• Aucun résultat trouvé

Plant esterified oxylipins: structure – function relationship

N/A
N/A
Protected

Academic year: 2021

Partager "Plant esterified oxylipins: structure – function relationship"

Copied!
1
0
0

Texte intégral

(1)

Plant esterified oxylipins: structure – function relationship

Genva M., Andersson M.X., Nasir M.N., Lins L., Deleu M., Fauconnier M-L.

Gembloux Agro-Bio Tech, University of Liège, Passage des déportés, 2, 5030 Gembloux/Belgium

Literature

1 Hisamatsu Y. & al., Tetrahedron Letters, 2003, 44(29), 5553-5556

2 Nilsson A.K. & al., FEBS Letters , 2012, 586(16), 2483-2487

3 Vu H.S. & al., Plant physiology, 2012, 158, 324-339

4 Andersson, M.X. & al., Journal of biological chemistry, 2006, 281(42), 31528-31537

5 Böttcher, C. & Weiler, E.W., Planta, 226(3), 629-637

Materials and methods

1. Lipids extraction

2. Arabidopsides purification 3. Arabidopsides characterization

Context and objectives

Plant oxylipins produced by the oxidation of unsaturated fatty acids play important roles in plant metabolism and protection against pathogens. Recently, it has been discovered that Arabidopsis thaliana L. produces high quantities of oxylipins

esterified to galactolipids under stress2. Those molecules are called arabidopsides and are produced following oxidation of

monogalactosylglycerol and digalactosylglycerol found in high quantities in thylakoïd membranes. Moreover, arabidopsides

pattern is different depending on the nature of the stress3, suggesting an involvement of those molecules in plant

protection responses.

Unfortunately, those compounds are not commercially available yet. In the present work, high quantities of arabidopsides were extracted and purified from Arabidopsis thaliana L.

Conclusion

In this study, arabidopsides production was easily induced in Arabidopsis thaliana L. Four different molecules were then extracted and highly purified

Results: four arabidopsides highly purified

Arabidopsis thaliana L. Arabidopside A1 HPLC-mass spectrometry NMR (1H & HSQC) UV spectrometry

Acknowledgments

The authors thank The National Fund for Scientific Research for their financial support

For further information

Please contact m.genva@ulg.ac.be 0,00 0,50 1,00 1,50 2,00 Ex tr ac ted mass (mg ar abidop side / 100 g plan t) 97,4 91,28 83,4 76,9 0 20 40 60 80 100 120 A rabidop sides puriti es (%) 0,25 0,78 0,47 1,66 Fig 4. Arabidopsides extraction and purification yield Fig 3. Arabidopsides purities

NMR (HSQC & 1H), mass spectrometry and UV spectrometry confirmed

arabidopsides identification. For example, UV highest absorbance of molecules was

closed to 220 nm, as described in literature4 (Fig 2.).

Otherwise, HPLC-MS results (Fig 1.) showed that arabidopsides A and B purities are very high (respectively 97,4 and 91,28%) and that arabidopsides D and E purities are quite lower (respectively 83,4 and 76,9 %) (Fig 3.).

0 0,5 1 200 225 250 275 300 325 350 375 400 ab so rban ce Wavelenght (nm)

Fig 2. Arabidopside A UV-spectra Fig 1. Arabidopside A LC-MS chromatogram

a. Arabidopsis thaliana growing under short day conditions (8H day/ 14H night)

b. Leaves harvesting and stress induction with liquid nitrogen. Leaves need to be frozen

c. Leaves thawing at room temperature

d. Leaves blending and lipid extraction with butanol : methanol (3:1)

e. Liquid : liquid extraction of lipids

50% aqueous phase: 2% acetic acid in water 50% organic phase: heptane : ethyl acetate (3:1)

f. Organic phase drying and storage in CHCl3

a. Silica column purification of glycolipids

Apolar lipids elution with CHCl3 : aceton

(9:1)

Glycolipids elution with aceton : methanol (9:1)

b. Semi-preparative HPLC purification of arabidopsides

C18 column (4,6 mm ; 5 µm)

isocratic elution of acetonitril : water (85:15)

UV detection at 220 nm

Perspectives

Finally, Fig 4. shows that arabidopside A was extracted and purified with the highest yield.

Contrariwise, arabidopside E was extracted and purified in lowest quantities.

Arabidopsides are lipidic compounds produced by

Arabidopsis thaliana L. under stress

OPDA containing molecules (ex. Arabidopsides) are

present in plant thylakoïd membranes5

Are arabidopsides present in other membranes (ex. Plasma membrane)? IN PROGRESS Does arabidopsides modify membranes organization? In-silico: modelization In-vitro: membrane models

Can different membrane organization be a signal for defence mechanism

Références

Documents relatifs

ةنيدم تفرع دلببلاب ؾاذنآ ؼكرعبؼا لوتسبؼا لذإ يقترت لد فإ ك تيلا تاعانصلا ك نهبؼا نم ديدعلا رئازبعا فويسلدنلأا لغشنا ك، ةثراوتبؼا ديلاقتلا ك

ﺔـــﻣﺪـــﻘــﻣ دﻷاو ﺔﻴﻓﺎﻘﺜﻟا ﺔﺣﺎﺴﻟا ﺪﻬﺸﺗ ﺔﻟوﺎﳏ ةﺮﺻﺎﻌﳌا ﺔﻳﺮﺋاﺰﳉا ﺔﻴﺑ ﻦﻋ ﺎﻬﺟوﺮﺧو ﺔﻳﺮﺋاﺰﳉا ﺔﻳاوﺮﻟا دﺮﲤ ﻋ ﺔﻓﻮﻟﺄﳌا ﺎﻬﺘﻴﻄﳕ ﻩﺮﻓﻮﺗ ﺎﳌ اﺮﻈﻧ

The required relative humidity of the conditioning room is obtained by positioning interlinked dampers on the two inlet ducts by a modulated damper motor actuated by a relative

Ainsi, la structure métropolitaine redéfinie la gouvernance des territoires au niveau local en permettant de « fédérer » plusieurs grandes villes autour de compétences

Par ailleurs, cet exercice a comme mission de permettre à chacun d’avoir accès à son propre espace intérieur à partir duquel il reçoit l’œuvre de l’autre et vit

The weekly SIDC Bulletin gives de- tailed report of solar activity (including sunspot number, solar flares, filament eruptions and CMEs, 10.7 cm radio flux), interplanetary

key words : Patterns of learning (surface, deep), Cognitive style (domain-based, domain- independent).. :ةمدقم ،هدودرم ينستحو يوبترلا لمعلا

Shiitake fruit bodies were cultivated by three mushroom producers [9] in the French region of Occitanie using the strain Mycelia-3782 in various growing conditions (organic: