• Aucun résultat trouvé

I.3. Cellular basis of Hydra regeneration

Sources  of  cells  that  are  used  for  regeneration  vary  greatly  in  different  regenerative   animals.   At   the   moment   it   is   accepted   that   there   are   three   main   mechanisms   that   provide  new  cells  during  regeneration:  (1)  Stem  cell  activation,  where  resident  stem   cells  start  to  divide  and  produce  more  cells  like  itself,  following  by  differentiation  into   the   required   cellular   types   (Figure   2A,   top)   (Weissman   et   al.,   2001).   Clonogenic   Neoblasts   (cNeoblasts)   in   planarian   regeneration   (Wagner   et   al.,   2011)   and   i-­‐cell   progenitors  in  Hydra  mid-­‐gastric  apical  regeneration  (Chera  et  al.,  2009b)  are  a  good   example   of   stem   cell   activation.   (2)   De-­‐differentiation   is   a   process   where   differentiated  cells  temporarily  lose  their  differentiated  characters,  re-­‐enter  the  cell   cycle   and   produce   cells   that   can   now   act   as   progenitor   cells   that   continue   to   proliferate  for  a  while  to  form  a  blastema  and  subsequently  differentiate  to  form  the   missing   structure   (Figure   2A,   middle)   (Jopling   et   al.,   2011).   Cellular   de-­‐

differentiation   is   a   main   source   for   regeneration   in   zebrafish   heart   (Jopling   et   al.,   2010),   but   also   in   bone   regeneration   in   zebrafish   fin   (Knopf   et   al.,   2011).  (3)   New   cells   can   be   a   result   of   a   process   called  trans-­‐differentiation,   during   which   a   cell   changes  a  state  from  one  cell  type  to  another,  and  this  can  occur  without  cell  division   (Figure  2A,  bottom)  (Jopling  et  al.,  2011).  Trans-­‐differentiation  is  much  less  common   than  the  previously  mentioned  mechanisms.  Some  invertebrates  such  as  jellyfish  have   high   trans-­‐differentiation   potential,   but   this   is   heavily   reduced   in   vertebrate   regeneration  (Shen  et  al.,  2004).  Although  not  naturally  occurring,  but  rather  induced,   common  examples  of  this  mechanism  are  the  formation  of  the  lens  of  the  eye  in  the   chick   (Eguchi   and   Okada,   1973;   Araki   and   Okada,   1977),   or   newt   where   pigmented  

epithelial   cells   can   de-­‐differentiate   and   then   re-­‐differentiate   into   missing   lens   cells   (Jopling  et  al.,  2011).    

Additionally,  stem  cells  can  be  multipotent  or  be  restricted  for  their  contribution  to   the   novel   regenerated   structure.   Planarian   cNeoblast   are   an   example   of   classical   pluripotent   stem   cells,   while  Hydra’s   i-­‐cells   are   undifferentiated   multi-­‐potent   stem   cell  that  when  needed  can  provide  many  different  cellular  types,  such  as  nematocytes,   nerve  or  gland  cells  (Nishimiya-­‐Fujisawa  and  Kobayashi,  2012)  (Figure  2B),  while  for   example   in   salamander   and   axolotl,   limb   regeneration   is   occurring   in   a   much   more   restricted  fashion  (Figure  2C).  Axolotl  regenerates  its  limb  using  different  stem  cells   that   show   lineage   restriction,   and   there   is   no   contribution   of,   for   example,   muscle   cells  to  epidermis  regeneration  (Kragl  et  al.,  2009).    

  Figure 2. Sources of new cells in regeneration

(A)   Stem   cells   can   have   three   distinct   action   patterns   during   regeneration:   activation   (top),  de-­‐differentiation  (middle)  and  trans-­‐differentiation  (bottom).  (B)  cNeoblasts  (S.  

mediterranea)   and   i-­‐cells   (Hydra)   show   multi-­‐potency,   while   in   axolotl,   muscle,   skeleton  or  Schwan  cells  are  lineage-­‐restricted  during  regeneration   (C).  Scheme  after   (Tanaka  and  Reddien,  2011)  

 

It  is  important  to  state  that  apical  and  basal  regeneration  in  Hydra  are  very  different.  

