• Aucun résultat trouvé

Stability analysis of thermo-acoustic nonlinear eigenproblems in annular combustors. Part I. Sensitivity

N/A
N/A
Protected

Academic year: 2021

Partager "Stability analysis of thermo-acoustic nonlinear eigenproblems in annular combustors. Part I. Sensitivity"

Copied!
17
0
0

Texte intégral

(1)

an author's

https://oatao.univ-toulouse.fr/20704

http://doi.org/10.1016/j.jcp.2016.07.032

Magri, Luca and Bauerheim, Michael and Juniper, Matthew P. Stability analysis of thermo-acoustic nonlinear

eigenproblems in annular combustors. Part I. Sensitivity. (2016) Journal of Computational Physics, 325. 395-410.

ISSN 0021-9991

(2)

Stability

analysis

of

thermo-acoustic

nonlinear

eigenproblems

in

annular

combustors.

Part

I.

Sensitivity

Luca Magri

a

,

b

,

,

Michael Bauerheim

c

,

Matthew

P. Juniper

b aCenterforTurbulenceResearch,StanfordUniversity,CA,UnitedStates

bCambridgeUniversityEngineeringDepartment,Cambridge,UnitedKingdom cCAPSLab/,ETHZürich,Switzerland

a

b

s

t

r

a

c

t

Keywords: Thermo-acousticstability Sensitivityanalysis Annularcombustors Adjointmethods

We present an adjoint-based method for the calculation ofeigenvalue perturbations in nonlinear, degenerate and non-self-adjoint eigenproblems. This method is applied to a thermo-acoustic annular combustor network, the stability of which is governed by a nonlinear eigenproblem. We calculate the first- and second-order sensitivities of the growth rate and frequency to geometric, flow and flame parameters. Three different configurationsareanalysed.Thebenchmarksensitivitiesare obtainedbyfinitedifference, whichinvolvessolvingthenonlineareigenproblematleastasmanytimesasthenumber of parameters.By solving onlyone adjoint eigenproblem,we obtainthe sensitivities to anythermo-acousticparameter,whichmatchthefinite-differencesolutionsatmuchlower computationalcost.

1. Introduction

Thermo-acousticoscillationsinvolvetheinteractionofheatreleaseandsound.Inrocketandaircraftengines,heatrelease fluctuationscan synchronizewiththenaturalacousticmodesinthe combustionchamber. Thiscan causeloudvibrations thatsometimesleadtocatastrophic failure.Itisoneofthebiggestandmostpersistentproblemsfacingrocketandaircraft enginemanufacturers[1].

ManystudieshavedemonstratedtheabilityofLarge-EddySimulation(LES)torepresenttheflamedynamics[2]. How-ever,evenwhenLESsimulations confirmthatacombustorisunstable,theydonot suggesthowtocontrol theinstability. Moreover, LES is computationally expensive. Simpler frequency-based models are therefore often used in academia and industryforpre-design,optimization,controlanduncertaintyquantification.

Thereexisttwomaindifferentclassesoffrequency-basedlow-ordermethodsinthermo-acoustics.

1. Network-based methodsmodelthegeometryofthecombustorasanetwork ofacousticelementswheretheacoustic problem can be solved analytically [3–6]. Jump relations connect these elements, enforcing pressure continuity and massorvolumeconservation[7,8]whileaccountingforthedilatationcausedbyflames.Theacousticquantitiesineach segmentare relatedtothe amplitudesoftheforwardandbackward acousticwaves,whicharedetermined such that

*

Correspondingauthor.

E-mailaddress:lmagri@stanford.edu(L. Magri).

(3)
(4)

thecaseoftheHelmholtzapproach,typicallyoforderten/hundredthousandforindustrialgeometries.If

N

representsthe Helmholtzproblem,thentheeigenfunctionconsistsonlyofthediscretizedacousticpressure.

An important source of nonlinearity lies in the flame model, which introduces a time delay appearing as an expo-nentialfunction inthefrequencyspace [12].Other nonlinearities intheeigenvalue mayappearbecause oftheboundary impedances[11].Thesolutionofthesenonlineareigenproblemsandthecalculationofthethermo-acousticgrowthratesand frequencyistheobjectiveofstabilityanalysis.Fordesignpurposes,itisalsoimportanttopredicthowthethermo-acoustic stabilitychangesduetovariationsofthesystem.Thisistheobjectiveofsensitivityanalysis.

1.1. Sensitivityanalysisofeigenproblems

Insituationsthataresusceptibletothermo-acousticoscillations,oftenonlyahandfulofoscillationmodesareunstable. Existingtechniquesexaminehowachangeinoneparameteraffectsalloscillationmodes,whetherunstableornot.Adjoint techniquesturnthisaround.Inasingle calculation,theyexaminehow eachoscillationmodeisaffectedby changesinall parameters.Inotherwords,they providegradientinformationaboutthevariation ofan eigenvaluewithrespecttoallthe parametersinthemodel.Forexample,inasystemwithathousandparameters,theycalculategradientsathousandtimes fasterthanfinite-differencemethods.

Fig. 1bisanillustrationoftheeigenvaluesofathermo-acousticsystem.Twoeigenmodesareunstable(theyhavepositive growthrateandlieinthegreyregion).Therearetwoapproachestodeterminehowthesetwo eigenvaluesareaffectedby eachsystemparameter.Ontheonehand,wecouldchangeeachparameterindependentlyandrecalculatealltheeigenvalues, retainingonly theinformationaboutthe eigenvaluesof interest.Thisis calledthefinite-difference approachin thispaper andrequiresasmanycalculationsasthereare parameters.Ontheotherhand,we coulduseadjointmethodstocalculate howeacheigenvalueisaffectedbyeveryparameter,inasinglecalculation.Thisrequiresasmanycalculationsasthereare eigenvaluesofinterest,whichismanytimessmallerthanthenumberofparameters.

