• Aucun résultat trouvé

Hydra, a model for studying the role of injury-induced ROS signalling during regeneration and monitoring the autophagy flux in live animals

N/A
N/A
Protected

Academic year: 2022

Partager "Hydra, a model for studying the role of injury-induced ROS signalling during regeneration and monitoring the autophagy flux in live animals"

Copied!
217
0
0

Texte intégral

(1)

Thesis

Reference

Hydra, a model for studying the role of injury-induced ROS signalling during regeneration and monitoring the autophagy flux in live animals

SUKNOVIC, Nenad Slavko

Abstract

Hydra is a freshwater cnidarian polyp that regenerates any missing part after amputation. This study focuses on the potential role of injury-induced ROS signaling in triggering head regeneration. We detected immediately after mid-gastric bisection symmetrical levels of mitochondrial superoxide and asymmetrical levels of hydrogen peroxide (H2O2), higher in head-regenerating tips than in basal-regenerating ones. This asymmetry likely results from a higher superoxide dismutase (SOD) activity in head-regenerating tips while catalase is lower.

Pharmacological treatments (Tiron, DPI) and transient gene silencing approaches (sod-1, catalase) indicate that signaling via mitochondrial ROS plays a role in wound healing while high levels of H2O2 are necessary for apical regeneration. Through paracrine signalling, H2O2 triggers CREB phosphorylation as well as death of interstitial cells, while H2O2 levels are amplified by apoptotic cells via a feedback loop. Thus, asymmetric ROS signaling immediately after bisection is critical to induce cell death and apical regeneration.

SUKNOVIC, Nenad Slavko. Hydra, a model for studying the role of injury-induced ROS signalling during regeneration and monitoring the autophagy flux in live animals. Thèse de doctorat : Univ. Genève, 2019, no. Sc. Vie 25

DOI : 10.13097/archive-ouverte/unige:125593 URN : urn:nbn:ch:unige-1255930

Available at:

http://archive-ouverte.unige.ch/unige:125593

Disclaimer: layout of this document may differ from the published version.

(2)

 

 

   

 

  Hydra, a Model for Studying the Role of Injury-induced ROS  

Signalling during Regeneration and Monitoring the Autophagy Flux in Live Animals

THÈSE

présentée aux Facultés de médecine et des sciences de l’Université de Genève pour obtenir le grade de Docteur ès sciences en sciences de la vie,

mention Biosciences moléculaires

par

Nenad Slavko SUKNOVIC

de

Novi Sad (Serbie)

Thèse No 25

GENÈVE

Atelier d’impression REPROMAIL Juillet 2019

UNIVERSITÉ DE GENÈVE FACULTÉ DES SCIENCES

Section de biologie

Département de génétique et évolution Professeure Brigitte Galliot

(3)

     

     

(4)

                                                             

The  history  of  science  shows  that  theories  are  perishable.  With  every  new  truth  that  is   revealed   we   get   a   better   understanding   of   Nature   and   our   conceptions   and   views   are   modified.  

  Nikola  Tesla  

(5)

   

(6)

Acknowledgements  

I  would  like  to  thank  first  my  thesis  supervisor  Prof.  Brigitte  Galliot.  Even  though  she   had   other   candidates   available   with   existing,   stronger   background   in   biology,   she   decided  to  go  for  a  guy  educated  mainly  in  chemistry.  She  understood  how  difficult  it   is   to   change   fields,   and   with   her   patience   and   vast   knowledge   contributed   to   the   quality  of  this  doctoral  thesis.  Thank  you  for  all  the  scientific  discussions  that  we  had,   each  of  them  improving  the  way  I  think,  dissect  and  analyze  scientific  data.  

Next,   I   would   like   to   thank   the   members   of   my   PhD   thesis   committee:   Prof.   Jean-­‐

Claude  Martinou,  prof.  Florenci  Serras  and  Dr.  Denis  Martinvalet  for  taking  interest  in   my  work  and  accepting  to  be  the  part  of  my  thesis’  jury.  

Many  thanks  to  all  the  current  and  past  members  of  the  lab  of  Prof.  Brigitte  Galliot:  

Szymon   Tomczyk,   Chrystelle   Perruchoud,   Laura   Iglesias,   Wanda   Buzgariu,   Quentin   Schenkelaars,   Yvan   Wenger,   Salima   Boukerch,   Marie-­‐Laure   Curchoud,   Delphine   Colevret   and   Denis   Benoni,   as   well   as   our   secretaries   Valérie   Mino   and   Corrine   Matthey.    

I   would   like   to   additionally   thank   to   Dr.   Matthias   Vogg,   who   helped   me   with   numerous   discussions   to   tackle   new   points   of   view   on   ROS   signaling   and   for   his   general  interest  in  my  studies.  

Special  thanks  to  Dr.  Silke  Reiter,  who  started  the  ROS  signaling  project  in  the  lab.  

I  would  like  to  mention  my  previous  mentors  that  along  my  studies  each  contributed   to   my   professional   development:   Anđelka   Carević   and   Mirjana   Rašković,   my   high   school   biology   and   chemistry   teachers   who   sparked   my   interest   in   these   amazing   fields  of  science  and  Dr.  Dejan  Orčić,  a  remarkably  bright  young  principal  investigator   that  I  had  the  privilege  to  work  with  during  my  Bachelor  and  Master  thesis.  

Special   thanks   to   my   wonderful   girlfriend   Sarah   Al   Haddad,   who   was   a   constant   emotional   and   professional   support   during   my   whole   PhD   and   especially   while   writing  my  doctoral  thesis.  Could  not  have  done  it  without  you!  

I   also   met   some   extraordinary   people   during   my   stay   in   Geneva,   Szymon   Tomczyk,   Kamila   Kowa,   Adrien   Valino,   Chrystelle   Perruchoud,   Eleni   Tavridou,   Ambra   Sartori,   Alberto  Ferrari  and  Aleksandra  Ležaja.  Thank  you  guys  for  many  nice  memories!  

 

(7)

 

(8)

Hvala

Prvenstveno   mojim   životnim   učiteljima:   majki   Dragici   i   ocu   Slavku.   Moj   tata,   inače   učitelj  geografije  po  struci,  je  i  moj  veliki  mentor.  Jedno  od  mojih  prvih  jasnih  i  dragih   sećanja  je  kako  me  on  upoznaje  sa  brojevima  i  slovima.  U  više  navrata  su  me  kolege   pitale  odakle  mi  toliko  visok  nivo  organizacije  naučnih  podataka.  Ovo  je  nešto  što  sam   bez   sumnje   nasledio   od   mame.   Ona   je   sposobna   da   pronadje   svaki   detalj   bilo   iz   privatnog  ili  poslovnog  života  koji  je  prethodno  zaveden  u  ‘’specijalan  tefter’’.  Hvala   Vam  puno  na  svemu,  ovaj  doktorat  je  Vaših  ruku  delo.  

Dalje  bih  želeo  da  se  zahvalim  mojoj  bližoj  porodici:  babi  Olgi,  ‘mojoj  drugoj  majki’’  -­‐  

tetki  Branki,  teči  Vladislavu  i  njihovim  ćerkama,  mojim  sestrama  Dragani  i  Svetlani  sa   svojim,  sada  višečlanim  porodicama.      

Mom  najboljem  drugu  Nikoli,  koga  poznajem  dugo  koliko  i  sebe,  na  beskrajnoj  podršci   i  razumevanju  i  skoro  tri  decenije  neprestanog  prijateljstva.  

Mojim   drugarima   iz   detinjstva   Petru,   Dušanu,   Vladimiru,   kao   i   onima   koji   su   se   priključili  tokom  srednje  skole:  Ratku,  Sonji,  Gagiju,  Kobri,  Milošu  i  Grbi.  

Specijalno  hvala  mom  kumu  Borisu  i  kumi  Ajumi.  

Mojoj  ekipi  iz  fakultetskih  dana:  Mileni,  Ivanu,  Vajku,  Marini,  Slavku  i  Zlatku.    

