∗mkx0k∗j ∀x0 ∈ E0 where k.k∗

m is the dual norm of k.km.

the property Ω i

∀m ∃k ∀j ∃C >0 : Uk ⊆ rUj +

C

r Um ∀r >0. ; Property (Ωid)

(69)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

Property Ω

Denition

A Fréchet space E, with a fundamental system of semi-norms (k.kn)n∈N, has the property Ω if

∀m ∃k ∀j ∃C >0 : kx0k∗k2

≤ C kx0k∗mkx0k∗j ∀x0 ∈ E0 where k.k∗

m is the dual norm of k.km. Characterization

A Fréchet space E, with a basis of 0-neighbourhoods (Un)n∈N, has

the property Ω i

∀m ∃k ∀j ∃C >0 : Uk ⊆ rUj +

C

r Um ∀r >0. ; Property (Ωid)

(70)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

Property Ω and spaces S

ν Theorem(L.D., 2017)

If ν is concave and αmax< ∞, then Sν has the property (Ωid).

ThesisIf j0 ∈ N and Ij0 ⊆ N, Ij0 nite, then

B P(Ik0) k0 ⊆ rB P(Ij0) j0 + 1 rBPm(Im) ∀r >0. 1. If r ≤ 1, B P(Ik0) k0 ⊆ B Pm(Im) ⊆ 1rB Pm(Im) ⊆ rB P(Ij0) j0 +1rB Pm(Im).

(71)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

Property Ω and spaces S

ν Theorem(L.D., 2017)

If ν is concave and αmax< ∞, then Sν has the property (Ωid).

Proof: We x m ∈ N and Im ⊆ N nite.

∃k0 s.t. εk0 < εm/2: we put Ik0 := Iε∪ Im, with ε := εm/2 − εk0. ThesisIf j0 ∈ N and Ij0 ⊆ N, Ij0 nite, then

B P(Ik0) k0 ⊆ rB P(Ij0) j0 + 1 rBPm(Im) ∀r >0. 1. If r ≤ 1, B P(Ik0) k0 ⊆ B Pm(Im) ⊆ 1rB Pm(Im) ⊆ rB P(Ij0) j0 +1rB Pm(Im).

(72)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

Property Ω and spaces S

ν Theorem(L.D., 2017)

If ν is concave and αmax< ∞, then Sν has the property (Ωid).

Proof: We x m ∈ N and Im ⊆ N nite.

∃k0 s.t. εk0 < εm/2: we put Ik0 := Iε∪ Im, with ε := εm/2 − εk0. B P(Ik0) k0 ⊆ rB P(Ij0) j0 + 1 rBPm(Im) ∀r >0. 1. If r ≤ 1, B P(Ik0) k0 ⊆ B Pm(Im) ⊆ 1rB Pm(Im) ⊆ rB P(Ij0) j0 +1rB Pm(Im).

(73)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

Property Ω and spaces S

ν Theorem(L.D., 2017)

If ν is concave and αmax< ∞, then Sν has the property (Ωid).

Proof: We x m ∈ N and Im ⊆ N nite.

∃k0 s.t. εk0 < εm/2: we put Ik0 := Iε∪ Im, with ε := εm/2 − εk0. ThesisIf j0 ∈ N and Ij0 ⊆ N, Ij0 nite, then

B P(Ik0) k0 ⊆ rB P(Ij0) j0 + 1 rBPm(Im) ∀r >0. 1. If r ≤ 1, B P(Ik0) k0 ⊆ B Pm(Im) ⊆ 1rB Pm(Im) ⊆ rB P(Ij0) j0 +1rB Pm(Im).

(74)

Property Ω and spaces S

Theorem(L.D., 2017)

If ν is concave and αmax< ∞, then Sν has the property (Ωid).

Proof: We x m ∈ N and Im ⊆ N nite.

∃k0 s.t. εk0 < εm/2: we put Ik0 := Iε∪ Im, with ε := εm/2 − εk0. ThesisIf j0 ∈ N and Ij0 ⊆ N, Ij0 nite, then

B P(Ik0) k0 ⊆ rB P(Ij0) j0 + 1 rBPm(Im) ∀r >0. 1. If r ≤ 1, B P(Ik0) k0 ⊆ B Pm(Im) ⊆ 1 rBPm(Im)⊆ rBP(Ij0) j0 +1rB Pm(Im).