Eigenvaluesensitivitymethodsoriginate fromspectralperturbationtheory [13]andquantummechanics[14].In struc-tural mechanics, the calculation of first- and second-order derivatives of non-degenerate eigensolutions of self-adjoint nonlinear eigenproblems was proposed in aeroelasticityby Mantegazza and Bindolino [15] andonly theoretically by Liu andChen[16].Later,[17,18]foundtheanalyticalexpressionsforthesensitivitiesupton-thorderofageneralself-adjoint non-degenerate eigenproblem withapplication to vibrational mechanics. More recently, Li et al.[19] derived eigensolu-tion sensitivities for self-adjoint problems with relevance both to degenerate and non-degenerate simplified structural mechanical problems.Eigenvalue sensitivity is alsocommonly used inhydrodynamic stability [20–26], where the eigen-valueproblemsaretypicallylinear,orwithquadraticnonlinearities,andnon-degenerate.ThereviewbyLuchiniandBottaro

[27]providesathoroughoverviewofthestate-of-the-artofadjointmethodsinhydrodynamicstability.

Adjointeigenvaluesensitivityanalysisofthermo-acousticsystemswasproposedbyMagriandJuniper[28].Theanalysis was appliedtosimplifiedmodels ofcombustorstofindoptimalpassivemechanismsandsensitivityto base-statechanges inaRijketube[28–31],aducteddiffusionflame[32]and,morerecently,toaductedpremixed-flame[33].However,these studiesdealtwithlineareigenvalueproblemsinwhichtheeigenvalueappearsunderalinearterm.

Theextension oftheadjointanalysistononlinear thermo-acousticeigenproblems wasproposed byMagri [34] and Ju-niperetal.[35]basedonideasofspectralperturbationtheoryofnonlineareigenproblems[36].Theyproposedtwodifferent adjoint methods for the prediction of eigenvalue sensitivities to perturbations to generic system’s parameters. The first methodwas basedontheDiscreteAdjoint approach,inwhichtheeigenvaluedriftisobtainedbyrecursive applicationof thelinearadjointformulaateachiterationstepofthenonlinearsolver.Thesecondapproachwasbasedonthelinearization ofthenonlinearoperatoraroundtheunperturbedeigenvalue,whichneedsfeweroperationsthanthefirstapproach.Inthis paperwe usethesecond approachof Juniperetal.[35] andapplyit toan elaborate annularcombustor. Suchfirst-order adjointanalysiswasappliedrecentlytopredictsymmetrybreakinginannularcombustors[37].

1.2. Objectiveandstructureofthepaper

The aimof thispaperisto provide amethod forthe calculationof first- andsecond-order eigenvalue sensitivities of non-self-adjointnonlineareigenproblemswithdegeneracy.Thisframeworkisappliedtotheelaborateannularcombustorof

[38]tocalculatedesign-parametersensitivities.

In Section 2 we present the theory for adjoint sensitivity analysis of nonlinear eigenproblems. We derive first- and second-ordereigenvaluesensitivityrelationsbothfornon-degenerateanddegenerateeigenproblems.InSection3the math-ematicalmodeloftheannularcombustorthermo-acousticnetwork isbriefly described.Forfurtherbackgroundinannular combustors, the readermayrefer to the review by O’Connoret al.[39].In Section 4.1 we validate the adjointformulae againstfinitedifferences,thelatterofwhichprovidethebenchmarksolutionbecausethey donot relyonanyassumption ontheperturbationsize.Threeconfigurationsareconsidered:aweaklycoupledrotationallysymmetriccombustor(CaseA), astronglycoupledrotationallysymmetriccombustor(Case B)andastronglycouplednon-rotationallysymmetric combus-tor(Case C).Theeigenvalue sensitivitiestoperturbations tobothgeometric,flow andflames parametersarecalculatedin Section4.2.Aconcludingdiscussionendsthepaper.

(5)

All ofthesestudies arebased ondeterministic analysis, whichassumesperfectknowledge ofthethermo-acoustic pa-rameters.Includinguncertaintiesintheflameparametersinthestabilitycalculationsistheobjectiveofthesecondpartof thispaper[40].

2. Eigenvaluesensitivityofnonlineareigenproblems

We show howto computethe eigenvaluesensitivityvia equationsinvolvingtheadjoint eigenfunctions.Thisapproach combines aderivation withtheContinuous Adjoint (CA)formulation, inwhichthe problemsare governedby continuous operators, withoutexplicitly derivingthe CAequations.The finalsensitivityequations canbe appliedby usinga Discrete Adjoint(DA)philosophy,whichismoreaccurateandeasiertoimplement(e.g.,forthermo-acousticproblems,[28,30,32]).

First,wesolveforthenonlineardirecteigenproblem(1),inwhichtheeigenvalueappearsunderexponential,polynomial and rational terms. Starting from an initial guess for the eigenvalue,we assume that the convergedeigenvalue

ω

0 is a

numericalrootofthedispersionrelation

|

det

(

N

{

ω

0

,

p0

}) |<

tol

,

(2)

where‘det’isthedeterminantand‘tol’isadesiredtolerance.Inlargesystemsweensurecondition (2)throughrelaxation methods[11] insteadofsolvingforthecharacteristicequation.Equation(2)definesanimplicitfunctionbetween

ω

andp,

i.e.,

ω

=

ω

(

p

)

.Thecorrespondingeigenfunctionq

ˆ

0 iscalculatedfromthelinearsystem

N

{

ω

0

,

p0

} ˆ

q0

=

0

.

(3)

Theoperator

N

dependsonlyonthefinalconvergedeigenvalue,

ω

0.Thekernelofequation(3)canbefoundbycomputing

thesingularvector(s)associatedwiththetrivialsingularvalue(s).

Second,bydefiningtheadjointeigenfunction,q

ˆ

+0,andoperator,

N

+,throughaHermitianinnerproductinan appropri-ateHilbertspace



ˆ

q+0

,

N

{

ω

0

,

p0

} ˆ

q0



=



N

{

ω

0

,

p0

}

+q

ˆ

+0

,

q

ˆ

0



,

(4)

wesolvefortheadjointeigenfunctionassociatedwiththeconvergedeigenvalue

ω

0

N

{

ω

0

,

p0

}

Hq

ˆ

+0

=

0

.