(9)

 

(10)

TABLE of CONTENTS

ABSTRACT  ...  1  

RESUME  ...  3  

List  of  Figures  ...  5  

List  of  Tables  ...  9  

List  of  Abbreviations  ...  11  

INTRODUCTION  ...  13  

I.   Hydra,   a   versatile   model   for   studying   wound   healing,   regeneration,   aging   and   autophagy  ...  15  

I.1.  Hydra  anatomy  and  morphology  ...  15  

I.2.  Hydra  homeostasis  and  developmental  properties  ...  16  

I.3.  Cellular  basis  of  Hydra  regeneration  ...  20  

I.4.  Molecular  basis  of  apical  regeneration  in  Hydra  ...  23  

II.   Injury-­‐induced  cell  death  and  regeneration  ...  27  

II.1.  Basics  of  the  programmed  cell-­‐death  machinery  ...  27  

II.2.  Discovery  of  cell  death-­‐induced  compensatory  proliferation  ...  27  

II.3.   Molecular   signaling   involved   in   cell   death-­‐induced   compensatory   proliferation  ...  28  

II.4.  Evolutionary  conservation  of  cell  death  and  compensatory  proliferation  ....  29  

III.   Injury-­‐induced  signals  and  initiation  of  regeneration  ...  31  

III.1.  Damage  Associated  Molecular  Patterns  (DAMPs)  ...  31  

III.2.   Reactive   Oxygen   Species   (ROS)   as   evolutionary-­‐conserved   wound   healing   signals  ...  32  

III.3.  Polyunsaturated  fatty  acids  (PUFAs)  and  Calcium  signaling  ...  39  

IV.   Methodological  tools  available  in  Hydra:  strengths  and  weaknesses  ...  41  

V.   Aim  of  the  PhD  project  ...  45  

(11)

RESULTS  ...  47  

Chapter-­‐1  Injury-­‐induced  ROS  signaling  ...  49  

Chapter-­‐2:  The  Hydra  NFE2L/Nrfl  transcription  factor  behaves  as  a  redox  sensor  .  101   Chapter-­‐3:  Deficient  autophagy  flux  in  aging  Hydra  ...  123  

DISCUSSION  ...  165  

I.   Technical  aspects  of  the  study  ...  167  

1.   Challenges  and  limitations  of  the  project  ...  167  

2.   Technical  improvement  of  tools  used  in  Hydra  for  live  imaging  ...  169  

3.   Chemical  tools  used  to  characterize  ROS  metabolism  during  wound  healing   and  regeneration  in  Hydra  ...  173  

II.   Impact  of  our  study  on  injury-­‐induced  ROS  signaling  in  Hydra  ...  175  

1.   ROS  signals  in  injury  and  regeneration  ...  175  

2.   ROS  signaling  versus  endogenous  ROS  antioxidants  ...  180  

3.   Putative  redox  sensor  in  Hydra  ...  181  

4.   Complex   crosstalk   between   injury-­‐induced   ROS   signaling   and   cell   death   in   Hydra  ...  183  

5.   Conclusions  and  Perspectives  ...  185  

REFERENCES  ...  187  

APENDIX:  Construct  maps  ...  201  

CURRICULUM  VITAE:  ...  205  

(12)

ABSTRACT

In  a  large  number  of  species,  including  mammals,  signaling  via  the  Reactive  Oxygen   Species  (ROS)  plays  a  major  role  in  wound  healing  and  regeneration.  In  mammals,  the   regeneration   potential   has   significantly   dropped   compared   to   non-­‐mammalian   species   such   as   amphibians,   zebrafish,   planaria   or  Hydra.  Hydra   polyps   show   a   remarkable   ability   to   renew   any   missing   body   part   after   bisection,   which,   together   with   their   early-­‐branched   position   in   the   animal   kingdom,   make   them   a   valuable   model   for   studying   regeneration.   The  Hydra   model   can   be   used   to   understand   the   fundamental  mechanisms  of  regeneration,  but  also  to  identify  how  this  property  may   have  evolved.  The  objective  of  this  doctoral  project  was  to  extend  our  knowledge  on   injury-­‐induced  signaling  in  the  immediate  phase  of  Hydra  regeneration.  We  focused   on  ROS  signaling  and  its  potential  role  in  amputation-­‐induced  cell  death  as  observed   in  head-­‐regenerating  tips.  

