• Aucun résultat trouvé

Contribution à la théorie des systèmes et analyse d’un système informatique sujet à des pannes

N/A
N/A
Protected

Academic year: 2021

Partager "Contribution à la théorie des systèmes et analyse d’un système informatique sujet à des pannes"

Copied!
132
0
0

Texte intégral

(1)

UNIVERSITÉ MOHAMMED V – AGDAL

FACULTÉ DES SCIENCES

Rabat

Faculté des Sciences, 4 Avenue Ibn Battouta B.P. 1014 RP, Rabat – Maroc Tel +212 (0) 37 77 18 34/35/38, Fax : +212 (0) 37 77 42 61, http://www.fsr.ac.ma

N° d’ordre 2354

THÈSE DE DOCTORAT D’ETAT

Présentée par

IDRISSI KACEMI Oumayya

Discipline : Mathématiques Appliquées

Spécialité : Analyse

Titre : Contribution à la théorie des systèmes et analyse d’un système

informatique sujet à des pannes.

Soutenue le 13 juillet 2007 ;

Devant le jury

Président :

HASSOUNI Abdelhak Professeur Fac. Sc. Rabat

Examinateurs

:

SAYAH

Awatef

Professeur Fac . Sc. Rabat

AFIFI Larbi Professeur Fac . Sc. Ain Chock

EL KADIRI Mohammed Professeur Fac . Sc. Rabat

NAMIR Abdelwahed Professeur Fac. Sc. Ben M’Sik

RACHIK Mostafa Professeur Fac. Sc. Ben M’Sik

SAADI Smahane Professeur Habilitée Fac . Sc. Ben M’Sik

(2)

Avant-Propos

Une partie des travaux pr´esent´es dans cette th`ese a ´et´e r´ealis´ee au sein de l’´equipe de recherche ”Syst`emes Dynamiques et Informatiques” de la Facult´e des Sciences de Rabat sous la direction du Pr A. SAYAH. Qu’il me soit permis de lui exprimer ma profonde gratitude et reconnaissance, pour sa disponibilit´e, sa patience, ses conseils fructueux et ses encouragements. Sa bienveillance et sa comp´etence ont permis la finalisation de ce travail.

Je suis infiniment reconnaissante au Pr M. RACHIK, mon co-encadrant, res-ponsable de l’´equipe de recherche ”Analyse et Contrˆole des Syst`emes” de la Facult´e des Sciences Ben M’sik, pour la confiance qu’il m’a t´emoign´ee tout au long de ce travail, son soutien inconditionnel, sa disponibilit´e, sa collaboration ont ´et´e pour moi un appui constant. Son attention, ses qualit´es scientifiques et humaines m’ont permis `a mener `a terme cette th`ese. Qu’il trouve ici l’expres-sion de ma gratitude.

Je remercie vivement Pr A. HASSOUNI pour l’honneur qu’il m’a fait en ac-ceptant de pr´esider le jury de cette th`ese.

Mes sinc`eres remerciements et ma reconnaissance au Ph S.SAADI d’avoir ac-cepter d’´evaluer mon travail et si´eger au jury de cette th`ese.

Je suis tr`es heureuse de compter Pr L. AFIFI, Pr M. ELKADIRI et Pr A. NAMIR parmi les membres du jury de cette th`ese. Je les remercie pour l’hon-neur qu’ils m’ont fait et pour l’ int´erˆet qu’ils ont port´e `a mon travail.

Il m’est difficile de r´esumer en quelques lignes le respect, la gratitude et les sentiments que j’´eprouve envers Pr N. MIKOU. Je lui suis reconnaissante pour m’avoir initi´e et fait aimer la recherche.

Je ne pourrais oublier de remercier tous mes coll`egues du d´epartement de math´ematiques et informatique de la Facult´e des Sciences Ben M’sik pour le climat de fraternit´e qui r`egne au sein du D´epartement et pour leurs soutiens et leurs encouragements.

(3)

Table des mati`

eres

Introduction G´en´erale i 1 On the observers for a class of discrete bilinear systems 3

1.1 Introduction . . . 3

1.2 Problem statement . . . 5

1.3 Construction of an observer . . . 6

1.4 An improvement of the observer’s performances . . . 9

1.4.1 Preliminary results . . . 10

1.4.2 Characterization of the set Θ . . . 14

1.5 An algorithmic approach . . . 18

1.5.1 Algorithmic determination of the access index q∗ . . . . . 20

1.6 Observer initial state design . . . 21

1.7 Numerical simulation . . . 22

Bibliographie - Chapitre 1 28 2 Maximal Output Admissible Set and Admissible Perturba-tions Set For Nonlinear Discrete Systems 31 2.1 Introduction . . . 32

2.2 Preliminary results . . . 34

2.3 Characterization of the maximal output admissible set . . . 35

2.4 Algorithmic determination . . . 38

2.5 Maximal output admissible sets for nonlinear discrete delayed Systems . . . 41

2.6 Application to Perturbed Systems . . . 43

Bibliographie - Chapitre 2 48

(4)

Table des mati`eres iii

3 On the analysis of a biological system : Compartment Model

Approach 50

3.1 Introduction . . . 50

3.2 Mathematical Modelling of the problem . . . 53

3.3 Linear quadratic optimal control . . . 65

3.3.1 Preliminary properties . . . 65

3.3.2 An adequate topology . . . 68

Bibliographie - Chapitre 3 72 4 Two processes interacting only during breakdown : The case where the load is not lost 75 4.1 Introduction . . . 75

4.2 The model . . . 76

4.3 The functional equation . . . 78

4.4 Set-up of the boundary value problem . . . 82

4.5 Determination of Fo(x, y) by solving a Fredholm integral equation 84 4.6 Appendix :Analysis of the algebraic curve defined by T(x,y)=0 . 89 Bibliographie - Chapitre 4 92 5 Deux processeurs coupl´es par des pannes :”syst`eme avec perte” 95 5.1 Introduction . . . 95

5.2 Description du mod`ele. . . 96

5.3 L’´equation fonctionnelle. . . 97

5.4 Etude des noyaux . . . 98

5.5 Etude de la courbe ag´ebrique d´efinie par R1(x, y) = 0 . . . . 98

5.6 Etude de la courbe ag´ebrique d´efinie par R2(x, y) = 0 . . . . 99

5.7 Prolongement analytique de F1(x, 0) et de F0(x, 0) . . . . 102

5.8 Formulation du probl`eme fronti`ere . . . .104

5.9 Condition d’ergodicit´e du syst`eme . . . .104

5.9.1 D´emonstration de la condition suffisante . . . 104

5.9.2 D´emonstration de la condition n´ecessaire . . . 105

5.10 D´et´ermination de F0(x, 0) : R´esolution du probl`eme fronti`ere . .106

5.11 D´etermination de F0(1, y) : calcul des constantes . . . .108

5.12 R´esolution du probl`eme : cas α∗ 1 q 1 ρ1 . . . .109

5.13 Moyenne du nombre de paquets perdus . . . .109

(5)

Table des mati`eres i

5.15 Conclusion . . . .111

Bibliographie - Chapitre 5 112

(6)

Introduction g´

en´

erale

Ce travail est un aboutissement naturel de la collaboration qui existe entre l’´equipe des syst`emes dynamiques et informatiques, de la Facult´e des sciences de Rabat, dirig´ee d’abord par le professeur Mme Noufissa Mikou ensuite par le

professeur Mme Awatef Sayah et l’´equipe d’Analyse et contrˆole des syst`emes,

de la Facult´e des sciences Ben M’sik Casablanca, dirig´ee par le professeur

Mr Mostafa Rachik. Il est compos´e de deux parties. La premi`ere partie est

consacr´ee `a l’´etude de certains aspects de la th´eorie des syst`emes. Dans la deuxi`eme partie, notre int´erˆet est port´e sur la mod´elisation d’un syst`eme de communication assujetti `a des pannes intermittentes.

La th´eorie des syst`emes, de part sa pr´esence dans divers domaines de re-cherche : la biologie, l’environnement, l’´economie et la m´edecine, ne cesse de susciter l’int´erˆet des scientifiques. Un des probl`emes qui est concern´e par la th´eorie des syst`emes est celui de l’estimation de l’´etat d’un syst`eme ou de cer-taines de ses composantes lorsque l’un de ses param`etres est mal connu. L’utili-sation des observateurs a ´et´e d’un grand int´erˆet dans ce domaine. Initialement introduite par D. Luenberger [43, 44], cette th´eorie, appel´ee ”th´eorie des obser-vateurs”, a ´et´e appliqu´ee `a diff´erents types de syst`emes : syst`emes stochastiques [16], syst`emes `a temps variables [34], syst`emes discrets [19, 27, 48, 53], syst`emes perturb´es [41, 42, 57, 61] aussi bien qu’aux syst`emes bilin´eaires [17, 31, 32, 64]. Depuis son apparition en 1964, l’observateur de Luenberger est devenu un outil math´ematique incontournable dans la th´eorie de l’estimation. Cependant, le caract`ere asymptotique de l’approximation qui en r´esulte peut, dans beau-coup de situations, rendre l’utilisation de l’observateur sans int´erˆet. En effet, lorsque l’´evolution du syst`eme `a estimer est de ”courte” dur´ee (comme ceux relevant de l’´epidieomologie ou de l’environnement), se fier `a l’observateur peut avoir des cons´equences d´esastreuses.