(5)

IfwefollowedapurelyContinuousAdjoint(CA)approach[28,30,29],we wouldneedtoderiveexplicitlytheHermitian operator

N

H andthecontinuous adjointequations.However, wedonotderive theseequationsexplicitlyandweproceed ononlywiththeabstractexpressionoftheHermitianoperator,inordertoapplytheDiscreteAdjoint(DA)methoddirectly to the final sensitivityrelations, asexplained subsequently.In equation (5), theadjoint eigenfunction canbe found with thesameprocedureas(3).Third,weperturbasystem’sparameterandcalculatetheperturbationoperator,whichwe can evaluatenumericallybyfinitedifference

p

=

p0

+



p1

=⇒ δ

p

N

{

ω

0

,



p1

} =

N

{

ω

0

,

p

} −

N

{

ω

0

,

p0

},

(6)

where





1.Thisperturbationoperatoristheinputoftheproblemand, therefore,isconstant,i.e.,itdoesnotdependon

ω

.Hence,

δ

p

N {

ω

0

,



p1

}

representsexactlyalltheordersofitsTaylorseries(providingthat



p1 issufficientlysmall)

δ

p

N

{

ω

0

,



p1

} =

N

p



p1

+

1 2

2

N

p2

(



p1

)

2

+

o

(



2

).

(7)

Weassumethattheeigenvaluesandeigenfunctionsareanalyticalinthecomplexplanearound



=

0 and

ω

=

ω

0

+ (



p1

)

ω

1

+

1 2

(



p1

)

2

ω

2 and q

ˆ

= ˆ

q0

+ (



p1

)

q

ˆ

1

+

1 2

(



p1

)

2q

ˆ

2

,

(8) where

ω

1

=

d

ω

dp

,

ω

2

=

d2

ω

dp2 and q

ˆ

1

=

dq

ˆ

dp

,

q

ˆ

2

=

d2q

ˆ

dp2

.

(9)

The perturbedeigenproblemmustsatisfyequation (1)andisTaylor-expandeduptothesecond-ordertotalderivativeofp

aroundtheunperturbedeigenvalue

ω

0,yielding

N



ω

0

+ (



p1

)

ω

1

+

1 2

(



p1

)

2

ω

2

,

p0

+



p1

 

ˆ

q0

+ (



p1

)

q

ˆ

1

+

1 2

(



p1

)

2q

ˆ

2



=

0

,

=⇒

N

{

ω

0

,

p0

} ˆ

q0

+

d

N

{

ω

,

p

} ˆ

q dp

(



p1

)

+

1 2 d2

N

{

ω

,

p

} ˆ

q dp2

(



p1

)

2

+

o

(



2

)

=

0

.

(10)

(6)

N

{

ω

0

,

p0

} ˆ

q0

+

+ (



p1

)



N

{

ω

0

,

p0

} ˆ

q1

+

N

{

ω

,

p0

}

ω

ω0

ω

1q

ˆ

0

+ δ

p

N

{

ω

0

,



p1

} ˆ

q0

+

+ (



p1

)

2



1 2

N

{

ω

0

,

p0

} ˆ

q2

+

N

{

ω

,

p0

}

ω

ω0

ω

1q

ˆ

1

+ δ

p

N

{

ω

0

,



p1

} ˆ

q1

+

+ (



p1

)

2



1 2

2

N

{

ω

,

p0

}

ω

2

ω0

ω

21

+

1 2

N

{

ω

,

p0

}

ω

ω0

ω

2

+

∂δ

p

N

{

ω

0

,



p1

}

ω

ω0

ω

1

ˆ

q0

+

o

(



2

)

=

0

.

(11)

Importantly,thecrossderivative

∂δ

p

N {

ω

0

,



p1

} /∂

ω

iszerobecausetheperturbationoperator

δ

p

N {

ω

0

,



p1

}

isconstant.

The unperturbedterm

O(

1

)

in equation (11)is trivially zerobecause ofequation (3). Higher orderterms

o

(



2

)

are

neglected.

2.1. First-ordereigenvaluesensitivity

Theequationforthefirstorder

O(



)

isrecastas

N

{

ω

0

,

p0

} ˆ

q1

= −



N

{

ω

,

p0

}

ω

ω0

ω

1q

ˆ

0

+ δ

p

N

{

ω

0

,



p1

} ˆ

q0



.

(12)

The objective is to find the eigenvalue drift

ω

1 due to the perturbation

δ

p

N

. The adjoint eigenfunction provides a solvabilitycondition forthenon-homogeneoussystem(12)fulfillingtheFredholmalternative2 [41].Mathematically,thisis

achievedbyprojectingequation(12)ontotheadjointeigenfunction,q

ˆ

+0



ˆ

q+0

,

N

{

ω

0

,

p0

} ˆ

q1



= −

ˆ

q+0

,



N

{

ω

,

p0

}

ω

ω0

ω

1q

ˆ

0

+ δ

p

N

{

ω

0

,



p1

} ˆ

q0



.

(13)

Usingequation(5),thedefinitionoftheinnerproduct(4)anditslinearity,yieldsanequationforthefirst-ordereigenvalue drift

ω

1

=



ˆ

q+0

, δ

p

N

{

ω

0

,



p1

} ˆ

q0



ˆ

q+0

,

∂N {ω,p0} ∂ω

ω 0

ˆ

q0

,

(14)

assumingthat

N {

ω

,

p0

} /∂

ω

=

0.Ifthenumberofcomponentsofp is S,andweareinterestedinthefirst-ordersensitivity

foreach,equation(14)enablesustoreduce thenumberofnonlinear-eigenproblemcomputationsbycirca S P ,whereP is

the averageof thenumberof iterations neededto obtain

ω

1 by solving thenonlinear eigenproblemperturbed viafinite

difference.

Iftheunperturbedeigenvalue

ω

0 is N-folddegenerate,3 theeigenfunctionexpansionbecomes q

ˆ

=

Ni=1

α

ie

ˆ

0,i

+



q

ˆ

1

+

1

2



2q

ˆ

2,where

α

iarecomplexnumbersande

ˆ

0,iaretheN independenteigenfunctionsassociatedwith

ω

0.Byrequiringthe

right-hand sideofequation (13)to havenocomponentsalong theindependentdirectionse

ˆ

0,i (Fredholmalternative), we obtainaneigenproblemin

α

iandeigenvalue

ω

1 [36]

ˆ

e+0,i

,

N

{

ω

,

p0

}

ω

ω0

ˆ

e0,j

ω

1

α

j

= −



ˆ

e+0,i

, δ

p

N

{

ω

0

,



p1

} ˆ

e0,j



α

j

,

(15)

fori

,

j

=

1

,

2

,

...,

N. Einstein summationisused,therefore,theinner products inequation (15)arethe componentsofan

N

×

N matrix,

α

j arethe componentsofan N

×

1 vectorand

ω

1 is theeigenvalue.Thisequation is definedonlyinthe

N-folddegeneratesubspace.Inthermo-acoustics,degeneracyoccursinrotationallysymmetricannularcombustorsinwhich

azimuthal modeshave2-fold degeneracy[42–44,37]. Thegeneralizedeigenproblem (15)outputs N first-ordereigenvalue drifts andN unperturbed eigendirections. Weselectthe first-ordereigenvaluedrift,

ω

1, withgreatest growthrate,which

causesthegreatestchangeinthestability.