While  apical  regeneration  results  in  the  formation  of  a  complex  head  structure,  basal   regeneration   results   in   a   simpler   structure,   the   foot.   Also   apical   regeneration   is   simpler   to   follow,   since   it   is   visually   easier   to   monitor   the   morphological   changes   such  as  the  appearance  of  tentacle  rudiments  (Bode,  2003),  especially  with  kinetics-­‐

type   experiments,   and   thus   it   was   studied   much   more.   On   the   level   of   cellular  

A B

C

remodeling,  Hydra   apical   regeneration   can   be   divided   into   four   different   phases:  

early,  early-­‐late,  late  and  very  late  (Figure  3)  (Galliot,  2013).    

During   the   immediate   phase   (up   to   2   hours   post   amputation;   hpa)   (Figure   3,   top-­‐

left),   when   the   wound-­‐healing   process   is   launched,   several   important   events   take   place.   I-­‐cells,   located   in   epidermis   undergo   apoptosis   while   gastrodermal   ESCs   lose   their   typical   morphology.   In   the   early   phase,   between   2   and   12   hpa   (Figure   3,   bottom-­‐left),   apoptotic   i-­‐cells   are   engulfed   by   the   gastrodermal   ESCs,   that   now   transiently   lost   their   epithelial   organization,   which   they   re-­‐gain   in   the   early-­‐late   phase  (Figure  3,  top-­‐right).  Something  similar  to  these  cellular  changes  can  be  seen   during   the  Hydra   re-­‐aggregation   process   (Murate   et   al.,   1997).   After   the   wound   is   successfully   healed   during   the   earlier   phases,   the   late   phase   is   characterized   by   a   visible  re-­‐construction  event,  with  the  appearance  of  tentacle  rudiments  that  become   visible  from  40  hpa  (Figure  3,  bottom-­‐right)  (Galliot,  2013).  

 

  Figure 3. Phases of cellular remodeling during Hydra apical regeneration

Hydra   successfully   performs   the   wound   healing   process   during   immediate   to   early   phases  in  regeneration.  ESCs  in  gastrodermis  are  shown  in  gray  with  red  nuclei,  and  i-­‐

cells  as  green  spots  in  white  epidermal  ESCs.  I-­‐cells  that  undergo  apoptosis  are  shown   as   stars,   which   are   later   being   engulfed   by   gESCs   that   transiently   lost   their   epithelial   organization   (bottom-­‐left).   First   regeneration   visual   markers   can   be   seen   during   the   late  phase  (bottom-­‐right),  where  tentacle  rudiments  appear,  followed  by  formation  of   hypostome  (Explained  in  details  in  the  text).  Scheme  after  (Galliot,  2013)  

 

For   some   time,   it   was   considered   that   Hydra   undergoes   only   mophallaxis   –   a   regenerative  program  that  does  not  rely  on  cell  proliferation  (Bosch,  2007).  However,  

Immediate (0-2 hpa) Early (2-12 hpa) Early-late (>16 hpa) Late (>40 hpa)

most   of   the   research   on  Hydra   regeneration   was   based   on   decapitation,   which   was   shown   indeed   to   be   mostly   morphallactic.   In   2009,   the   laboratory   of   B.   Galliot   has   shown  that  upon  mid-­‐gastric  bisection  (an  amputation  made  at  50%  of  animal  body   length)  but  not  decapitation,  proliferating  cells  accumulate  in  the  head-­‐regenerating   tips   immediately   underneath   the   amputation   site.   Following   mid-­‐gastric   bisection   a   wave   of   apoptosis   occurs   in   the   apical-­‐regenerating   (AR)   tip   of   the   animal,   not   present   in   the   basal-­‐regenerating   (BR)   one.   Independently   of   this   apoptotic   event,   progenitors  of  interstitial  cells  migrate  towards  the  wound,  thus  accumulating  under   the   apoptotic   layer.   The   signals   released   by   the   dying   cells   push   the   progenitors   to   rapidly   synchronously   divide   in   the   AR   tips   (Chera   et   al.,   2009b).   This   report   demonstrated   the   rapid   asymmetrical   cellular   response   on   each   side   of   the   cut   and   introduced   in   the   regeneration   field   the   developmental   role   of   the   dying   cells   on   regeneration.