(7)

Introduction g´en´erale iii

Conscient de ce probl`eme, notre ´equipe a d´evelopp´e, r´ecement, deux tra-vaux visant `a am´eliorer les performances de l’observateur de Luenberger pour des syst`emes lin´eaires [19, 57]. Plus pr´ecisement, dans [19], Rachik et al ont consid´er´e le syst`eme discret lin´eaire

½

xi+1= Axi+ Bui i ≥ 0 x0

(0.1) o`u x0 est suppos´e inconnu.

Partant des observations yi = Cxiet imposant un mode de convergence (αi)i≥0

(o`u αi ≥ 0 est decroissante, convergente vers 0), ils ont propos´e, moyennant

des hypoth`eses realistes, une classe d’observateurs dont l’erreur correspondante (ei)i≥0 est telle que keik ≤ αi pour tout i.

Toujours dans le cadre des syst`emes discrets lin´eaires, Rachik et al ont ´etendu les r´esultats [19] au cas o`u le syst`eme est affect´e d’une perturbation [57].

Comme continuation naturelle de ces travaux [19, 57] et vu l’importance des mod`eles bilin´eaires dans la th´eorie des syst`emes, nous consacrons le premier chapitre [59] de cette th`ese au syst`eme bilin´eaire discret d´ecrit par l’´equation aux diff´erences    xi+1 = Axi + p P j=1 ujiBjxi i ≥ 0 x0 (0.2) o`u A, Bj1 ≤ j ≤ p sont des matrices de dimension appropri´ee, ui = (u1i, .., upi)T

Rp la varible de contrˆole.

L’´etat initial x0 est suppos´e inconnu, nous consid´erons alors que les

informa-tions sur l’´etat de notre syst`eme sont donn´ees par la fonction de sortie

yi = Cxi (0.3)

o`u C ∈ L(Rn, Rk0

) et k0 ≤ n.

Tenant compte de la nature bilin´eaire du syst`eme, nous construisons un ob-servateur avec une dynamique bilin´eaire [9, 23, 66] et donc du type

   zi+1= F zi+ Kyi+ p P j=1 ujiPjzi z0 (0.4)

(8)

Introduction g´en´erale iv

o`u zi ∈ Rm est l’´etat de l’observateur ; F, K et Pj 1 ≤ j ≤ p sont des matrices

d’ordre convenable ; tel que zi converge vers T xi (o`u T ∈ L(Rn, Rm)) avec une

vitesse αi pr´e-choisie.

La difficult´e dans une telle approche r´eside dans la d´ependance ´etroite de la construction de l’observateur du signal d’entr´ee ui [64].

En quˆete de pr´ecision, nous formulons notre probl`eme comme suit.

Etant donn´e le syst`eme dynamique (0.2) augment´e de l’observation (yi)i≥0,

nous d´esirons trouver, sous certaines hypoth`eses, une classe Θ des ´etats initiaux

z0 tel que l’observateur (zi)i correspondant r´ealise les performances

kzi− T xik ≤ αi pour tout i ≥ 0 (0.5)

o`u (αi)i≥0, une suite positive d´ecroissante vers z´ero, caract´erise la vitesse de

convergence d´esir´ee.

Une caract´erisation aussi bien th´eorique qu’algorithmique de l’ensemble Θ a ´et´e devellop´ee. Et nous appellons alors les observateurs qui r´ealisent la condi-tion (0.5) les observateurs α-admissibles.

Dans le chapitre 2 [58], motiv´es par le nombre important des travaux qui traitent le probl`eme des ensembles maximaux pour des syst`emes lin´eaires [5, 6, 12, 26, 29, 30, 35, 36, 37, 38, 40], et par ”`a notre connaissance” le manque de litt´erature concerant le cas non lin´eaire, nous nous sommes int´eress´es `a la caract´erisation des ensembles de sorties admissibles maximaux lorsque le syst`eme consid´er´e est un syst`eme autonome gouvern´e par une dynamique non lin´eaire. Plus pr´ecisement et vu les difficult´es que repr´esente la structure non lin´eaire du syst`eme, contrairement au cas lin´eaire [26, 65], nous nous sommes limit´es `a la d´etermination des donn´ees initiales x0 telles que yi ∈ Ω, Ω ´etant

l’ensemble des contraintes pr´edifinies et telles que

kx0k ≤ M. (0.6)

Les donn´ees initiales x0 v´erifiant (0.6) sont dites M-admissibles.

Des conditions suffisantes qui assurent la caract´erisation de l’ensemble des donn´ees M-admissibles sont d´evelopp´ees. Une d´etermination algorithmique de cet ensemble est donn´ee ainsi que des simulations num´eriques. Le cas des syst`emes discrets retard´es [54] et ceux perturb´es [4, 55] est aussi envisag´e.

Le chapitre 3 [20], traite de l’application de la th´eorie de contrˆole `a un syst`eme lin´eaire repr´esentant un probl`eme qui rel`eve de la biomath´ematique.

(9)

Introduction g´en´erale v

Plus pr´ecisement, nous consid´erons un mod`ele `a compratiments r´egissant les ´echanges d’une substance entre les diff´erents organes d’un corps vivant. Notre objectif principal est de d´eterminer la meilleure strat´egie de contrˆole afin d’at-teindre un ´etat pr´e-d´efini `a un instant donn´e et ceci avec un coˆut minimal. Nous adoptons alors le mod`ele `a compratiments

½

˙x(t) = Ax(t) + B1u(t) + B2v(t) 0 ≤ t ≤ T

x(0) ∈ Rn

o`u A, Bi, i = 1, 2 ∈ L(Rn) ; Bi est une matrice diagonale d’ordre n.

A ´etant la dynamique du syst`eme, qui carat´erise les ´echanges entres les diff´erentes

composantes xi(t) du vecteur x(t) = (x1(t), ..., xn(t))T, Bi, i = 1, 2 d´ecrit les

compartiments accessibles et d´esign´es pour ˆetre contrˆol´es, la commande u(t) d´esigne une action discr`ete (qui peut ˆetre une prise de comprim´es ou une in-jection) alors que la commande v(t) d´esigne une action continue (qui peut ˆetre un s´erum ou une perfusion). Nous ´etablissons sous des conditions de type Kal-man, le contrˆole permettant le transfert du syst`eme et ceci `a moindre coˆut. Dans le cas o`u l’hypoth`ese de Kalman n’est pas satisfaite, le probl`eme n’est plus consid´er´e comme ´etant un probl`eme de contrˆolabilit´e. Nous l’abordons alors sous une version plus faible, et donc nous le traitons comme un probl`eme de r´egulation. L’optimum ainsi que le coˆut optimal ont ´et´e ´etabli moyennant la m´ethode H.U.M.

La deuxi`eme partie, les chapitres 4 et 5 [46, 47], de cette th`ese est consacr´ee `a un autre domaine des math´ematiques appliqu´ees : `a savoir l’´etude des per-formances d’un syst`eme informatique mod´elis´e par un r´eseau de files d’attente [39].

L’analyse de tout syst`eme informatique n´ecessite toujours une r´eponse `a la question suivante.

Peut-on construire un mod`ele math´ematique d´ecrivant au mieux le comporte-ment de notre syst`eme ? si oui, peut-on r´esoudre ce mod`ele ?

L’utilisation des r´eseaux de files d’attente dans la mod´elisation des syst`emes informatiques a ´enorm´ement contribu´e dans la r´eponse `a cette question. En particulier les r´eseaux, `a formes produits, ont ´et´e fortement utilis´es dans l’´etude des probl`emes de la multiprogrammation, des syst`emes de gestion de donn´ees et des r´eseaux de communication [4, 33].

(10)

Introduction g´en´erale vi

Dans le cas des r´eseaux sans formes produit (`a cause par exemple de la possibi-lit´e de ph´enom`ene de pannes, de blocage ou de d´ependance entre les serveurs), il n’existe pas de m´ethode g´en´erale de calcul des probabilit´es stationnaires ni mˆeme bien souvent de m´ethode du tout. Cependant, en 1979 Fayolle et al, [21, 22] ont d´evelopp´e une m´ethode analytique pour traiter des petits r´eseaux de files d’attentes, ils ont montr´e que la distribution jointe des probabilit´es stationnaires, de certaines marches al´eatoires sur R+× R+ ou sur N × N,

pou-vait ˆetre caract´eris´ee en r´esolvant des probl`emes fronti`eres. Certains auteurs se sont int´eress´es aux syst`emes informatiques avec pannes pour ne citer que Avi [49], Mikou [45] et Mitrani [50].