To demonstrate the adjoint-based eigenvalue sensitivity (14), we consider the generic nonlinear eigenvalue problem representedbya2

×

2 matrix



N

11

(

ω

)

N

12

(

ω

)

N

21

(

ω

)

N

22

(

ω

)

 

ˆ

q1

ˆ

q2



=



0 0



.

(16)

Wesolveforthecharacteristicequation

F

(

ω

)

=

N

11

(

ω

)

N

22

(

ω

)

N

21

(

ω

)

N

12

(

ω

)

=

0

,

(17)

2 Theleft-handsideoperatorrangeisequaltothekerneloftheorthogonalcomplementofitsadjointoperator.

(7)

andfind

ω

0 suchthatF

(

ω

0

)

=

0.Weassumethatthisrootisnon-degenerate.Thecorrespondingdirectandadjoint

eigen-vectorsare,respectively

ˆ

q0

=



N

12

(

ω

0

)/

N

11

(

ω

0

)

1



ˆ

q2

,

(18)

ˆ

q+0

=



N

21

(

ω

0

)

/

N

11

(

ω

0

)

∗ 1



ˆ

q+2

,

(19)

where

N

11

(

ω

0

)

isassumed

=

0 andq

ˆ

2,q

ˆ

+2 arearbitrarynon-trivialcomplexnumbers,whicharesetto1.Thedependency

on

ω

0 isdroppedforbrevityfromnowon.Assumingthatthecharacteristicequationdefinesacontinuouslydifferentiable

manifold, the exactfirst-order eigenvaluesensitivityis calculatedby the implicitfunction theorem(also known asDini’s theorem)

ω

p

= −

F

/∂

p

F

/∂

ω

= −

N

11

N

22

/∂

p

+

N

22

N

11

/∂

p

N

12

N

21

/∂

p

N

21

N

12

/∂

p

N

11

N

22

/∂

ω

+

N

22

N

11

/∂

ω

N

12

N

21

/∂

ω

N

21

N

12

/∂

ω

.

(20)

UsinganEuclideanHermitianinnerproduct,theadjointeigenvaluesensitivity(14),forthisalgebraicproblem,reads

δ

ω

δ

p

= −

ˆ

q+0H

(∂

N

/∂

p

q0

ˆ

q+0H

(∂

N

/∂

ω

q0

,

= −



N

21

/

N

11∗ 1





N

11

/∂

p

N

12

/∂

p

N

21

/∂

p

N

22

/∂

p

 

N

12

/

N

11 1





N

∗ 21

/

N

11∗ 1





N

11

/∂

ω

N

12

/∂

ω

N

21

/∂

ω

N

22

/∂

ω

 

N

12

/

N

11 1

.

(21)

Whenthevector–matrix–vectormultiplicationsareperformed,theadjoint-basedsensitivity(21)coincideswiththe analyt-icalsensitivity(20).Thisillustratesthatequation(14)isanexactrepresentationofthefirst-ordereigenvaluedrift,

δ

ω

p. 2.2. Second-ordereigenvaluesensitivity

Theequationforthesecond-orderisrecastas

1 2

N

{

ω

0

,

p0

} ˆ

q2

= −



N

{

ω

,

p0

}

ω

ω0

ω

1q

ˆ

1

+ δ

p

N

{

ω

0

,



p1

} ˆ

q1



+



1 2

2

N

{

ω

,

p0

}

ω

2

ω0

ω

21

+

1 2

N

{

ω

,

p0

}

ω

ω0

ω

2

ˆ

q0

=

0

.

(22)

Thecalculationofthesecond-ordereigenvaluedriftisobtainedbyprojectingequation(22)ontotheadjointeigenfunction, yielding 1 2



ˆ

q+0

,

N

{

ω

0

,

p0

} ˆ

q2



=

ˆ

q+0

,−



N

{

ω

,

p0

}

ω

ω0

ω

1q

ˆ

1

+ δ

p

N

{

ω

0

,



p1

} ˆ

q1



+

ˆ

q+0

,



1 2

2

N

{

ω

,

p0

}

ω

2

ω 0

ω

2 1

+

1 2

N

{

ω

,

p0

}

ω

ω0

ω

2

ˆ

q0

.

(23)

Usingequations(5)and(4)yieldsanequationforthesecond-ordereigenvaluedrift

ω

2

= −

2

ˆ

q+0

,



∂N {ω,p0} ∂ω

ω 0

ω

1q

ˆ

1

+ δ

p

N

{

ω

0

,



p1

} ˆ

q1



ˆ

q+0

,

∂N {ω,p0} ∂ω

ω 0

ˆ

q0

+

2

ˆ

q+0

,



1 2 2N {ω,p 0} ∂ω2

ω0

ω

2 1



ˆ

q0

ˆ

q+0

,

∂N {ω,p0} ∂ω

ω 0

ˆ

q0

.

(24)

Theeigenvalue-driftequations(14),(15),(24)enablethecalculationofthei-thdriftonlybyusingeigenfunctionsupto

(

i

1

)

-thorder.Thecalculationoftheperturbedeigenfunctionq

ˆ

1,necessaryforthecalculationofthesecond-ordereigenvalue

(8)

2.3. Calculationoftheperturbedeigenfunction

The calculation of the perturbed eigenfunction q

ˆ

1 in equation (12) requires solving for a non-homogeneous singular

linear systembecause theinversion operator,

N

−1

{

ω

0

,

p0

}

, doesnot exist.However, thecompatibility condition ensures

that this linear systemhas (infinite)solutions. For brevity, we define dim

(N )

=

K anduse matrices. In a non-defective degeneratesystem, a completeeigenbasis is

q0

,

e

ˆ

i

}

,where i

=

1

,

2

,

. . . ,

K

N, q

ˆ

0

=

Nj

α

je

ˆ

0,j ande

ˆ

i are theremaining non-degenerateeigenfunctions. (Weare assumingthat onlythe0-theigenfunctionis N-folddegenerate.Theextension to other eigenfunctions’ degeneracyisstraightforward.) In general, thecoefficients

α

j are arbitrary,however,when working withperturbations,thesecoefficientsareuniquelydeterminedbythefirst-ordersensitivity(15).Theperturbed eigenfunc-tionisdecomposedas

ˆ

q1

= ˆ

z

+ β

0q

ˆ

0

,

(25)

where

β

0 isingeneralacomplexnumber.Bysubstitutingequation(25)into(12),weobtain

N

{

ω

0

,

p0

z

= ,

(26)

because

N {

ω

0

,

p0

}(ˆ

z

+ β

0q

ˆ

0

)

=

N {

ω

0

,

p0

z forequation(3).



istheright-handsideofequation(12).