(75)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity 2. If r ≥ 1.∃J ∈ N0 s.t. 2εm2 J ≤ r ≤2εm2 (J+1). For ~c ∈ B P(Ik0) k0 , ~ c1 := J X j =0 2j1 X k=0 cj ,k−→ej ,k and c~2:= ∞ X j =J+1 2j1 X k=0 cj ,k−→ej ,k.

So, since Iε⊆ Ik0 and ε = εm/2 − εk0,

Pj(Ij0) 0 ( ~c1) ≤supi ∈I ε sup j ≤J   2  η(pi ) pi −pi1+ε−εj0  j   2j1 X k=0 |cj ,k|pi   1/pi   ≤2εm2 JPk(Ik0) 0 (~c) ≤ r , so ~c1∈ rB P(Ij0) j0 .

(76)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity 2. If r ≥ 1.∃J ∈ N0 s.t. 2εm2 J ≤ r ≤2εm2 (J+1). For ~c ∈ B P(Ik0) k0 , ~ c1 := J X j =0 2j1 X k=0 cj ,k−→ej ,k and c~2:= ∞ X j =J+1 2j1 X k=0 cj ,k−→ej ,k. Pj(Ij0) 0 ( ~c1) ≤supi ∈I ε sup j ≤J  2  η(pi ) pi −pi1+ε−εj0  j  2−1 X k=0 |cj ,k|pi   ≤2εm2 JPk(Ik0) 0 (~c) ≤ r , so ~c1∈ rB P(Ij0) j0 .

(77)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity 2. If r ≥ 1.∃J ∈ N0 s.t. 2εm2 J ≤ r ≤2εm2 (J+1). For ~c ∈ B P(Ik0) k0 , ~ c1 := J X j =0 2j1 X k=0 cj ,k−→ej ,k and c~2:= ∞ X j =J+1 2j1 X k=0 cj ,k−→ej ,k.

So, since Iε⊆ Ik0 and ε = εm/2 − εk0,

Pj(Ij0) 0 ( ~c1) ≤supi ∈I ε sup j ≤J   2  η(pi ) pi −pi1+ε−εj0  j   2j1 X k=0 |cj ,k|pi   1/pi   ≤2εm2 JP(Ik0) k0 (~c) ≤ r , so ~c1∈ rB P(Ij0) j0 .

(78)

For ~c ∈ B P(Ik0) k0 , ~ c1 := J X j =0 2j1 X k=0 cj ,k−→ej ,k and c~2:= ∞ X j =J+1 2j1 X k=0 cj ,k−→ej ,k.

So, since Iε⊆ Ik0 and ε = εm/2 − εk0,

Pj(Ij0) 0 ( ~c1) ≤i ∈supI k0 sup j ≤J   2  η(pi ) pi −pi1+ε−εj0  j   2j1 X k=0 |cj ,k|pi   1/pi   ≤2εm2 JP(Ik0) k0 (~c) ≤ r , so ~c1∈ rB P(Ij0) j0 .

(79)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity 2. If r ≥ 1.∃J ∈ N0 s.t. 2εm2 J ≤ r ≤2εm2 (J+1). For ~c ∈ B P(Ik0) k0 , ~ c1 := J X j =0 2j1 X k=0 cj ,k−→ej ,k and c~2:= ∞ X j =J+1 2j1 X k=0 cj ,k−→ej ,k.

So, since Iε⊆ Ik0 and ε = εm/2 − εk0,

Pj(Ij0) 0 ( ~c1) ≤i ∈supI k0 sup j ≤J   2 (ε+εk0−εj0)j2  η(pi ) pi −pi1−εk0  j   2j1 X k=0 |cj ,k|pi   1/pi   ≤2εm2 JP(Ik0) k0 (~c) ≤ r , so ~c1∈ rB P(Ij0) j0 .

(80)

For ~c ∈ B P(Ik0) k0 , ~ c1 := J X j =0 2j1 X k=0 cj ,k−→ej ,k and c~2:= ∞ X j =J+1 2j1 X k=0 cj ,k−→ej ,k.

So, since Iε⊆ Ik0 and ε = εm/2 − εk0,

Pj(Ij0) 0 ( ~c1) ≤i ∈supI k0 sup j ≤J   2 (ε+εk0−εj0)j2  η(pi ) pi −pi1−εk0  j   2j1 X k=0 |cj ,k|pi   1/pi   ≤2εm2 JP(Ik0) k0 (~c) (ε + εk0− εj0 ≤ εm/2) ≤ r , so ~c1∈ rB P(Ij0) j0 .

(81)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity 2. If r ≥ 1.∃J ∈ N0 s.t. 2εm2 J ≤ r ≤2εm2 (J+1). For ~c ∈ B P(Ik0) k0 , ~ c1 := J X j =0 2j1 X k=0 cj ,k−→ej ,k and c~2:= ∞ X j =J+1 2j1 X k=0 cj ,k−→ej ,k.

So, since Iε⊆ Ik0 and ε = εm/2 − εk0,

Pj(Ij0) 0 ( ~c1) ≤i ∈supI k0 sup j ≤J   2 (ε+εk0−εj0)j2  η(pi ) pi −pi1−εk0  j   2j1 X k=0 |cj ,k|pi   1/pi   ≤2εm2 JP(Ik0) k0 (~c) (ε + εk0− εj0 ≤ εm/2) ≤ r , so ~c1∈ rB P(Ij0) j0 .

(82)

For ~c ∈ B P(Ik0) k0 , ~ c1 := J X j =0 2j1 X k=0 cj ,k−→ej ,k and c~2:= ∞ X j =J+1 2j1 X k=0 cj ,k−→ej ,k.

So, since Iε⊆ Ik0 and ε = εm/2 − εk0,

Pj(Ij0) 0 ( ~c1) ≤i ∈supI k0 sup j ≤J   2 (ε+εk0−εj0)j2  η(pi ) pi −pi1−εk0  j   2j1 X k=0 |cj ,k|pi   1/pi   ≤2εm2 JP(Ik0) k0 (~c) (ε + εk0− εj0 ≤ εm/2) ≤ r , so ~c1∈ rB P(Ij0) j0 .

(83)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity Because Im⊆ Ik0 and εk0 < εm/2, P(Im) m ( ~c2) ≤ sup i ∈Ik0j ≥J+sup1   2 (εk0−εm)j2  η(pi ) pi −pi1−εk0  j   2j1 X k=0 |cj ,k|pi   1/pi   ≤2−εm2 (J+1)Pk(Ik0) 0 (~c) ≤ 1 r (2 εm 2 J ≤ r ≤2εm2 (J+1)), so ~c2∈ 1rBPm(Im). Finally,~c = ~c1+ ~c2 ∈ rB P(Ij0) j0 +1rB Pm(Im). 

(84)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity Because Im⊆ Ik0 and εk0 < εm/2, P(Im) m ( ~c2) ≤ sup i ∈Ik0j ≥J+sup1   2 (εk0−εm)j2  η(pi ) pi −pi1−εk0  j   2j1 X k=0 |cj ,k|pi   1/pi   ≤2−εm2 (J+1)Pk(Ik0) 0 (~c) ≤ 1 r (2 εm 2 J ≤ r ≤2εm2 (J+1)), so ~c2∈ 1rBPm(Im).

(85)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity Because Im⊆ Ik0 and εk0 < εm/2, P(Im) m ( ~c2) ≤ sup i ∈Ik0j ≥J+sup1   2 (εk0−εm)j2  η(pi ) pi −pi1−εk0  j   2j1 X k=0 |cj ,k|pi   1/pi   ≤2−εm2 (J+1)Pk(Ik0) 0 (~c) ≤ 1 r (2 εm 2 J ≤ r ≤2εm2 (J+1)), so ~c2∈ 1rBPm(Im). Finally,~c = ~c1+ ~c2∈ rB P(Ij0) j0 +1rB Pm(Im). 

(86)

Introduction: spaces Sν and diametral dimension

The concave case

(87)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

When p

0

>

0...

Reminder: Sνlocally p

0-convex i p0=min 1, infαmin≤α<αmax∂+ν(α) >0. Denition For ~c ∈ Sν, α, s ∈ R, k~ckα,s :=inf n k~c0k bs p0,∞+ k ~c 00k bα ∞,∞: ~c = ~c 0+ ~c00o where k~c0k bs p0,∞ =j ∈Nsup 0   2 (s−1 p0)j   2j1 X k=0 |cj ,k0 | p0   1/p0  , k ~c00k bα ∞,∞=sup j ∈N0 sup 0≤k≤2j−1 2αj|c00 j ,k|  .

Proposition (J.M. Aubry, F. Bastin, 2010)

The topology of Sν is dened by the pseudonorms |||~c|||A,ε:=sup

α∈A

(88)

When p

0

0...