Inspir´es de ses m´ethodes analytiques, nous nous sommes int´eress´es Mikou et al [46] `a L’´etude de deux processeurs en parall`ele dont l’un est assujetti `a des pannes intermittentes. Quand une panne arrive, elle provoque un d´eplacement des tˆaches en attente d’ex´ecution ainsi que le flux des entr´ees. Le syst`eme sera mod´elis´e par un r´eseau de deux files d’attente M/M/1 en parall`ele. Dans le chapitre 4, nous supposons que le d´eplacement des tˆaches a lieu vers l’autre file et qu’une tache ne quitte le syst`eme qu’apr`es avoir ´et´e ex´ecut´ee. Alors que dans le chapitre 5, la panne est si catastrophique qu’elle provoque la perte de ces tˆaches.

Notre ´etude est consacr´ee au comportement, `a l’´etat stationnaire, de notre syst`eme moyennant le nombre des taches pr´esentes dans chaque file [13, 14] et l’´etat de la file 1, qu’on suppose assujettie `a des pannes. La file 1 est dite `a l’´etat : 0 si elle fonctionnne normalement, 1 si elle est en panne.

L’int´erˆet de la classe de probl`emes que nous r´esolvons r´eside dans l’as-pect de l’´equation fonctionnelle, que v´erifient les fonctions g´en´eratrices [1] du processus de Markov caract´erisant la taille des files aussi bien que l’´etat du syst`eme.

N(x, y)F (x, y) = A(x, y)F1(x) + B(x, y)F2(y) + C(x, y)F3(y) + D(x, y). (0.7)

|x| ≤ 1, |y| ≤ 1

o`u les fonctions inconnues sont les fonctions g´en´eratrices F (., .), F1(.), F2(.),

F3(.), alors que N, A, B et C sont des fonctions connues et D contient une

constante `a d´eterminer.

(11)

Introduction g´en´erale vii

avec une constante `a calculer.

L’approche que nous utilisons pour r´esoudre notre mod`ele consiste `a ´etudier la courbe alg´ebrique d´efinie par N(x, y) = 0, chose qui va nous permettre de

1. prolonger analytiquement les fonctions inconnues `a l’ext´erieur du disque unit´e, domaine r´eel de d´efinition de ses fonctions.

2. r´eduire l’´equation (0.7) `a une relation fonctionnelle entre des fonctions inconnues mais `a une seule variable.

La d´etermination des fonctions g´en´eratrices de la distribution jointe station-naire du processus de Markov [10, 52], repr´esentant l’´etat du r´eseau est faite moyennant la r´esolution, d’abord d’un probl`eme fronti`ere non homog`ene de Hilbert sur un cercle [15, 24], ensuite d’une ´equation int´egrale de Fredholm du second esp´ece.

Dans le chapitre 5, le syst`eme consid´er´e est un syst`eme avec perte puisque, la file 1 perd tous ses clients une fois la panne arriv´ee. De plus, lors de la r´eparation d’une panne, une tache arrivant vers cette file est dirig´ee vers cette derni`ere avec une probabilit´e p ou rout´ee vers l’autre file avec une proba-bilit´e 1 − p ; [50, 60]. D’autre part, la moyenne de service dans la file 2 [63], change chaque fois que la file 1 tombe en panne. La d´etermination des fonctions g´en´eratrices n´ecessite l’´etude de deux courbes alg´ebriques et le prolongement de deux fonctions analytiques `a l’´exterieur de leurs domaines de d´efinition. Le temps moyen de r´eponse de notre syst`eme a ´et´e obtenu aussi bien que le nombre moyen des taches perdues.

(12)

Bibliographie

[1] V. Ahlfors : Complex Analysis, Int.Series in Pure and Applied Math, Mac-Graw Hill, 1966.

[2] K.J. Astrom and Wittenmark : Computer controlled Systems Theory and

Design, Englewood Cliffs, NJ : Prentice-Hall, (1990).

[3] F. Baccelli and G. Fayolle : Two-dimensional diffusion processes with

boundary and jumps, Application to coupled queues, Rapport de recherche

INRIA, N160 (1982).

[4] F. Baskett, M. Chandy, R. Muntz and J. Palacios : Open, closed and mixed

networks of queues with different classes of customers, J.ACM 22, (1975),

248-260.

[5] A. Benzaouia and C. Burgat : Regulator problem for linear

discrete-time systems with non-symmetrical constrained control, Int.j.Cont, (1988),

Vol.48, N6, 2441-2451.

[6] A. Benzaouia : The regulator problem for a class of linear systems with

constrained control, Syst.Contr.lett, (1988), Vol.10, 357-363.

[7] J.P.C. Blanc : Application of the theory of boundary value problem in the

analysis of a queuing model with paired services, Math.center Tract, 153

(Amsterdam, 1982).

[8] B.E. Bona : Designing observers for time-varying state systems, in Rec.4th Asilomar Conf.Circuits and Systems, (1970).

[9] G. Bornard, N. Couenne, F.Celle : Regularly persistent observers for

bili-near systems, New trends in no libili-near control theory,(1992), 122, Springer

Verlag.

[10] A.A. Borovkov : Stochastic processes in queueing theory, Springer Verlag, (1976).

(13)

Bibliographie ix

[11] M. Boutayeb and M. Darouach : observers for linear time varying-systems, In Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, December(2000), 3183-3187.

[12] J. Bouyaghroumni, A. Eljai and M. Rachik : Admissible disturbances set

for discrete perturbed Systems, International Journal of Applied

Mathe-matics and computer Sciences, (2001), Vol.11, N2, 349-367.

[13] E. Cinlar : Introduction to Stochastic Processes, (Prentice-Hall, 1975).

[14] J.W. Cohen : The single Server Queue, (North-Holland, Amsterdam, 1969).

[15] J.W. Cohen and O.J. Boxma : Boundary Value Problems in Queueing

Systems, Analysis-Mathematica Studies79 (North-Holland, Amsterdam,

1983).

[16] E.F. Costa, J.B.R. do Val : On the detectability and observability for

discrete-time Markov Jump linear systems, Systems control letters, (2001),

vol. 44, pp. 135-145.

[17] I. Derese, P. Stevens, E. Noldus : The design of state observers for

bilinear systems, J.A,(1979), 20, 193-202.

[18] R.L. Disney and D. Konig : Queueing networks : Asurvey of their random

processes, SIAM Rev.27,(1985), 335-403.

[19] O. Elkahlaoui, S. Saadi, Y. Rahhou, A. Bourass, M. Rachik : On the

improvement of the performances of an observer :A discrete linear system,

Applied Mathematical Sciences,(2007), Vol.1, N6, 241-266.

[20] O. El Kahlaoui, M. Rachik, N. Yousfi, M. Laklalech, O. Idrissi Kacemi : On the analysis of a biological system : A compartment model Approach, Applied Mathematical Sceinces, a paraˆıtre.

[21] G. Fayolle and R. Iasnogorodski : Two coupled processors :The reduction to

a Riemann-Hilbert problem, Z.Warsscheinlichkeitsch.47, (1979), 325-351.

[22] G. Fayolle, R. Iasnogorodski and I. Mitrani : Distribution of sojourn times

in a queueing network with overtaking, Proc.9th Int.Conf.on Performance

Evaluation, Maryland, 1983.

[23] Y.Funahashi : Stable state estimator for bilinear systems ,International Journal of control, (1979), vol.29, 181-188.

(14)

Bibliographie x

[25] J.P. Gauthier, H. Hammouri and S. Othman : A Simple

Obser-ver for nonlinear Systems-Applications to bioreactors, IEEE Trans.on

AUTO.Control, 37 (1992), 6, 875-880.

[26] E.G. Gilbert and Tin Tan : Linear Systems with State and Control

Constraints : The Theory and Application of Maximal Output Admissible sets, IEEE Trans.Automat.Contr., (1991), 36, 1008-1019.

[27] D. Gleason and D. Andrisani : Observer design for discrete systems with

unknown exogenous inputs, IEEE Trans. Automat. Control, 35(1990),

932-935.

[28] A.B. Gumel, P. N.Shivakumar, and B.M. Sahai : A mathematical model

for the dynamics of HIV-1 during the typical course of infection, Nonlinear

Analysis, 47, 1773-1778, 2001.

[29] P.O. Gutman and P. Hagander : A new design of constrained controllers

for linear systems, IEEE trans.Automat. Contr.,(1985), Vol.AC-30, 22-33.