ˆ

q1 isthencalculatedasfollows.

Decompose

N =

U

˜

VH (SingularValueDecomposition,SVD),where

˜ =





0

0





.

(27)

The submatrix



is diagonalandcontains the K

N non-trivialsingular valuesof

N {

ω

0

,

p0

}

.The submatrix



isa

N

×

N nullmatrix.Thecolumnsofthe unitarymatrixU are theleft singularvectorsandthecolumnsoftheunitary

matrixV aretherightsingularvectors.

Set



toanynon-trivialdiagonalmatrix,forexample,theidentitymatrix.

Solvefor



Y1 Y2



= ˜

−1U−1

.

(28)

SetY2

=

0 andfindthesolution

ˆ

z

=

V



Y1 0



.

(29)

Anothermethodforthecalculationofq

ˆ

1 ispresentedinAppendix A.

Inthisstudynonormalizationconstraintisimposedand,therefore,

β

0 isarbitrarilysettozero.Thismeansthatweare

removingthenon-uniquenessofq

ˆ

1 byrequiringitnottohaveacomponentalongtheunperturbedeigenfunctionq

ˆ

0 [36].

3. Mathematicalmodelofanannularcombustor

Annularcombustionchambersarecommonlyusedinaircraftgasturbinesbecauseoftheircompactnessandabilityfor efficientlightaround[45,39].Suchconfigurations,however,sufferfromcombustioninstabilitiesduetoazimuthalmodesthat oftenappearatlow frequencies,wheredampingmechanismsarelesseffective. Westudyanannularcombustor configura-tiontypicalofmodernultraLow-NOxcombustionchambers,detailedin[46].ThenetworkmodeldevelopedbyBauerheim etal.[38],whichwas validatedagainstathree-dimensional Helmholtzsolvertopredictthe stabilityofazimuthal modes, is thereforeused inthe presentstudy.Thislow-order model describesacombustion chamber connectedby longitudinal burnersfedbyacommonannularplenum(Fig. 2).

TheAnnular NetworkReductionmethodology[38] analyticallyderivesthedispersion relationdet

(N {

ω

,

p

}) =

0 ofthe annularsystem,wheretheoperator

N

isdefinedas

N

{

ω

,

p

} =

Nb



i

R

i

(

ω

)

T

i

(

ω

,

p

)

I

,

(30)

where

I

istheidentityoperatorand Nb

=

19 isthenumberofburners.

R

i

∈ R

4×4 isthepropagationoperatorthat maps theacousticwavesintheuniformcomponentsofthenetwork,representedbythematrices

R

i

=



R

(

kp



xp

)

0 0 R

(

kc



xc

)



,

(31) R

(

k



x

)

=



cos

(

k



x

)

sin

(

k



x

)

sin

(

k



x

)

cos

(

k



x

)



,

(32)

(9)
(10)
(11)
(12)
(13)

Fig. 7. Normalizedfirst-ordereigenvaluesensitivities.CalculationwithFiniteDifference(FD)andAdjointmethods(AD).Theangularfrequencysensitivity isshownintheleftpanels,thegrowth-ratesensitivityisshownintherightpanels.CaseAinthetoprow;CaseBinthemiddlerowandCaseCinthe bottomrow.Theadjointsensitivitymatchesthebenchmarksolutiongivenbyfinitedifferences.InCaseC,thesensitivityofn andτisthemeanvalueof thesingle-burnersensitivitiesofFigs. 9 and10.Thefirst-ordereigenvaluedriftisobtainedbymultiplyingthesesensitivitiesby.

Fig. 8. SameasFig. 7butforsecond-ordersensitivities.Thenormalizedsecond-ordersensitivitiesarehigherthanthefirst-ordersensitivitiesofFig. 7.The second-ordereigenvaluedriftis,however,smallerbecauseitisobtainedbymultiplyingthesesensitivitiesby2.

burnertoburner,asshowninFigs. 9 and10.(TheirmeanvaluesareshowninFig. 7e, fandFig. 8e, f.)Thethermo-acoustic systemhasdrasticallydifferentbehavioursdependingonthe burnerbeingperturbed.The first-ordersensitivitiesoscillate in theazimuthal directionandcanbe negative orpositive.This 2-periodicpatternis physicallyrelatedtothe eigenvalue splittingcausedby symmetrybreaking[49,7],whichisduetothe2ndFouriercoefficientoftheflameparameters’spatial distribution (C2n in[49]). From Figs. 9c, d and10c, d,we note that thesecond-order sensitivity patternsare 4-periodic.

Thisoscillationmightbeduetothe4thFouriercoefficientoftheflamedistribution.Thisanalysis,however,isbeyondthe scopeofthispaperandisleftforafollow-onstudy.Byinspection,wefindanaccuratematchbetweenthefinitedifference calculationsandtheadjointpredictions.Thegrowthrateisoverallmostsensitivetothetimedelays

τ

,butthevalueisabout twenty timessmallerthanthecorrespondingrotationallysymmetricCaseBofFig. 7d.Moreover,althoughconfigurationC is similar tothe corresponding rotationallysymmetric CaseB, theparameters to whichit ismostsensitive are different.

(14)

Table 3

SummaryofthesensitivitiesofFigs. 7,8,9 and10.xxx=strong,xx=mild,x=weak.