First,   we   characterized   and   quantified   the   different   ROS   signals   from   membrane   or   mitochondrial   sources.   We   detected   an   immediate   and   symmetrical   production   of   mitochondrial   superoxide   after   mid-­‐gastric   bisection,   mainly   by   gastrodermal   epithelial   cells.   On   the   other   hand,   we   have   identified   an   immediate   production   of   asymmetric   hydrogen   peroxide   (H2O2),   higher   in   head-­‐regenerating   tips   than   in   basal-­‐regenerating   ones,   probably   due   to   asymmetric   enzymatic   activities,   i.e.   a   higher  superoxide  dismutase  (SOD)  activity  in  head-­‐regenerating  tips  while  catalase   is   lower.   High   levels   of   H2O2   trigger   CREB   phosphorylation   as   well   as   death   of   interstitial   cells   by   paracrine   signaling,   and   H2O2   levels   are   probably   amplified   by   apoptotic   cells   via   a   feedback   loop.   Pharmacological   treatments   (Tiron,   DPI)   and   transient   gene   silencing   approaches   (sod-­‐1,   catalase)   indicate   that   signaling   via   mitochondrial   ROS   plays   a   role   in   wound   healing   while   high   levels   of   H2O2   are   necessary  for  apical  regeneration.  Thus,  asymmetric  ROS  signaling  immediately  after   bisection  is  critical  to  induce  cell  death  and  apical  regeneration.    

In   the   next   chapter,   our   objective   was   to   characterize   the   components   of   the   ROS   signaling   pathway   involved   in   Hydra   regeneration.   Among   31   Hydra   proteins   presumed   to   be   redox   sensitive,   whose   genes   are   immediately   up-­‐regulated   after   amputation,  we  found  the  autophagy  cargo  protein  p62/SQSTM1  (sequestosome  1),  

(13)

the  ribosylation  factor  1  ADP,  the  transcription  factors  CCAAT/EBP,  CREB3-­‐L1,  Jun-­‐D,   Fra-­‐l1   and   NFE2Fl/Nrfl,   whose   structure   is   similar   to   that   of   the   mammalian   factor   Nrf3.  We  expressed  the  Hydra  gene  NFE2Fl/Nrfl  in  mammalian  cells  and  analyzed  the   activity  of  NFE2Fl/Nrfl  when  the  cells  are  exposed  to  drugs  modulating  the  oxidative   stress.   When   transactivation   is   measured   on   a   reporter   construction   driven   by   antioxidant   response   elements   (ARE),   the   NFE2Fl/Nrfl   factor   exerts   a   negative   competition   on   human   Nrf2,   indirectly   demonstrating   its   ability   to   bind   AREs.   In   HEK293T  cells  where  human  Nrf2  expression  is  silenced,  the  transactivation  exerted   by  NFE2Fl/Nrfl  is  constitutively  low  but  increased  upon  exposure  to  sulforaphane,  a   known  NFE2F/Nrf2  inducer,  but  at  a  level  lower  than  Nrf2.  The  role  of  NFE2Fl/Nrfl   remains   to   be   tested  in   vivo,   as   well   as   that   of   other   redox-­‐sensitive   transcription   factors  that  could  be  key  actors.  

Autophagy  is  tightly  regulated  by  ROS  signaling  and  as  a  side  project,  I  was  involved   in   the   analysis   of   autophagy   deficiency   in   aging  Hydra.   I   optimized   a   biosensor   designed   to   monitor   the   autophagy   flux   in   live   animals.   This   autophagy   reporter   construct   contributed   to   produce   reliable   results   on   the   formation   of   autophagosomes   in   intact   H.   oligactis   submitted   to   starvation   or   proteasome   inhibition  as  well  as  in  H.  vulgaris  knocked-­‐down  for  WIPI2,  a  gene  encoding  a  protein   involved  in  the  early  phase  of  autophagosome  formation.    

In   conclusion,   this   work   provides   us   with   new   perspectives   on   (i)   the   role   of   ROS   signaling,   immediately   asymmetric   between   the   apical   and   basal   sides   of   the   amputation   plane,   relying   on   hydrogen   peroxide   to   orchestrate   cell   death   and   head   regeneration;   (ii)   the   transcription   factor   NFE2Fl/Nrfl   as   a   possible   actor   in   the   response   to   oxidative   stress,   although   weakly   sensitive;   (iii)   the   new   imaging   technique   obtained   with   genetically   encoded   biosensors   as   a   powerful   and   quantitative  tool  for  monitoring  biological  processes  at  the  sub-­‐cellular  level.  

 

(14)

RESUME

Chez  un  grand  nombre  d'espèces,  y  compris  les  mammifères,  la  voie  de  signalisation   ROS  (Reactive  Oxygen  Species)  joue  un  rôle  majeur  dans  la  cicatrisation  des  plaies  et   la  régénération.  Chez  les  mammifères,  le  potentiel  de  régénération  a  significativement   chuté  par  rapport  aux  non  mammifères  tels  que  les  amphibiens,  les  poissons  zèbres,   les  planaires  ou  les  Hydres.  Les  polypes  d'Hydre  régénérent  toute  partie  manquante   de   leur   corps   après   amputation,   ce   qui,   avec   leur   branchement   précoce   au   sein   du   règne  animal,  en  fait  un  modèle  précieux  pour  étudier  la  régénération.  Le  modèle  de   l’Hydre   permet   d’analyser   les   mécanismes   fondamentaux   de   la   régénération,   mais   aussi  de  comprendre  comment  cette  propriété  a  pu  évoluer.  L'objectif  de  ce  projet  de   doctorat   était   d'étendre   nos   connaissances   sur   la   signalisation   induite   par   l’amputation  dans  la  phase  immédiate  de  la  régénération  d'Hydre.  Nous  nous  sommes   concentrés  sur  la  signalisation  ROS  et  son  rôle  potentiel  sur  la  mort  cellulaire  induite   par  l’amputation  observée  dans  les  bourgeons  régénérant  la  partie  apicale.    

Dans  un  premier  temps,  nous  avons  caractérisé  et  quantifié  les  différents  signaux  ROS   provenant   de   source   membranaire   ou   mitochondriale.   Nous   avons   détecté   une   production  immédiate  et  symétrique  de  superoxyde  mitochondrial  après  bissection  à   niveau   mi-­‐gastrique,   principalement   par   les   cellules   épithéliales   gastrodermiques.  

Nous   avons   aussi   identifié   une   production   immédiate   de   peroxyde   d'hydrogène   (H2O2)  asymétrique,  plus  élevée  dans  les  bourgeons  régénérant  la  partie  apicale  que   dans   ceux   régénérant   la   partie   basale,   probablement   en   raison   d'activités   enzymatiques   asymétriques,   c'est-­‐à-­‐dire   une   activité   superoxyde   dismutase   (SOD)   plus   élevée   dans   les   bourgeons   régénérant   la   tête   tandis   que   la   catalase   est   moins   élevée.  Des  niveaux  élevés  d'H2O2  déclenchent  la  phosphorylation  de  CREB  et  la  mort   des   cellules   interstitielles,   probablement   par   signalisation   paracrine.   Les   niveaux   d'H2O2  sont  probablement  amplifiés  par  les  cellules  apoptotiques  via  une  boucle  de   rétroaction.   Les   traitements   pharmacologiques   (Tiron,   DPI)   et   les   approches   d'éteignage  transitoire  des  gènes  (Sod-­‐1,  catalase)  indiquent  que  la  signalisation  via   les   ROS   mitochondriaux   joue   un   rôle   dans   la   cicatrisation   de   la   plaie   alors   que   des   niveaux   élevés   de   H2O2   sont   nécessaires   à   la   régénération   apicale.   Ainsi,   une   signalisation   ROS   asymétrique   immédiatement   après   bissection   est   critique   pour   induire  la  mort  cellulaire  et  la  régénération  apicale.  