[30] P.O. Gutman and M. Cwikel : An algorithm to find maximal state

constraint sets for discrete-time linear dynamical systems with bounded controls and states, IEEE trans.Automat.Contr., Mar(1987), vol.AC-30,

251-254.

[31] A. Hac : Design of disturbance decoupled observer for bilinear systems, Transactions of the ASME, Journal of Dynamic systems, Measurement and control, (1992), vol.114, 556-562.

[32] S. Hara, K. Furuta : Minimal order state observers for bilinear systems, International Journal of Control, (1976), vol.24, 705-718.

[33] J.R. Jackson : Jobshop-like queueing systems, Manag.Sci.10, (1963), 131-142.

[34] E.W. Kamen : Block-Form observers for linear time-varying discrete-time

systems, In proceedings of the 32nd IEEE Conference on Decision and

Control, San Antonio, TX, December (1993), 355-356.

[35] P. Kapasouri, M. Athans and G. Stein : Design of feedback control

sys-tems for stable plants with saturating actuator, in Proc.27th Conf.Decision

Contr.Austin, TX, (1988), 469-479.

[36] P. Kapasouri : Design for performance enhancement in feedback

control systems with multiple saturating nonlinearities, Ph.D dissertation,

(15)

Bibliographie xi

[37] S.S. Keerthi : Optimal feedback control of discrete-time systems with

state-control constraints and general cost functions, Ph.D.dissertation,

compu-ter Informat.Contr.Eng., Univ.Michigan, Ann Arbor, MI, (1986).

[38] S.S. Keerthi and E.G. Gilbert : Optimal infinite horizon feedback laws for

a general class of constrained discrete-time systems, Stability and moving horizon approximations, J.Optimiz.Theory Appl., May (1988) Vol.57, N◦2,

265-293.

[39] L. Kleinrock : Queueing Systems, Vol.1.

[40] R.L. Kosutn : Design of linear systems with saturating linear control and

bounded states, IEEE Trans.Automat.Contr., Jan.(1983) Vol.AC-28,

121-124.

[41] H. Lin, G. Zhai and P.J. Ansaklis : Set-Valued observer design for a class

of uncertain linear systems with persistent disturbance, IEEE Proceeding

of the american control conference, Denver (2003).

[42] C.S.Liu and H. Peng : Inverse dynamics based state and disturbance

ober-vers for linear time-invariant systems, Journal od Dynamic Systems,

mea-surment and control, (2002), vol.124, 375-381.

[43] D.G. Luenberger : Observing the state of linear system, IEEE Trans.Mil.Electron., Vol.Mil-8, Apr (1964), 74-80.

[44] D.G. Luenberger : Observers for multivariable systems, IEEE Trans.Automat.Contr., Vol.AC-11 (1966), 190-197.

[45] N. Mikou : A two node Jackson network subject to breakdowns, Com-mun.Stat.Stoch.Models, 4 (1988), 523-552.

[46] N. Mikou,O. Idrissi-Kacemi and S. Saadi : Two Processors Interacting

only During Breakdowns : The case where the load is not Lost, Queueing

Systems, 19 (1995), 301-317.

[47] N. Mikou,O. Idrissi-Kacemi : Mod´elisation d’un syst`eme de

communi-cation assujetti `a des pannes intermittentes, CFIP95, du 9 au 12 mai

1995,Rennes, France.

[48] G. Millerioux and J. Daafouz : Unknown input observers for switched

linear discrete time systems, Proc.Amer.Control.Conf., Boston (2004).

[49] I. Mitrani and B. Avi-itzhak : A Many Server Queue with Service

Inter-ruptions, Operations Research, 16, 3 (1986), 628-638.

[50] I. Mitrani and P. E.Wright : Routing in the Presence of Breakdowns, Per-formance Evaluation 20, (1994), 151-164.

(16)

Bibliographie xii

[51] Ph. Nain : On a generalization of the preemptive resume priority, Adv.Appl.Prob, 18(1), (1986).

[52] A.G. Pakes : Some conditions for ergodicity and recurrence of Markov

chains, Oper.Res.17, (1969), 1058-1061.

[53] D.W. Pearson, M.J. Chapman and D.N. Sheilds : Partial singular value

assignment in the design of robust observers for discrete time descriptor systems, IMA J. Mathematical Control and Information 5(1988), 203-213.

[54] M. Rachik, A. Abdelhak and J. Karrakchou : Discrete systems with delays

in state, control and observation : The maximal output sets with control contraints, Optimization, (1997), Vol.42, 169-183.

[55] M. Rachik, E. Labriji, A. Abkari and J. Bouyaghroumni : Infected

dis-crete Linear Systems : On the Admissible Sources, Optimization, (2000),

Vol.48,271-289.

[56] M. Rachik, A. Tridane and M. Lhous : On the maximal output admissible

set for a class of nonlinear discrete systems, Systems Analysis Modelling

Simulation, (2002), Vol. 42, Issue 11, 1639-1658.

[57] M. Rachik, S. Saadi, Y. Rahhou, O. Elkahlaoui : Observer design and

admissibles disturbances : A discrete disturbed system, Applied

Mathema-tical Sciences, Vol 1, (2007), N33, 1631-1650.

[58] M. Rachik, A. Tridane, M. Lhous, O. Idrissi Kacemi and Z. Tridane :

Maxi-mal Output Admissible Set and Admissible Perturbations Set For Nonli-near Discrete Systems, Applied Mathematical Sciences, Vol.1, (2007), N◦

32, 1581-1598.

[59] A. Sayah, O. Idrissi-Kacemi, M. Laklalech, S. Saadi and M. Rachik : On

the observers for a class of discrete bilinear systems, soumis au Journal

of mathematical control science and applications.

[60] B. Sengupta : A Queue with Service Interruption in an Alternating

Mar-kovian Environment, Operations Research, 38(1990), 308-318.

[61] J.S. Shamma and K.Y. Tu : Set-valued observers and optimal disturbance

rejection , IEEE Trans. Automat.Contr, (1999), Vol.44 N◦2. Tumors, PHD

Thesis, University of Washington.

[62] M. Vassilaki, J.C. Hennet and G. Bistoris : Feedback control of linear

discrete time systems under state and control constraints, Int.J.Contr.,

(1988), 47(6), 1727-1735.

[63] C. White and I.S. Christie : Queueing with Preemptive Priorities or with

(17)

Bibliographie 1

[64] D. Williamson : Observation of bilinear systems with application to

biolo-gical control, utomatica, (1977), 13, 243-254.

[65] K. Yoshida, H. Kawabe, Y. Nishimura and Y. Yonezawa : Maximal sets

of admissible initial states in linear discrete-time systems with state and control contraints, Trans of the society of Instrument and control

enginee-ring, (1993), Vol.29, N11,1302-1310.

[66] M. Zasadzinski, H. Rafaralahy, C. Mechmeche and M. Darouach : On

dis-turbance decoupled observers for a class of bilinear systems, Transactions

of ASME, Journal of Dynamic Systems, Measurement and control, (1998), vol.120, N3, 371-377.

(18)

On the observers for a class of

discrete bilinear systems

R´esum´e

Dans ce travail, nous consid´erons un syst`eme bilin´eaire discret d´ecrit par

xi+1= Axi+ p

X

j=1

ujiBjxi;

augment´e de l’´equation de sortie yi = Cxi o`u A, Bj et C sont des matrices

appropri´ees, l’´etat initial est suppos´e inconnu.

Pour produire un estimateur de l’´etat xi ou de T xi (T ´etant une matrice de

dimension ad´equate), nous introduisons un observateur avec une dynamique bilin´eaire. i.e

zi+1 = F zi+ Kyi+ p

X

j=1

ujiPjzi avec F, K et Pj des matrices convenables.

L’estimation ´etant asymptotique, le fait que la lenteur de la convergence lim

i→∞keik = 0, o`u ei est l’erreur qui correspond `a l’observateur (zi)i, peut rendre

ce dernier sans int´erˆet ; notre contribution dans ce papier est de proposer, sous certaines hypoth`eses, une classe des ´etats initiaux z0 telle que l’observateur

(zi)i qui en r´esulte v´erifie keik ≤ αi, ∀ i ≥ 0 o`u (ei)i est l’erreur dˆue `a

l’ap-proximation et (αi)i est un mode de convergence d´esir´e.

Pour illustrer les r´esultats th´eoriques obtenus, des exemples et simulations num´eriques sont pr´esent´es.

(19)

Chapitre 1

On the observers for a class of

discrete bilinear systems

Abstract

We consider an output discret bilinear system xi+1 = Axi+ p

P

j=1

ujiBjxi; yi = Cxi where A, Bj and C are appropriate matrices, the initial state x0 is

sup-posed to be unknown.