Case Li Sp Si ρp α n τ 1st-order Re1,n) A xxx xx xxx xx xx xx x B x x x x x x xxx C xx x xx x xx x x Im1,n) A x x x x x x xxx B xx x xx x xx xx xxx C xxx xx xxx xx xxx x x 2nd-order Re2,n) A x x x x x x xxx B x x x x x x xxx C xx x xx x xxx x x Im2,n) A x x x x x x xxx B x x x x x x xxx C xx x x x xxx x x

Fig. 9. First- (toprow)andsecond-order(bottomrow)sensitivitiestotheflameindex,n,inCaseC.Thesensitivitiesvarybecausetheconfigurationis non-rotationallysymmetric(Fig. 5).Angularfrequencysensitivityintheleftpanels,growth-ratesensitivityintherightpanels.Theadjointsensitivity matchesthebenchmarksolutiongivenbyfinitedifferences.Thefirst-ordereigenvaluedriftisobtainedbymultiplyingthesesensitivitiesby.

Fig. 10. Same asFig. 9as for the sensitivity to the time delay,τ. The second-order eigenvalue drift is obtained by multiplying these sensitivities by2.

Thismightindicatethatmodellinganannularcombustorasarotationallysymmetricconfigurationmightoverestimateand poorlypredictthesensitivities.

5. Conclusions

Wepresentfirst- andsecond-ordersensitivitiesofeigenvaluesinnonlinearnon-self-adjointeigenproblemswith/without degeneracyviaanadjointmethod.Thisisthefirstapplicationofadjointsensitivityanalysistononlineareigenproblemsas

(15)

applied todesign-parametersensitivitystudies inthermo-acoustics.Theadjointsensitivities arecalculatedinanelaborate annularcombustorthermo-acousticnetwork.Twocasesarestudiedasrepresentativecasesofplenum–combustion-chamber dynamics:theweaklycoupledcase,inwhichthecombustion-chambermodeisunstable,andthestronglycoupledcase,in whichtheplenummodeiscoupledwiththecombustion-chambermodethroughtheburners.

We show howto usethe adjointframework tostudythe sensitivitytothe system’sparameters reducing thenumber of computations by a factor equal to the number of the system’s parameters. This is particularly attractive to annular combustors, where the number of flames, thus parameters, is large. We find the strongly coupled case is overall more sensitiveandthesymmetrybreakingmakesthesystemlesssensitive.Thissuggeststhatperfectrotationalsymmetrymight be an exceedingly sensitive model.Moreover, the adjoint sensitivities are not prone to numericalcancellation errors, in contrasttofinitedifferences,becausetheydonotdependonthesizeoftheperturbation.

The sensitivityanalysisshowedthatthe eigenvaluecanbe mostsensitivetogeometric parameters (seecasesA andC inTable 3).However,themanufacturingtolerancesonthegeometryareusuallysmall,i.e., theuncertaintyonthephysical dimensionsoftheannularcombustorissmall.Ontheotherhand,theuncertaintyontheflameparametersand/ordamping islarger[39].Inordertoevaluatetheprobability thatathermo-acousticmodeisunstable,theadjointmethodproposedis extendedtouncertaintyquantificationoftheeigenvaluecalculationinthesecondpartofthispaper[40].

Theadjointframeworkisapromisingmethodfordesigntoobtainquickestimatesofthethermo-acousticsensitivitiesat verycheapcomputationalcost.

Acknowledgements

The authorsaregratefultothe2014CenterforTurbulenceResearchSummerProgram(StanfordUniversity)wherethe ideas of thiswork were born. L.M.and M.P.J acknowledge the European Research Council – Project ALORS 2590620 for financial support.L.M gratefullyacknowledges thefinancial supportreceived fromtheRoyal Academyof Engineering Re-search Fellowships scheme. The authors thank Prof. Franck Nicoud forfruitful discussions. Fig. 1 was adapted from the articleofS.R.StowandA.P.Dowling,Atime-domainnetworkmodelfornonlinearthermoacousticoscillations,ASMETurboExpo, GT2008-50770[9]withpermissionoftheoriginalpublisherASME.

Appendix A. Restrictedmatrixinversionforthecalculationoftheperturbedeigenfunction

The aim is to find the square submatrix of

N {

ω

0

,

p0

}

with rank

=

K

N, in the subspace of which the matrix is

invertible.First,wepartition

N ˆ

q0as

N

{

ω

0

,

p0

q0

=

NN11k1 NN1kkk NN13k3 N31 N3k N33

qq

ˆ

ˆ

00,,1k

ˆ

q0,3

⎠ ,

(37)

whereN1k,N3k areK

×

N submatrices;Nk1,Nk3are N

×

K submatricesandNkk isan N

×

N submatrix.q

ˆ

0,1

,

q

ˆ

0,k

,

q

ˆ

0,3 are

subvectors.Thesubvectorq

ˆ

0,kischosentohavenon-trivialcomponents.Hence,thesystemcanberecastas

N

{

ω

0

,

p0

q0

=

NN11k1 NN13k3 N31 N33



q

ˆ

0,1

ˆ

q0,3



= −

NN1kkk N3k

⎠ ˆ

q0,k

.

(38)

Thematrixontheleft-handsidehasrank

=

K

N becauseallitscolumnsareindependentsincethe N valuesofq

ˆ

0,k are non-trivialandtheright-handsideisalinearcombinationoftheleft-handside.Therefore,thecolumnsof

N

corresponding to q

ˆ

0,k on theleft hand-sidecan be removed fromthe matrix without affectingits rank. To reduce the rowspace to a subspace inwhichthematrixhasfull rank,weusethesameargumentasbeforewiththeadjointeigenvectorq

ˆ

+0.The N

componentsq

ˆ

+0,karechosentobenon-trivial.Hence,theN rowscorrespondingtoq

ˆ

+0,k canberemovedandthefinallinear systembecomesinvertibleinthissubspace,asfollows



N11 N13 N31 N33

 

ˆ

q0,1

ˆ

q0,3



= −



N1k N3k



ˆ

q0,k

.

(39)

Now,thesquarematrixontheleft-handsideisinvertiblebecauseithasrank

=

K

N andthesubspacedimensionisK

N.

Usingthisobservation,wecansolvefortheperturbedeigenvectorsubstitutingequation(25)into(39)



N11 N13 N31 N33

 

ˆ

z1

ˆ

z3



= −



N1k N3k



ˆ

q0,k

+





1k



3k



.

