• Aucun résultat trouvé

Technical  improvement  of  tools  used  in  Hydra  for  live  imaging

I. Technical  aspects  of  the  study

2.   Technical  improvement  of  tools  used  in  Hydra  for  live  imaging

Solution:  gene  knockout  via  CRISPR-­‐Cas9  electroporation  

Gene   knockout   could   be   a   possible   way   to   obtain   loss-­‐of-­‐function   data.  

Currently,  CRISPR-­‐Cas9  is  a  method  to  achieve  gene  deletions  well  established   in  numerous  species.  Since  it  was  used  for  the  first  time  to  genetically  edit  a   eukaryotic   cell   (Cong   et   al.,   2013),   CRISPR   has   been   optimized   for   different   model   system   including   cnidarians   such   as  Nematostella,  in   the   Gibson   lab:  

(Ikmi  et  al.,  2014),  Hydractinia  by  the  group  of  Uri  Frank  (Gahan  et  al.,  2017).  

Lately   attempts   were   made   to   establish   this   method   via   electroporation   in   Hydra   by   the   group   of   Thomas   Holstein   (Lommel   et   al.,   2017).   Stable   gene   knock-­‐in  and  knock-­‐out  would  be  a  great  asset  to  strengthen  Hydra  as  model   system  and  in  the  same  time  to  open  the  possibility  to  tackle  longer  biological   processes  such  as  regeneration.    

 

2. Technical improvement of tools used in Hydra for live imaging

With   this   study,   we   developed   novel   approaches   for  in   vivo   imaging   of   early   ROS   signals   during   wound   healing   and   regeneration.   These   experiments   could   be   quantified   and   we   were   able   to   obtain   significant   data   that   contribute   to   characterizing  ROS  signaling  in  injured  Hydra.  At  the  time  when  I  joined  the  project   available   tools   were   not   sufficient   to   answer   this   biological   question.   Various  

improvements,   especially   on   the   level   of   quantification   of   ROS   signals   and   size   of   wound  during  the  wound  healing  allowed  us  to  fill  in  the  previous  gaps  in  knowledge   of  early  injury-­‐induced  signaling  in  Hydra.  Hydra  tissue  is  optically  transparent,  which   allows  an  easy  tracking  of  labeled  cells  using  different  cellular  dyes.  Before  I  became   in  charge  for  this  project,  there  were  already  several  tools  established  to  follow  ROS   production  and  wound  healing  in  Hydra.  At  that  time,  the  main  weakness  of  the  ROS   imaging  tools  was  their  inability  to  produce  quantitative  data  in  case  of  mitochondrial   ROS   imaging,   and   non-­‐satisfactory   specificity   of   total   ROS   dye   that   was   used   to   address   H2O2   production   after   bisection.   I   extended   this   live   imaging   expertise   acquired   during   my   PhD,   and   as   a   side-­‐project   could   develop   a   live   imaging   tool   to   monitor  subcellular  autophagy  in  Hydra.  

a) The  MitoSOX  molecular  dye   is   used   to   specifically   label   superoxide   produced   exclusively   by   mitochondria.   It   shows   bright   red   fluorescence   that   can   be   followed   with   any   fluorescent   microscope.   In   the   past,   a   fluorescent   stereomicroscope   was   used   for   this   type   of   experiments,   and   the   resolution   was   not   sufficient   for   signal   to   be   quantified.   Also,   animals   were   not   imaged   while   mounted,   but   rather   orientated   before   each   imaging   time   point,   thus   making   time   lapse   impossible   to   perform.   There   was   an   additional   problem   with   this   approach;   since   orientation   of   polyps   during   imaging   often   makes   them   extend   their   wound   or   even   damage   them,   which   can   lead   to   artificial   data.    

I   overcame   this   challenge   by   developing   a   simple   system   to   mount   bisected   animals   in   low-­‐melting   agarose   and   then   image   them   using   the   inverted   spinning   disk   confocal   microscopy.   Using   this   method,   it   is   now   possible   to   perform   time-­‐lapse   videos   and   follow   mitochondrial   ROS   production   in   high   resolution  that  can  be  quantified  (Explained  more  in  Chapter  1:  Material  and   Methods),  and  since  spinning  disk  confocal  microscope  has  significantly  faster   capture  time,  it  is  possible  to  follow  several  animals  in  the  same  time.  For  the   imaging   experiments   that   had   several   conditions,   such   as   pharmacological   inhibition   tests,   I   used   a   special   imaging   microplate   that   has   four   separate   chambers,   allowing   following   up   to   four   different   conditions.   Besides   high-­‐

resolution   imaging,   I   also   applied   a   simple   quantification   model   that   counts   single  dots  that  correspond  to  mitochondrial  ROS  signal,  using  Imaris  imaging  

software.   These   improvements   led   to   several   experimental   aspects,   which   were   not   available   before:   longer   time-­‐lapse   videos   of   ROS   production,   following   of   several   animals   and   several   conditions   (particularly   useful   in   pharmacological  inhibition  studies)  and  full  quantification  of  imaging  results.  