To produce an estimation of the state xi or T xi (T being a matrix with

ade-quate dimension), we introduce an observer with bilinear dynamic, i.e.

zi+1= F zi+ Kyi+ p

X

j=1

ujiPjzi with F, K and Pj suitable matrices.

According to the fact that the slowness of the convergence lim

i→∞keik = 0 where ei is the error corresponding to observer (zi)i, can make this last without

in-terest, our contribution in this paper is to propose, under certains hypothesis a class Θ of initial state observer z0 such that keik ≤ αi, ∀ i ≥ 0 where (αi)i

is a desired mode of convergence. Simplex method is used to give exemples of numerical simulation.

Key words : Discret bilinear system, Observers,estimation error,mathematical programming.

1.1

Introduction

The bilinear systems constitute a class of non linear systems which is used to model the evolution of lot of dynamical processes when the linear models

(20)

1.1. Introduction 4

are inadequate. This class of systems describes several physics phenomenons in mechanic, chemistry, immunology and population dynamic.

It is well known that all state variables are rarely available for direct mea-surement in most cases. So, there is substantial need for reliable estimation of the state variables.

To realize this particular task, a state observer is usually employed to ge-nerate an estimate of the state. The design of observers for bilinear systems have received more attention in the past years [1], [2], [7], [4], [6], [8], [10], [12], [13]. The estimate should converge to the true state or some of its components when time goes to ∞. Ideally the estimation error should converge to zero as quickly as desired.

One way of approaching this problem is to construct an observer for which the observer error converges to zero with assigned speed. Rachik et al [3], [9] solved this problem for linear systems. The purpose of this paper is to genera-lize the approach in [3], [9] to the case of a discrete bilinear systems.

This paper deals with the design of a bilinear state estimation which en-sures a prescribed performance of the estimation error.

More precisely we consider a discrete bilinear system described by the dif-ference equation   xi+1 = Axi+ p P j=1 ujiBjxi x0 (1.1) where xi ∈ Rn, ui = (u1i, u2i, ..., upi)T ∈ Rp are respectively, the state and the

control variable, while A, Bj 1 ≤ j ≤ p are matrices in L(Rn).

The initial state x0 is supposed to be unknown, and consequently xiis unknown

for all i ≥ 1.

Our main objective, is to construct an observer of the above system such that at every time i ≥ 0, the estimation error in norm is less than αi, where (αi)i≥0is

a sequence of positive reals decreasing to zero, for all initial state in polyhedral set and for all inputs variables in a given bounded.

In non-linear systems, specially in bilinear systems, there exist many kinds of observers. As shown in [11], the existence of observer for bilinear systems depends on the control inputs. In this paper we are interested by observers of the type   zi+1= F zi+ Kyi+ p P j=1 ujiPjzi z0, (1.2)

(21)

1.2. Problem statement 5

where zi ∈ Rm is the state observer ; F, K and Pj 1 ≤ j ≤ p are matrices of

suitable dimensions.

The problem under consideration can be formulated as follows : Given a sequence of positive reals α = (αi)i≥0 decreasing to zero, which designates the

desired speed of convergence, and while supposing that the unknown initial state is located to in a convex polyhedron Q, and that the control variables ui

belong to a convex polyhedron P we seek to verify the condition

||ei|| ≤ αi ; ∀i ≥ 0, (1.3)

where ei = zi− T xi, for T ∈ L(Rn, Rm), indicates the observer error. We call

an initial state observer z0 that realize the performance (1.3), an α-admissible

observer initial state. We will be interested in this paper in the characterization of the set Θ of all α-admissible initial states observer. So to characterize this set Θ, we propose algorithms bases in the mathematical programming technique, Simplex method avoid it possible to lead to numerical simulations.

1.2

Problem statement

Let’s consider the bilinear discrete time system described by    xi+1 = Axi+ p P j=1 ujiBjxi x0 (1.4) where xi ∈ Rn, ui = (u1i, u2i, ..., upi)T ∈ Rp are respectively, the state and the

control variables, while A, Bj, 1 ≤ j ≤ p are matrices in L(Rn).

The initial state x0 is supposed unknown,then with an aim of estimating the

state of our system (xi)i≥0, we suppose that the informations on this last, are

given by the output equation

yi = Cxi i ≥ 0 with C ∈ L(Rn, Rk

0

) (1.5) Considering the bilinear nature of the system (1.4), the approach that we use in this paper consists in introducing an observer of the type

   zi+1= F zi+ Kyi+ p P j=1 ujiPjzi z0 (1.6)

(22)

1.3. Construction of an observer 6

where zi ∈ Rm is the state observer ; F, K and Pj, 1 ≤ j ≤ p are matrices of

appropriate dimensions.

We propose therefore to establish that, under some hypothesis, the observer zi

approaches asymptotically the variable T xi where T is a suitable matrix (that

designates, for example, the components of xi whose estimate interests us).

However, in a lot of situations, the slowness of the convergence : lim

i→+∞kzi− T xik = 0 (1.7)

can make that the observer zi is without interest. Therefore to remedy this

handicap, we show in this paper that it is possible to construct an observer zi

verifies

kzi− T xik ≤ αi; ∀i ≥ 0 (1.8)

where (αi)i≥0 is predefined velocity of convergence.

In all the sequel of this work, we will adopt the following hypothesis h1. The unknown initial state is supposed to be localized in a convex, com-pact polyhedron, Q of Rn.

h2. The variables of control (ui)i≥0 is such that ui ∈ P where P is a convex,

compact polyhedron, of Rp, containing 0.

h3. The velocity of convergence αi is such that the sequence (ααi+1i )i≥0 is

de-creasing (for example αi = i+11 ; αi = βi, β < 1 ; αi = (i+1)1 s, s ∈ [1, +∞[). And

the problem can be formulated as follows

Given the system (1.4) with the measured output (yi)i≥0, we aim to fined a

set Θ such that : if (xi+ ei ∈ Θ, for all i ∈ N) then that assures us that the

estimation error ei checks keik ≤ αi, for all i ≥ 0.

1.3

Construction of an observer

In order to determine some conditions under which the observer (1.6) constitutes an asymptotic estimator of T xi and that for all ui in the

poly-hedron P, let us define on Rp × (L(Rm))p the bilinear operator < β, L >=

p

X

j=1 βjLj

where β = (β1, ..., βp)T ∈ Rp, L = (L1, ..., Lp)T ∈ (L(Rm))p and on L(Rm), the

(23)

1.3. Construction of an observer 7 Äi−1k=0[G+ < βk, L >] = i−1 Y k=0 [G+ < βi−1−k, L >]; ∀i ≥ 1 (1.9) where G is a matrix of L(Rm). Then we have the following result

Lemma 1.1. Let’s suppose that ui ∈ P ∀ i ≥ 0, where P is a convex compact polyhedron of Rp containing the origin and whose vertices are v

1, v2, ..., vr and that the following conditions hold

1. F T − T A = −KC.

2. PjT = T Bj f or all 1 ≤ j ≤ p

Then the error vector ei = zi− T xi verifies keik ≤ Äi−1k=0 r X lk=1 δk lkkF + < vlk, P > kke0k ∀i ≥ 1. (1.10) where δk lk ∈ [0, 1] and r P lk=1 δk lk = 1, for all k ∈ {0, 1, ..., i − 1}. Proof. Let i ≥ 1, we have ei = zi− T xi = F zi−1+ Kyi−1+ p P j=1 uji−1Pjzi−1− T Axi− p P j=1 T uji−1Bjxi−1

= F ei−1+ [F T + KC − T A]xi−1+ p P j=1 uji−1[PjT − T Bj]xi−1+ p P j=1 uji−1Pjei−1 = [F +Pp j=1

uji−1Pj]ei−1+ [F T + KC − T A]xi−1+ p

P

j=1

uji−1[PjT − T Bj]xi−1

From the hypothesis of lemma1, we deduce

ei = " F + p X j=1 uji−1Pj # ei−1. then, we obtain ei = " F + p X j=1 uji−1Pj # " F + p X j=1 uji−2Pj # ... " F + p X j=1 uj0Pj # e0.

If we denote by P the matrix (P1, P2, ..., Pp)T, ei can be written

(24)

1.3. Construction of an observer 8

As uk ∈ P, for all k ∈ {0, 1, ..., i − 1}, then uk is a convex combination of the

vertices of P, i.e uk = r X lk=1 δk lkvlk where δ k lk ∈ [0, 1] and r X lk=1 δk lk = 1. which gives keik = k Äi−1k=0 r P lk=1 δk lk[F + < vlk, P >]e0k ≤ Äi−1 k=0 r P lk=1 δk lkkF + < vlk, P > kke0k, ∀i ≥ 1. ¥ (1.12) The sufficient conditions for the existence of an observer are given by the following proposition

Proposition 1.1. Let’s suppose the conditions of Lemma 1.1 verified, the matrix F is stable (i.e kF k < 1) and there exists a real λ ∈]0, 1[ such that

max

1≤l≤rkF + < vl, P > k ≤ λ. (1.13)

Then zi constitutes an asymptotic observer of T xi.

Proof. Let u ∈ P then u = Pr l=1 δlvl where δl ∈ [0, 1] and r P l=1 δl = 1. That implies kF + < u, P > k = kF + <Pr l=1 δlvl, P > k = kPr l=1 δl[F + < vl, P >]k Pr l=1 δlkF + < vl, P > k Pr l=1 δlλ = λ.

Then we use the inequality (1.11) to deduce

keik ≤ λike0k f or all i ≥ 0

and so

lim

i→+∞keik = 0. ¥

If k.k2 denotes the euclidian norm defined on Rp. The following lemma gives

(25)

1.4. An improvement of the observer’s performances 9

Lemma 1.2. We suppose that the following hold

1. F is stable, or more exactly there exists a real λ ∈]0, 1[ such that kF k < λ.

2. The vertices v1, v2, ..., vr of the polyhedron P, verify

max 1≤l≤rkvlk2 (λ − kF k) s p P j=1 kPjk2 . (1.14) Then kF + < vl, P > k ≤ λ; ∀l ∈ {1, 2, ..., r}. (1.15) Proof.

Let v1, v2, ..., vr the vertices of the polyhedron P. For vl = (vl,1, ..., vl,p)T where vl,j ∈ R, 1 ≤ j ≤ p, we have kF + < vl, P > k = kF + p P j=1 vl,jPjk ≤ kF k + kPp j=1 vl,jPjk ≤ kF k + Pp j=1 |vl,j|kPjk ≤ kF k + (Pp j=1 |vl,j|2)1/2(Pp j=1 kPjk2)1/2 ≤ kF k + kvlk2( p P j=1 kPjk2)1/2 ≤ kF k + max 1≤l≤rkvlk2( p P j=1 kPjk2)1/2 ≤ kF k + (λ − kF k) ≤ λ. ¥

1.4

An improvement of the observer’s

perfor-mances

Like was stated in the introduction of this paper, we are interested in this section in elaboration of a class of initial states z0 verifying the

pointwise-in-time conditions kzi−T xik ≤ αi where ziis the solution of equation (1.6)

(26)

1.4. An improvement of the observer’s performances 10

and i ≥ 1. That means, if we denote by ui = (u

0, ..., ui−1) where i ≥ 1, we

investigate the set Θ given by

Θ = ©z0 ∈ Rm/kz0− T x0k ≤ α0, kzi− T xik ≤ αi; ∀x0 ∈ Q, ui ∈ Pi, ∀ i ≥ 1

ª

.

Θ is called the set of the α-admissible observers initial states.

1.4.1

Preliminary results

By a simple calculation, we demonstrate that

Θ =©z0 ∈ Rm/kz0− T x0k ≤ α0, k Äi−1k=0[F + < uk, P >](z0− T x0)k ≤ αi;

(1.16)

∀x0 ∈ Q, ui ∈ Pi, ∀i ≥ 1

ª

.

Let Θx the set of Rm defined by

Θx =

©

z0 ∈ Rm/kz0− T xk ≤ α0, k Äi−1k=0[F + < uk, P >](z0− T x)k ≤ αi;

(1.17)

ui ∈ Pi, ∀i ≥ 1ª; ∀x ∈ Rn.

Then, we have the following lemma

Lemma 1.3. Let Q be a convex compact polyhedron of Rn containing x

0 and

whose vertices are w1, w2, ..., ws then

Θ = s \ j=1 Θwj. (1.18) Proof.

It is easy to see that Θ ⊂ Ts

j=1

Θwj.

Reciprocally, let z ∈ Ts

j=1

Θwj, x0 ∈ Q and uk∈ P for k ∈ {0, 1, ..., i − 1}. Since

x0 ∈ Q, then x0 is a convex combination of wj, 1 ≤ j ≤ s i.e x0 = s X j=1 λjwj where λj ∈ [0, 1] and s X j=1 λj = 1.

(27)

1.4. An improvement of the observer’s performances 11

Then, for all i ≥ 1 and uk ∈ Pi k Äi−1 k=0[F + < uk, P >](z − T x0)k = k Äi−1k=0[F + < uk, P >](z − s P j=1 λjT wj)k = k Äi−1 k=0[F + < uk, P >]( s P j=1 λj(z − T wj))k = kPs j=1 λj Äi−1k=0[F + < uk, P >](z − T wj)k Ps j=1 λjk Äi−1k=0[F + < uk, P >](z − T wj)k Ps j=1 λjαi = αi. Moreover, kz−T x0k ≤ α0then z ∈ Θ. ¥

Let’s consider the set G defined by

G = ©ξ ∈ Rm∩ ¯B(0, α

0)/k Äi−1k=0[F + < uk, P >] ξk ≤ αi; ∀ui ∈ Pi; ∀i ≥ 1

ª

.

(1.19) Where B(0, α0) is the ball with center 0 and radius α0 and ¯B(0, α0) the

adhe-rence of B(0, α0).

It is clair that

Θx = G + T x; ∀x ∈ Rn. (1.20)

Moreover, we have the following result

Proposition 1.2.

1. G and Θ are convex, compact sets and G is symmetric.

2. If (λi

αi)i≥0 verifies limi→+∞

λi

αi = 0,

then

0 ∈ int(G) and int(Θx) 6= ∅; ∀x ∈ Rn. Where int(G) is the interior of G.

Proof.

To verify 1, it is sufficient to apply the definitions of the sets G and Θ. The hypothesis lim

i→∞ λi

αi = 0 implies the existence of

ρ > 0 such that λi

(28)

1.4. An improvement of the observer’s performances 12

Then for all ξ ∈ B(0,1

ρ) ; and ui ∈ Pi, i ≥ 1, we get k Äi−1

k=0[F + < uk, P >]ξk ≤ Äi−1k=0kF + < uk, P > kkξk ≤ λikξk

≤ αi.

Moreover kξk ≤ α0, therefore ξ ∈ G, i.e B(0,1ρ) ⊂ G and from there 0 ∈

int(G). Using the relation (1.20), we deduce that

int(Θx) 6= ∅ f or all x ∈ Rn. ¥

Now, we propose some conditions under which the set Θ is nonempty.

Theorem 1.1. If we suppose that the sequence (λi

αi)i≥0 is bounded and Q is

such that diam(Q) ≤ 1

γkT k (respectively diam(Q) < γkT k1 )1, where γ = sup i≥0 λi αi, then T Q ⊂ Θ (respectively T Q ⊂ int(Θ)). Proof.

Let z ∈ T Q, then z = T v where v ∈ Q. Let i ≥ 1, ui ∈ Pi and x

0 ∈ Q. Since Q is a polyhedron of Rn, we have

v = s X j=1 λjwj and x0 = s X l=1 βlwl,

where (βl, λj) ∈ [0, 1]2 for all (l, j) ∈ {1, 2, ..., s}2 and Ps

l=1 βl= Ps j=1 λj = 1. Then k Äi−1k=0[F + < uk, P >](z − T x0)k = k Äi−1k=0[F + < uk, P >] Ã s P j=1 λjT wj Ps l=1 βlT wl ! k = k Äi−1 k=0[F + < uk, P >] Ã s P j=1 s P l=1 λjβlT (wj− wl) ! k Ps j=1 s P l=1 λjβlk Äi−1k=0[F + < uk, P >](T (wj− wl))k Ps j=1 s P l=1 λjβlÄi−1k=0kF + < uk, P > kkT kkwj − wlk Ps j=1 s P l=1 λjβlλikT kdiam(Q) ≤ λikT kdiam(Q) ≤ αi. 1diam(Q) = max wi,wj∈vert(Q)

(29)

1.4. An improvement of the observer’s performances 13 and kz − T x0k = k s P j=1 λjT wj− s P l=1 βlT wlk = kPs j=1 s P l=1 λjβlT (wj − wl)k Ps j=1 s P l=1 λjβlkT kkwj− wlk ≤ α0. Then z ∈ Θ.

Now, we suppose that diam(Q) < 1

γkT k and consider the positif real β given

by

β = 1

γ − kT kdiam(Q).

Let’s show that B(z, β) ⊂ Θ for all z ∈ T Q. The demonstration will be made in two steps.