Reminder: Sνlocally p

0-convex i p0=min 1, infαmin≤α<αmax∂+ν(α) >0. Denition For ~c ∈ Sν, α, s ∈ R, k~ckα,s :=inf n k~c0k bs p0,∞+ k ~c 00k bα ∞,∞: ~c = ~c 0+ ~c00o where k~c0k bs p0,∞ =j ∈Nsup 0   2 (s−1 p0)j   2j1 X k=0 |cj ,k0 | p0   1/p0  , k ~c00k bα ∞,∞=sup j ∈N0 sup 0≤k≤2j−1 2αj|c00 j ,k|  .

Proposition (J.M. Aubry, F. Bastin, 2010)

The topology of Sν is dened by the pseudonorms |||~c|||A,ε:=sup

α∈A

(89)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

Diametral dimension and property Ω

Key ideas:

ˆ Denition of a set Aε0 for any ε0>0 (≡ Iε) ˆ Gives a proof for

∆ (Sν) =ξ ∈ CN0 : ∀s >0, ξn(n +1)−s 0 . ˆ If p0>0, Sν has (Ωid) (L.D., 2017).

(90)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

Diametral dimension and property Ω

Key ideas:

ˆ Denition of a set Aε0 for any ε0>0 (≡ Iε)

(91)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

Diametral dimension and property Ω

Key ideas:

ˆ Denition of a set Aε0 for any ε0>0 (≡ Iε) ˆ Gives a proof for

∆ (Sν) =ξ ∈ CN0 : ∀s >0, ξn(n +1)−s 0 . ˆ If p0>0, Sν has (Ωid) (L.D., 2017).

(92)
(93)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

References I

J.-M. Aubry and F. Bastin.

Advanced topology on the multiscale sequence space Sν.

J. Math. Anal. Appl., 350:439454, 2009.

J.-M. Aubry and F. Bastin.

Diametral dimension of some pseudoconvex multiscale spaces. Studia Math., 197(1):2742, 2010.

J.-M. Aubry, F. Bastin, S. Dispa, and S. Jaard.

Topological properties of the sequence spaces Sν.

J. Math. Anal. Appl., 321:364387, 2006.

F. Bastin and L. Demeulenaere.

On the equality between two diametral dimensions. Functiones et Approximatio, Commentarii Mathematici, 56(1):95107, 2017.

(94)

References II

L. Demeulenaere.

Dimension diamétrale, espaces de suites, propriétés (DN) et (Ω). Master's thesis, University of Liège, 2014.

L. Demeulenaere.

Spaces Sν, diametral dimension and property Ω.

J. Math. Anal. Appl., 449(2):13401350, 2017.

L. Demeulenaere, L. Frerick, and J. Wengenroth.

Diametral dimensions of Fréchet spaces. Studia Math., 234(3):271280, 2016.

C. Esser.

Les espaces de suites Sν : propriétés topologiques, localement

convexes et de prévalence.

(95)

Introduction: spaces Sνand diametral dimension The concave case Local p-convexity

References III

S. Jaard.

Beyond Besov spaces, Part I : Distribution of wavelet coecients.

J. Fourier Anal. Appl., 10(3):221246, 2004.

H. Jarchow.

Locally Convex Spaces.

Mathematische Leitfäden. B.G. Teubner, Stuttgart, 1981.

A. Pietsch.

Nuclear Locally Convex Spaces.

Ergebnisse der Mathematik und ihrer Grenzgebiete. Band 66. Springer-Verlag, Berlin, 1972.

Références

Documents relatifs

A broader class of spaces in which we propose to study properties (T B ) and (F B ) consists of superreflexive spaces, which can be defined as topological vector spaces iso- morphic

The convexity theorem of Atiyah and Guillemin-Sternberg says that any connected compact manifold with Hamiltonian torus action has a moment map whose image is the convex hull of

Th e category DcPrealn of downclosed prealigned spaces is a coreflective subcategory of Prealn; and DcPrecxy is a.. reflective subcategory of

Toranzos [14] has characterized ker(S) for ordinary convexity space as the intersection of all maximal (in the sense of inclusion) convex subsets..

In the special case of ordinary convexity on R’, necessary and sufficient conditions are given in terms of facets.. In this connection, we finally study a

a space is indeed a measure for its ’nuclearity’, for this would mean, that maximal diametral dimension should determine the smallest

(2) Une famille génératrice de n vecteurs d’un espace vectoriel E de dimension finie n est appelée famille génératrice minimale de E..

and [19], we obtain combinatorial lower and upper bounds on the dimension of these spline spaces for general T-subdivisions. We relate the upper bound to the maximal interior