(40)

Setting theeigenvectorto zerobecauseitis alreadyknown,z can

ˆ

be easily foundby solvingthe linearsystem, thefinal solutionofwhichis

ˆ

q1

=

z

ˆ

01

ˆ

z3

⎠ + β

0q

ˆ

0

,

(41)

(16)

References

[1] T.C.Lieuwen,V.Yang,CombustionInstabilitiesinGasTurbineEngines:OperationalExperience,FundamentalMechanisms,andModeling,American InstituteofAeronauticsandAstronautics,Inc.,2005,http://www.lavoisier.fr/livre/notice.asp?id=RAXW2KALXX6OWV.

[2]T.Poinsot,Simulationmethodologiesandopenquestionsforacousticcombustioninstabilitystudies,in:AnnualResearchBriefs,CenterforTurbulence Research,2013,pp. 179–188.

[3] W.Polifke,A.Poncet,C.O.Paschereit,K.Döbbeling,Reconstructionofacoustictransfermatricesbyinstationarycomputationalfluiddynamics,J.Sound Vib.245 (3)(2001)483–510,http://dx.doi.org/10.1006/jsvi.2001.3594.

[4]S.R.Stow,A.P.Dowling,Thermoacousticoscillationsinanannularcombustor,in:ASMETurboExpo,2001,2001-GT-0037.

[5]A.P.Dowling,S.R.Stow,Acousticanalysisofgasturbinecombustors,J.Propuls.Power19 (5)(2003)751–764.

[6] A.P. Dowling, A.S. Morgans, Feedback control of combustionoscillations, Annu. Rev. FluidMech. 37 (2005) 151–182, http://dx.doi.org/10.1146/ annurev.fluid.36.050802.122038.

[7] M.Bauerheim,F.Nicoud,T.Poinsot,Theoreticalanalysisofthemassbalanceequationthroughaflameatzeroandnon-zeroMach numbers,Combust. Flame162 (1)(2015)60–67,http://dx.doi.org/10.1016/j.combustflame.2014.06.017.

[8] L.StrobioChen,S.Bomberg,W.Polifke,Propagationandgenerationofacousticandentropywavesacrossamovingflamefront,Combust.Flame166 (2016)170–180,http://dx.doi.org/10.1016/j.combustflame.2016.01.015.

[9]S.R.Stow,A.P.Dowling,Atime-domainnetworkmodelfornonlinearthermoacousticoscillations,in:ASMETurboExpo,2008,GT2008-50770.

[10]T.Poinsot,D.Veynante,TheoreticalandNumericalCombustion,2ndedition,R. T. Edwards,2005.

[11] F.Nicoud,L.Benoit,C.Sensiau,T.Poinsot,Acousticmodesincombustorswithcompleximpedancesandmultidimensionalactiveflames,AIAAJ.45 (2) (2007)426–441,http://dx.doi.org/10.2514/1.24933.

[12] L. Crocco,Research on combustioninstability inliquid propellantrockets, Symp.,Int., Combust. 12 (1)(1969) 85–99, http://dx.doi.org/10.1016/ S0082-0784(69)80394-2,http://linkinghub.elsevier.com/retrieve/pii/S0082078469803942.

[13]T.Kato,PerturbationTheoryforLinearOperators,2ndedition,Springer,Berlin,Heidelberg,NewYork,1980.

[14]A.Messiah,QuantumMechanics,DoverPublications,1961.

[15] P.Mantegazza,G.Bindolino,Aeroelasticderivativesasasensitivityanalysisofnonlinearequations,AIAAJ.25 (8)(1987)1145–1146,http://dx.doi.org/ 10.2514/3.9758.

[16] Z.-S.Liu,S.-H.Chen,Eigenvalueandeigenvectorderivativesofnonlineareigenproblems,J.Guid.ControlDyn.16 (4)(1993)788–789,http://dx.doi.org/ 10.2514/3.21083.

[17] M.S.Jankovic,Analyticalsolutionsforthenthderivativesofeigenvaluesandeigenvectorsforanonlineareigenvalueproblem,AIAAJ.26 (2)(1988) 204–205,http://dx.doi.org/10.2514/3.9873.

[18]A.L.Andrew,K.-W.E.Chu,Commenton“Analyticalsolutionsforthenthderivativesofeigenvaluesandeigenvectorsforanonlineareigenvalueproblem”, AIAAJ.29 (7)(1990)1990–1991.

[19] L.Li,Y.Hu,X.Wang,Astudyondesignsensitivityanalysisforgeneralnonlineareigenproblems,Mech.Syst.SignalProcess.34(2012)88–105,http:// dx.doi.org/10.1016/j.ymssp.2012.08.011.

[20] A.M.Tumin,A.V.Fedorov,Instabilitywaveexcitationbyalocalizedvibratorintheboundarylayer,J.Appl.Mech.Tech.Phys.25(1984)867–873,http:// dx.doi.org/10.1007/BF00911661.

[21] D.C. Hill,A theoreticalapproachfor analyzing therestabilization ofwakes,NASA Technicalmemorandum103858, http://adsabs.harvard.edu/abs/ 1992aiaa.meetT....H.

[22] F. Giannetti, P. Luchini, Structural sensitivity of the first instability of the cylinder wake, J. Fluid Mech. 581 (2007) 167–197, http://journals. cambridge.org/abstract_S0022112007005654.

[23] D.Sipp,O.Marquet,P.Meliga,A.Barbagallo,Dynamicsandcontrolofglobalinstabilitiesinopen-flows:alinearizedapproach,Appl.Mech.Rev.63 (3) (2010)030801,http://dx.doi.org/10.1115/1.4001478.

[24]P.J.Schmid,L.Brandt,Analysisoffluidsystems:stability,receptivity,sensitivity,Appl.Mech.Rev.66 (2)(2014)024803.

[25] O.Tammisola,F.Giannetti,V.Citro,M.P.Juniper,Second-orderperturbationofglobalmodesandimplicationsforspanwisewavyactuation,J.Fluid Mech.755(2014)314–335,http://dx.doi.org/10.1017/jfm.2014.415,http://www.journals.cambridge.org/abstract_S0022112014004157.

[26] S.Camarri,Flowcontroldesigninspiredbylinearstabilityanalysis,ActaMech.226 (4)(2015)979–1010,http://dx.doi.org/10.1007/s00707-015-1319-1. [27]P.Luchini,A.Bottaro,Adjointequationsinstabilityanalysis,Annu.Rev.FluidMech.46(2014)1–30.