Step1 : If we suppose that z = T wj where wj is a vertice of Q, then we have,

for all X ∈ B(T wj, β), where (1 ≤ j ≤ s), x0 ∈ Q ; i ≥ 1 and ui ∈ Pi

k Äi−1 k=0[F + < uk, P >](X − T x0)k ≤ k Äi−1k=0[F + < uk, P >](X − T wj)k +k Äi−1k=0[F + < uk, P >](T wj − T x0)k ≤ Äi−1 k=0kF + < uk, P > kkX − T wjk + Äi−1k=0kF + < uk, P > kkT kkwj − x0k ≤ λiβ + λikT kdiam(Q) ≤ λi(β + kT kdiam(Q)) λi γ ≤ αi. Moreover, we have kX − T x0k = kX − T wjk + kT wj− T x0k ≤ β + kT kdiam(Q) 1 γ ≤ α0

then X ∈ Θ and from there B(T wj, β) ⊂ Θ for all ; j ∈ {1, 2, ..., s}, which

gives that T wj ∈ int(Θ) ; ∀ j ∈ {1, 2, ..., s}.

Step 2 : If z ∈ T Q. Then z can be written as convex combination of vectors

T w1, ..., T ws, i.e z = s X j=1 λjT wj.

(30)

1.4. An improvement of the observer’s performances 14

Let’s consider Y ∈ B(z, β), x0 ∈ Q and ui ∈ Pi; i ≥ 1

k Äi−1k=0[F + < uk, P >](Y − T x0)k ≤ k Äi−1k=0[F + < uk, P >](

s P i=1 λjT (wj − x0))k +k Äi−1k=0[F + < uk, P >](Y − s P i=1 λjT wj)k ≤ Äi−1 k=0kF + < uk, P > k s P i=1 λjkT kkwj− x0k + Äi−1 k=0kF + < uk, P > kkY − s P i=1 λjT wjk ≤ λikT kdiamQ + λiβ ≤ λi(kT kdiamQ + β) λi γ ≤ αi. Moreover kY − T x0k ≤ kY − s P j=1 λjT wjk + k s P j=1 λjT wj − T x0k ≤ β + kPs j=1 λjkT kkwj − x0k ≤ β + kT kdiamQ 1 γ ≤ α0. Then z ∈ int(Θ). ¥

1.4.2

Characterization of the set Θ

In order to characterize the set of α- admissible observers Θ given by the relations (1.18) and (1.20), we introduce the sequence (Gq)q≥0 where

Gq = © ξ ∈ Rm∩ ¯B(0, α 0)/k Äi−1k=0[F + < uk, P >]ξk ≤ αi; ∀ui ∈ Pi, ∀1 ≤ i ≤ q ª . f or all q ≥ 1 G0 = ¯B(0, α0).

Definition 1.1. The set G is said to be finitely-accessible if there exists an integer q, such that

G = Gq. (1.21)

The smallest integer q verifying (1.21) is called the access index of G and is noted q∗.

(31)

1.4. An improvement of the observer’s performances 15

In the following proposition we state some properties of the sets Gq.

Proposition 1.3.

1. For all integer q1, q2 such that q1 ≤ q2, we have

G ⊂ Gq2 ⊂ Gq1.

2. ξ ∈ Gq+1 ⇔ ξ ∈ Gq and k Äqk=0[F + < uk, P >]ξk ≤ αq+1; ∀uk ∈ P. 3. ξ ∈ Gq+1 ααq+1q [F + < u, P >]ξ ∈ Gq; ∀u ∈ P.

Proof.

The demonstration of 1 and 2 results deducts easily from the definition of sets

G and Gq.

To establish the implication 3. We consider ξ ∈ Gq+1; (u, ui) ∈ Pi+1 and i ∈ {1, 2, ..., q}. For all (wk0)0≤k0≤j−1 ∈ Pj and j ∈ {1, 2, ..., q + 1}, we have

k Äj−1k0=0[F + < wk0, P >]ξk ≤ αj.

In particular for j = i + 1, we get

k Äi

k0=0[F + < wk0, P >]ξk ≤ αi+1.

Using the definition of the operator product Ä and let’s take w0 = u, wk = uk−1

for all 1 ≤ k ≤ i. The last inequality becomes °

°Äi−1

k=0[F + < uk, P >][F + < u, P >]ξ

°

° ≤ αi+1.

And from there ° ° ° °Äi−1k=0[F + < uk, P >] αq αq+1[F + < u, P >]ξ ° ° ° ° ≤ αi+1 αq αq+1. Since ( αi

αi+1)i≥0 is a decreasing sequence, then we obtain

° ° ° °Äi−1k=0[F + < uk, P >] αq αq+1 [F + < u, P >]ξ ° ° ° ° ≤ αi, ∀i ∈ {1, 2, ..., q}. In addition, we have kF + < w0, P > ξk ≤ α1, ∀w0 ∈ P.

In particular for w0 = u, we obtain

(32)

1.4. An improvement of the observer’s performances 16 and thus k αq αq+1[F + < u, P >]ξk ≤ αq αq+1α1 ≤ α0 and so αq αq+1

[F + < u, P >]ξ ∈ Gq f or all ξ ∈ Gq+1 and all u ∈ P. ¥

In the following proposition, we gives conditions which guaranties the set G to be finitely accessible.

Proposition 1.4. The set G is finitely accessible if and only if there exists q0 ∈ N such that Gq0 is non empty and

Gq0 = Gq0+1. (1.22)

Proof.

If G is finitely accessible it is obvious that the sequence (Gq)q≥q0 is stationary.

Reciprocally, let’s suppose that it exists q0 ∈ N for which Gq0 6= ∅ and Gq0

Gq0+1. From the proposition 1.3, we obtain for all ξ ∈ Gq0

αq0 αq0+1 [F + < v0 1, P >]ξ ∈ Gq0, ∀ v 0 1 ∈ P, and µ αq0 αq0+1 ¶2 [F + < v0 2, P >][F + < v10, P >]ξ ∈ Gq0, , ∀ v 0 1, v20 ∈ P. by iteration, we deduce µ αq0 αq0+1 ¶j [F + < v0 j, P >]...[F + < v10, P >]ξ ∈ Gq0 ∀ (v 0 j0)1≤j0≤j ∈ Pj, ∀ j ≥ 1.

Then we can write ° ° ° ° ° µ αq0 αq0+1 ¶j Äi−1k=0[F + < w0k, P >][Äjj0=1[F + < v0j0, P >]ξ] ° ° ° ° °≤ αi, ∀ ((v0

j0)1≤j0≤j, (w0k)0≤k≤i−1) ∈ Pi+j, ∀ j ≥ 1, ∀i ∈ {1, 2, ..., q0}.

In particular, for i = q0. We obtain for all j ≥ 1, and (vj00)1≤j0≤j, (wk0)0≤k≤q0−1

Pq0+j ° °Äq0−1 k=0 [F + < wk0, P >][Äjj0=1[F + < vj00, P > ξ] ° ° ≤ αjq0+1 αj−1q0 .

(33)

1.4. An improvement of the observer’s performances 17 Or again k q0 terms z }| { [F + < w0 q0−1, P >]...[F + < w 0 0, P >] j terms z }| { [F + < v0 j, P >]...[F + < v10, P >] ξ k ≤ αjq0+1 αj−1q0 .

Let’s define uk= vk+10 for 0 ≤ k ≤ j − 1 and uk= w0k−j for j ≤ k ≤ q0+ j − 1.

We have k[F + < uq0+j−1, P >]...[F + < u0, P >]ξk ≤ αjq0+1 αj−1q0 . Then k Äqk=00+j−1[F + < uk, P >]ξk ≤ αjq0+1 αj−1q0 , ∀(uk)0≤k≤q0+j−1 ∈ Pq0+j; ∀j ≥ 1.

Using the properties of the sequence (αi)i≥, we can establish that for all j ≥ 1 αjq0+1

αj−1q0

≤ αq0+j.

Then we can write

k Äqk=00+j−1[F + < uk, P >]ξk ≤ αq0+j, ∀(uk)0≤k≤q0+j−1 ∈ Pq0+j; ∀j ≥ 1.

We deduce that

ξ ∈ G and thus G = Gq0. ¥

Remark 1.1. like a naturel consequence of the preceding proposition, we give in section5 an algorithm allowing us to determine the integer q∗ checking G = Gq∗.

Before being in the determination of q∗, it is desirable to have a simple condi-tion which ensures us the accessibility of the set G.

Theorem 1.2. If the following condition hold

lim

i→+∞ λi αi

= 0.

Then G is finitely accessible.

Proof.

From the hypothesis of the theorem, we deduce the existence of q∗ ∈ N which

verifies λi αi 1 α0 , ∀i ≥ q∗.

(34)

1.5. An algorithmic approach 18

Let ξ ∈ Gq∗, we have for all uq

∈ P(q∗+1)

k Äqk=0 [F + < uk, P >]ξk ≤ Äqk=0 kF + < uk, P > kkξk

However kF + < uk, P > k ≤ λ for all uq

∈ P(q∗+1)

, then we deduce from the proposition 1.1 k Äqk=0 [F + < uk, P >]ξk ≤ λq∗+1kξk αq∗+1 α0 kξk ≤ αq∗+1, and thus ξ ∈ Gq∗+1. ¥

Remark 1.2. The results obtained in the previous section enable us to suggest the following algorithm in order to determine the index of accessibility q∗ and from there characterize the set Θ.

Algorithm 1.1.

1. set q := 1.

2. If Gq = Gq+1 then set q∗ := q and stop, else continue

3. Replace q by q + 1 and return to step 2.

It is clear that algorithm 1.1 converges if and only if G is accessible. Howe-ver, we have to show how the test Gq = Gq+1 can be implemented on machine.

In order to overcome this difficulty we propose the following study.

1.5

An algorithmic approach

In order to translate the algorithm 1.1 into an algorithm which is written in a convenient manner and which enables us to determine the access index

q∗, let’s introduce the sets H

q, q ∈ N∗ defined by

Hqξ ∈ Rm∩ ¯B(0, α0)/k Äi−1k=0[F + < vlk, P >]ξk ≤ αi; ∀ lk ∈ {1, 2, ..., r},

∀ k ∈ {0, 1, ..., i − 1}, i ∈ {1, 2, ..., q}} .

where v1, v2, ..., vr are vertices of the polyhedron P.

(35)

1.5. An algorithmic approach 19

Proposition 1.5. Let v1, v2, ..., vr the vertices of the convex compact polyhe-dron P of Rm containing 0. Then

Hq = Gq, ∀q ≥ 1. Proof. Let q ≥ 1, since Gq = © ξ ∈ Rm∩ ¯B(0, α

0)/k Äi−1k=0[F + < uk, P >]ξk ≤ αi; ∀ui ∈ Pi, ∀i ∈ {1, 2, ..., q}

ª

,

it is clear that

Gq ⊂ Hq.

Let’s show that Hq⊂ Gq.

Indeed consider ξ ∈ Hq, ui ∈ Pi and i ∈ {1, 2, ..., q}.

For all k ∈ {1, 2, ..., i − 1}, uk is a convex combination of the vertices of P, i.e uk = r X lk=1 δk lkvlk, where δ k lk ∈ [0, 1] and r X lk=1 δk lk = 1, then, we get k Äi−1k=0[F + < uk, P >]ξk = k Äi−1k=0[F + < Pr lk=1 δk lkvlk, P >]ξk = k Äi−1 k=0 r P lk=1 δk lk[F + < vlk, P >]ξk = ° ° ° ° ° r P li−1=1 r P li−2=1 ... Pr l0=1 δi−1 li−1..δ 0 l0 Ä i−1 k=0[F + < vlk, P >]ξ ° ° ° ° ° Pr li−1=1 r P li−2=1 ... Pr l0=1 δli−1i−1..δ0 l0k Ä i−1 k=0[F + < vlk, P >]ξk Pr li−1=1 r P li−2=1 ... Pr l0=1 δi−1 li−1..δ 0 l0αi Pr li−1=1 δi−1 li−1... r P l0=1 δ0 l0αi ≤ αi.

It shows that ξ ∈ Gqand thus Gq = Hq. What enables us to conclude that G is

finitely-accessible if and only there exists an integer q0 such that G = Hq0 what

is still equivalent to saying that G is accessible if and only if there exists an in-teger q0such that Hq0 = Hq0+1. ¥

(36)

1.5. An algorithmic approach 20

1.5.1

Algorithmic determination of the access index q

Let Rm the vectorial space with the infinite norm defined by kyk∞ = max

1≤i≤m|yi|.

Then the set Hq is given by

Hq = ½ ξ ∈ Rm∩ ¯B(0, α0)/fl( 1 αi Äi−1k=0[F + < vlk, P >]ξ) ≤ 0; ∀ l ∈ {1, 2, ..., 2m}, (l0, l1, ...li−1) ∈ {1, 2, ..., r}i, 1 ≤ i ≤ q ª

where the functions fj : Rm → R are defined for all y = (y1, ..., ym) ∈ Rm by

½

f2l(y) = −yl− 1 f2l−1= yl− 1

∀ l ∈ {1, 2, ..., m}.

Let I the part of N given by I = {1, .., r}. From the proposition 1.3, we deduce that

Hq+1 = Hq⇔ Hq ⊂ Hq+1,

it’s equivalent to,

∀ ξ ∈ Hq, ∀ (l0, l1, ...lq) ∈ Iq+1 fl( 1 αq+1 Äqk=0[F + < vlk, P >]ξ) ≤ 0, ∀ l ∈ {1, 2, ..., 2m}. Moreover, ∀(l0, l1, ..., lq) ∈ Iq+1 sup ξ∈Hq fl( 1 αq+1 Äqk=0[F + < vlk, P >]ξ) ≤ 0 ∀ l ∈ {1, 2, ..., 2m}. Then, Hq+1 = Hq max (l0,l1,...lq)∈Iq+1 sup ξ∈Hq fl( 1 αq+1 Äqk=0[F + < vlk, P >]ξ) ≤ 0,

l ∈ {1, ..., 2m} what is even equivalent to

max (l0,l1,...lq)∈Iq+1 sup fl( 1 αq+1 Äqk=0[F + < vlk, P >]ξ) ≤ 0 ∀ l ∈ {1, 2, ..., 2m},

under the constraints             fj(αξ0) ≤ 0 fj(α1i Äi−1k=0[F + < vpk, P >]ξ) ≤ 0 j = 1, ..., 2m (p0, p1, ..., pi−1) ∈ Ii, i = 1, 2, ..., q

(37)

1.6. Observer initial state design 21 Algorithm 1.2. 1. q := 1. 2. for l = 1, 2, ..., 2m do : (a) for (l0, l1, ...lq) ∈ {1, 2, ..., r}q+1 do (b) Maximize Jl,(l0,l1,...lq)(ξ) = fl( 1 αq+1 Ä q k=0[F + < vlk, P >]ξ) subject to              fj(αξ0) ≤ 0 fj(α1i Äi−1k=0[F + < vpk, P >]ξ) ≤ 0 j = 1, ..., 2m (p0, p1, ..., pi−1) ∈ Ii, i = 1, 2, ..., q Let JM

l,(l0,l1,...lq) be the maximum value of Jl,(l0,l1,...lq)(ξ).

Let J∗

l be the maximum value of Jl,(lM0,l1,...lq).

(c) If J∗

l ≤ 0 for l = 1, ..., 2m then set q∗ := q and stop. Else continue. 3. Replace q by q + 1 and return to step 2.

1.6

Observer initial state design

The section is devoted to characterization of the set Θ. For that, let’ us consider P a polyhedron of Rp, convex, compact containing the origin and

whose vertices are the vectors v1, ..., vr and Q a polyhedron of Rn convex

compact containing the initial state x0 and whose vertices are the vectors

w1, ..., ws. From the results obtained in sections 4 and 5, we have the following

proposition

Proposition 1.6. Under the hypothesis 1. It exists λ ∈]0, 1[ such that kF k < λ.

2. max 1≤l≤rkvlk2 ≤ (λ − kF k)/ s p P j=1 kPjk2. 3. lim i→+∞ λi αi = 0.

Then Θ is the set of all state z0 ∈ Rm satisfied the constraints

         kz0− T wjk∞ ≤ α0 k Äi−1 k=0[F + < vlk, P >](z0− T wj)k∞≤ αi lk∈ {1, 2, ..., r}; 0 ≤ k ≤ i − 1 1 ≤ j ≤ s; 1 ≤ i ≤ q∗ (1.23)

Références

Documents relatifs

[r]

• Pr´esentation d’une m´ethode pour d´eterminer l’ensemble solution d’un syst`eme lin´eaire dont la matrice associ´ee est ´echelonn´ee et r´eduite.. • Structure

Une matrice ´ echelonn´ ee en lignes est dite ´ echelonn´ ee r´ eduite par lignes si elle est nulle ou si tous ses pivots sont ´ egaux ` a 1 et sont les seuls ´ el´ ements non nuls

Une matrice ´ echelonn´ ee en lignes est dite ´ echelonn´ ee r´ eduite par lignes si elle est nulle ou si tous ses pivots sont ´ egaux ` a 1 et sont les seuls ´ el´ ements non nuls

Sachant que le flux varie ´a une fr´equence de xxxx Hz, et en utilisant la valeur moyenne et l’amplitude d´etermin´ees ci-dessus, calculer la valeur du gain pour que le signal

La loi hydraulique permettant de calculer le d´ ebit s’´ enonce Q = α∆P , o` u Q est le d´ ebit du tuyau, ∆P la diff´ erence des pressions en entr´ ee et sortie et α est

Matrice de Van Der Monde et polynˆ omes d’in- terpollation de Lagrange.. Soient a

L’id´ ee est que le rang d’un syst` eme homog` ene est le nombre d’´ equations ”qui comptent” dans ce syst` eme, celles qui restent quand on enl` eve (une par une) les