b) The   H2DCFDA   molecular   dye   was   previously   used   to   follow   in   vivo   the   production   of   H2O2.   The   main   weakness   of   this   method   was   its   lack   of   specificity   together   with   the   fact   that   the   obtained   signals   are   very   hard   to   quantify.  The  H2DCFDA  dye  is  non-­‐specific  since  it  labels  many  different  types   of   ROS.   To   precisely   follow   H2O2,   I   optimized   and   applied   a   known   quantification   technique   previously   used   in   human   cancer   cells   (Fu   et   al.,   2006),   human   leukocytes   (Mohanty   et   al.,   1997),  E.  coli  (Zhang   et   al.,   2015),   plants  (Xiong  et  al.,  2007),  D.  melanogaster  (Venkatachalam  et  al.,  2008)  and   mice  (Wang  et  al.,  2015).  This  method  relies  on  specificity  of  both  components   of   working   solution   for   H2O2-­‐mediated   oxidation:   Amplex   UltraRed   molecule   and   horseradish   peroxidase   enzyme   (HRP).   While   being   extremely   sensitive   and   quantitative,   the   drawback   of   this   technique   is   that   it   is   a   purely   fluorescence   reading-­‐based   method,   meaning   that   it   cannot   be   used   to   map   H2O2  producing  cells,  which  is  the  case  and  strength  of  live  imaging.  

c) The  Phalloidin  dye  is  used  to  label  F-­‐actin  in  the  cell,  useful  to  follow  wound   closure.   It   has   been   previously   used   in  Hydra   to   follow   wound   healing   and   labeling   conditions   were   established   prior   to   my   arrival   to   this   project.   My   main   concern   was   actually   the   imaging   condition.   Previously,   after   the   Phalloidin  labeling  of  bisected  Hydra  fixed  at  various  time  points,  another  cut   was   made   to   produce   a   donut   shaped   tissue   that   represented   the   wounded   plane.  Later  on,  this  Hydra  ‘’donuts’’  were  mounted  on  slides  and  imaged.  The   problem   was   exactly   in   this   step,   since   after   the   second   cut,   the   bisected  

‘’donut’’  could  easily  be  inverted,  and  actually  the  wrong  side  of  the  cut  could   be   imaged,   but   also   with   this   type   of   mounting   tissue   is   being   pressed,   and   wound   size   cannot   be   correctly   measured.   To   improve   this   part,   instead   of   cutting   polyps   again   to   produce   ‘’donut’’   shaped   tissue   piece,   I   mounted   full   Hydra  halves  in  agarose  and  orientated  them  upside  down  to  be  perpendicular   to   the   cover   slip   of   imaging   dish.   With   this,   several   improvements   can   be   noted:   the   wound   is   imaged   in   almost   native   3D   condition,   without   tissue  

pressing,  and  wound  size  can  be  easily  calculated  measuring  the  surface  of  the   wound  with  available  imaging  software,  such  as  ImageJ  (see  details  in  Chapter   1:  Material  and  Methods).    

d) As  previously  mentioned  in  the  Introduction,  the  live  imaging  of  the  autophagy   flux   with   a   tandem   fluorescent   biosensor   is   now   the   standardized   tool   to   monitor  and  quantify  autophagy  in  the  field.  However,  most  researchers  used   it  on  cells  maintained  in  culture  (Huang  et  al.,  2013;  Suman  et  al.,  2014;  Perez-­‐

Neut   et   al.,   2016),   while   its   use   on   whole   animals   or   organs   is   limited.   In   zebrafish,   autophagy   can   only   be   followed   live   during   embryogenesis   (Schiebler  et  al.,  2015)  and  in  mice,  which  was  the  first  organism  to  be  used  to   express   this   biosensor,   the   autophagy   flux   can   only   be   followed   in   primary   culture   (Li   et   al.,   2014).   Here   the   autophagic   flux   can   be   followed   with   the   tandem  biosensor  in  vivo  in  intact,  adult  animals.    

When   electroporated   in  Hydra,   this   complex   biosensor   is   surprisingly   well   expressed  with  tens  of  positive  epithelial  cells  and  easy  to  follow  to  obtain  vast   experimental  data.  The  fluorescence  of  these  chimeric  proteins  is  very  strong,   making   the   quantification   with   the   Imaris   software   quite   robust.   Using   this   experimental  setup,  we  obtained  crucial  data  that  contributed  to  the  analysis   of  the  aging  project  carried  out  in  the  lab.  Different  expression  of  the  biosensor   in   the   strains   Ho_CS   and   Ho_CR   contributed   to   the   elucidation   in   the   differentiating  them  on  the  cellular  level.  Our  data  obtained  with  live  imaging   suggests  that  Ho_CS  animals  are  not  equipped  with  fully  functional  autophagy   machinery  as  evidenced  in  Ho_CR  and  Hv_Basel  in  the  homeostatic  conditions,   or   when   challenged   with   MG132,   an   autophagic   flux   enhancer   (Chapter   3:  

Figure  3).  Another  key  discovery  that  this  live  imaging  setup  contributed  to  is   the  characterization  of  WIPI2(RNAi)  phenotype.  The  WIPI2  protein  is  known   in  mammalian  cells  as  the  important  part  of  the  autophagic  mechanism  due  to   its   binding   to   Atg16L1,   which   is   a   main   actor   in   autophagosome   formation   (Dooley  et  al.,  2014).  Using  our  experimental  setup,  we  have  confirmed  that  in   WIPI2(RNAi)  Hydra  the  autophagy  flux  is  severely  impaired  (Chapter  3:  Figure   7).    

Methodological   improvements   presented   here   were   a   major   factor   in   obtaining   invaluable   data   in   this   PhD   project   that   contributed   to   our   current   knowledge   on   immediate  injury-­‐induced  signaling  during  regeneration  in  Hydra.  

 

3. Chemical tools used to characterize ROS metabolism during wound