[28] L.Magri,M.P.Juniper,Sensitivityanalysisofatime-delayedthermo-acousticsystemviaanadjoint-basedapproach,J.FluidMech.719(2013)183–202,

http://dx.doi.org/10.1017/jfm.2012.639.

[29] L.Magri,M.P.Juniper,Atheoreticalapproachforpassivecontrolofthermoacousticoscillations:applicationtoductedflames,J.Eng.GasTurbines Power 135 (9)(2013) 091604, http://dx.doi.org/10.1115/1.4024957, http://gasturbinespower.asmedigitalcollection.asme.org/article.aspx?doi=10.1115/ 1.4024957.

[30]L.Magri,M.P.Juniper,Adjoint-basedlinearanalysisinreduced-orderthermo-acousticmodels,Int.J.SprayCombust.Dyn.6 (3)(2014)225–246.

[31]G.Rigas,N.P.Jamieson,L.K.B.Li,M.P.Juniper,Experimentalsensitivityanalysisandcontrolofthermoacousticsystems,J.FluidMech.787(2016)R1.

[32] L.Magri,M.P.Juniper,Globalmodes,receptivity,andsensitivityanalysisofdiffusionflamescoupledwithductacoustics,J.FluidMech.752(2014) 237–265,http://dx.doi.org/10.1017/jfm.2014.328.

[33] A.Orchini,M.P.Juniper,Linearstabilityandadjointsensitivityanalysisofthermoacousticnetworkswithpremixedflames,Combust.Flame165(2015) 97–108,http://dx.doi.org/10.1016/j.combustflame.2015.10.011.

[34]L.Magri,Adjointmethodsinthermo-acousticandcombustioninstability,Ph.D.thesis,UniversityofCambridge,2015.

[35]M.P.Juniper,L.Magri,M.Bauerheim,F.Nicoud, Sensitivityanalysisofthermo-acousticeigenproblemswithadjointmethods,in:SummerProgram, CenterforTurbulenceResearch,2014,pp. 189–198.

[36]E.J.Hinch,PerturbationMethods,CambridgeUniversityPress,1991.

[37]G.A.Mensah,J.P.Moeck,EfficientcomputationofthermoacousticmodesinannularcombustionchambersbasedonBloch-wavetheory,in:ASMETurbo Expo,2015,GT2015-43476.

[38] M.Bauerheim,J.-F.Parmentier,P.Salas,F.Nicoud,T.Poinsot,Ananalyticalmodelforazimuthalthermoacousticmodesinanannularchamberfedby anannularplenum,Combust.Flame161 (5)(2014)1374–1389,http://dx.doi.org/10.1016/j.combustflame.2013.11.014,http://linkinghub.elsevier.com/ retrieve/pii/S0010218013004276.

[39] J.O’Connor,V.Acharya,T.Lieuwen,Transversecombustioninstabilities:acoustic,fluidmechanic,andflameprocesses,Prog.EnergyCombust.Sci.49 (2015)1–39,http://dx.doi.org/10.1016/j.pecs.2015.01.001.

[40]L.Magri,M.Bauerheim,F.Nicoud,M.P.Juniper,Stabilityanalysisofthermo-acousticnonlineareigenproblemsinannularcombustors.PartII. Uncer-taintyquantification,J.Comput.Phys.325(2016)411–421.

[41]J.T.Oden,AppliedFunctionalAnalysis,Prentice-Hall,Inc.,1979.

[42]N.Noiray,B.Schuermans,Onthedynamicnatureofazimuthalthermoacousticmodesinannulargasturbinecombustionchambers,Proc.R.Soc.A469 (2013)20120535.

(17)

[43]G.Ghirardo,M.P.Juniper,Azimuthalinstabilitiesinannularcombustors:standingandspinningmodes,Proc.R.Soc.A469(2013)20130232.

[44] M.Bauerheim,P.Salas,F.Nicoud,T.Poinsot,Symmetrybreakingofazimuthalthermo-acousticmodesinannularcavities:atheoreticalstudy,J.Fluid Mech.760(2014)431–465,http://dx.doi.org/10.1017/jfm.2014.578.

[45] M.Boileau,G.Staffelbach,B.Cuenot,T.Poinsot,C.Berat,LESofanignitionsequenceinagasturbineengine,Combust.Flame154 (1–2)(2008)2–22,

http://dx.doi.org/10.1016/j.combustflame.2008.02.006.

[46] M.Bauerheim,A.Ndiaye,P.Constantine,S.Moreau,F.Nicoud,Symmetrybreakingofazimuthalthermoacousticmodes:theUQperspective,J.Fluid Mech.789(2016)534–566,http://dx.doi.org/10.1017/jfm.2015.730.

[47]L.Crocco,S.-I.Cheng,Theoryofcombustioninstabilityinliquidpropellantrocketmotors,Tech.rep.,January1956.

[48]T.Lieuwen,UnsteadyCombustorPhysics,CambridgeUniversityPress,2012.

[49] N.Noiray,M.Bothien,B.Schuermans,Investigationofazimuthalstagingconceptsinannulargasturbines,Combust.TheoryModel.15 (5)(2011) 585–606,http://dx.doi.org/10.1080/13647830.2011.552636.

Figure

Fig. 7. Normalized first-order eigenvalue sensitivities. Calculation with Finite Difference (FD) and Adjoint methods (AD)
Fig. 9. First- (top row) and second-order (bottom row) sensitivities to the flame index, n, in Case C

Références

Documents relatifs

(2006), respecting the identified and applicable barriers of interoperability only when partners or systems wishing to interoperate are well known. interoperability performance

During the development of the robots, I also bring to this work my previous experience and research interests drawing on my background in manufacturing, sensor

/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur. For

manufacturing sector like product ordering, warehousing, and distribution are not that important in the construction domain. Whereas, managing a construction business requires

The magnetically separable catalytic solid is designed by a sol–gel process in which a palladium catalyst is encapsulated in a silica sol–gel-modified polyethylenimine composite in

In the context of cell preheating, some thermal and mechanical parameters are now function of the temperature, such as the thermal expansion of the ramming paste, while other ones

Finalement, précisons qu’au delà de leur capacité à stocker du carbone dans les sols, les prairies possèdent de nombreux atouts environnementaux (lutte contre le ruissellement

Concentrate results match with chemical analyses (“Figure 13”) but for the others samples (milled ore, tailings1, tailings2 and total tailings) (graphic 12, 13, 14