(15)

Dans  le  chapitre  suivant,  notre  objectif  était  de  caractériser  les  composants  de  la  voie   de   signalisation   ROS   impliqués   dans   la   régénération   de   l'Hydre.   Parmi   31   protéines   d'Hydre  présumées  sensibles  à  l'oxydoréduction  dont  les  gènes  sont  immédiatement   régulés   à   la   hausse   après   amputation,   nous   avons   trouvé   la   protéine   cargo   d’autophagie   p62/SQSTM1   (séquestosome   1),   le   facteur   1   de   ribosylation   ADP,   les   facteurs  de  transcription  CCAAT/EBP,  CREB3-­‐L1,  Jun-­‐D,  Fra-­‐l1  et  NFE2Fl/Nrfl,  dont  la   structure   est   proche   de   celle   du   facteur   humain   Nrf3.   Nous   avons   exprimé   le   gène   d’Hydre   NFE2Fl/Nrfl   dans   des   cellules   de   mammifères   et   analysé   l’activité   de   NFE2Fl/Nrfl   sur   une   construction   rapportrice   pilotée   par   des   éléments   de   réponse   antioxydants   (ARE).   Le   facteur   NFE2Fl/Nrfl   réprime   l’activité   du   Nrf2   humain   endogène,   prouvant   indirectement   sa   capacité   à   lier   les   ARE.   Dans   les   cellules   HEK293T   où   l’expression   de   Nrf2   est   réduite,   la   transactivation   exercée   par   NFE2Fl/Nrfl  est  constitutivement  faible  cependant  augmentée  lors  de  l'exposition  au   sulforaphane,  un  inducteur  de  NFE2F/Nrf2,  mais  à  un  niveau  inférieur  obtenu  avec  le   Nrf2   humain.   Le   rôle   de   NFE2Fl/Nrfl   reste   à   tester  in  vivo,   ainsi   que   celui   d'autres   facteurs  de  transcription  sensibles  au  redox  qui  pourraient  jouer  un  rôle  clé.  

L'autophagie   est   étroitement   régulée   par   la   signalisation   ROS   et   comme   projet   parallèle,   j'ai   participé   à   l'analyse   de   la   déficience   de   l'autophagie   dans   le   vieillissement  de  l’Hydre.  J'ai  optimisé  un  biocapteur  génétique  conçu  pour  monitorer   le   flux   d'autophagie   chez   les   animaux   vivants.   Ce   biocapteur   d'autophagie   a   permis   d’obtenir   des   résultats   fiables   concernant   la   formation   d'autophagosomes   dans  H.  

oligactis  intact,  soumis  à  la  famine  ou  à  l'inhibition  du  protéasome  ainsi  que  dans  H.  

vulgaris   lorsque   l’expression   du   gène  WIPI2,   codant   pour   une   protéine   impliquée   dans  la  phase  précoce  de  formation  d'autophagosomes,  est  bloquée.    

En  conclusion,  ce  travail  nous  apporte  de  nouvelles  perspectives  sur  (i)  le  rôle  de  la   signalisation  ROS,  immédiatement  asymmétrique  entre  le  côté  apical  et  basal  du  plan   d’amputation,   s'appuyant   sur   le   peroxyde   d'hydrogène   pour   orchestrer   la   mort   cellulaire  et  la  régénération  de  la  tête;  (ii)  le  facteur  de  transcription  NFE2Fl/Nrfl  en   tant   qu'acteur   possible   dans   la   réponse   au   stress   oxydatif   quoique   faiblement   sensible;   (iii)   la   nouvelle   technique   d'imagerie   utilisant   des   biocapteurs   à   codage   génétique  comme  outil  puissant  et  quantitatif  pour  suivre  des  processus  biologiques  

au  niveau  sub-­‐cellulaire.        

(16)

List of Figures

 

Introduction  

Figure  1:     Anatomy  of  a  Hydra  polyp  

Figure  2:     Sources  of  new  cells  in  regeneration  

Figure  3:     Phases  of  cellular  remodeling  during  Hydra  apical  regeneration   Figure  4:     Molecular  events  taking  place  during  apical  regeneration   Figure  5:     The  Drosophila  Apoptotic  pathway  

Figure  6:     Early  injury  signals  in  wound  healing   Figure  7:     Cellular  ROS  metabolism  

Figure  8:     Summary  of  ROS  –  apoptosis  crosstalk  research  from  2015-­‐2019  done  by   Serras’  lab  

 

Results   Chapter  1  

Figure  1:     Mathematical   modeling   of   the   immediate   injury-­‐induced   signaling   that   triggers  cellular  remodeling  in  head  regenerating  tips.  

Figure  2:     Characterization   of   different   types   of   ROS   production   in   bisected   and   injured  Hydra  

Figure  3:     Injury-­‐induced  ROS  production  in  animals  exposed  to  Tiron  or  DPI   Figure  4:     ROS  plays  a  critical  role  in  wound  healing  and  regeneration  

Figure  5:     Asymmetric   H2O2  production   leads   to   injury-­‐induced   cell   death   and   cell   death-­‐ROS  crosstalk  

Figure  6:     Impact   of   SOD   expression   and   SOD   activity   on   H2O2   production,   wound   healing  and  regeneration  

Figure  7:     Current  working  model    

Figure  S1:    Fitting  the  model  to  previous  experimental  data.  

Figure  S2:    The  Hydra  Sod1,  Sod2,  Sod3  sequences  and  deduced  proteins   Figure  S3:    The  Hydra  Catalase  sequence  and  deduced  protein  

Figure  S4:    Expression  profiles  of  the  Hydra  Sod1,  Sod2,  Sod3  and  Catalase  genes   Figure  S5:    Toxicity  tests  of  pharmacological  inhibitors  used  in  the  study  

Figure  S6:    Wound  closure  of  Apical-­‐Regenerating  halves  exposed  to  Tiron  or  DPI   Figure  S7:    Wound  closure  of  Basal-­‐Regenerating  halves  exposed  to  Tiron  or  DPI  

(17)

Figure  S8:    Anatomies  of  regenerating  polyps  continuously  exposed  to  Tiron  (15  mM)   or  DPI  (10  µM)  for  76  hours  from  mid-­‐gastric  bisection  

Figure  S9:    MitoSOX  detection  of  mitO2  in  AR  and  BR  halves  from  untreated  and  HU-­‐

treated  animals  

Figure  S10:     Kinetics  of  apical  regeneration  in  animals  knocked-­‐down  for  Sod1  (left)   or  catalase  (right)  

Figure  S11:     Wound  closure  in  animals  knocked-­‐down  for  Sod1      

Chapter  2  

Figure  1:     Injury-­‐induced  modulations  of  gene  expression  in  Tiron-­‐treated  animals   Figure  2:     Spatial,   cell-­‐type   and   regeneration   expression   profiles   of   three   putative  

redox-­‐sensitive  genes  

Figure  3:     Structure,   phylogeny   and   expression   of   the   Hydra   NFE2l/Nrfl   transcription  factor  

Figure  4:     Human  NRF2  transactivation  activity  measured  in  human  HEK293T  cells   Figure  5:     Transactivation  activity  of  Hydra  NFE2Fl/Nrfl  in  human  HEK293T  cells    

Figure  S1:    Injury-­‐induced  modulations  of  gene  expression  in  regenerating  Hydra  and   during  the  homeostasis  as  detected  by  RNA-­‐seq  

 

Chapter  3  

Preface  figure:  hyLC3a  tandem-­‐sensor  is  a  powerful  tool  to  follow  the  autophagy  flux   in  vivo  in  adult  Hydra  

Figure  1:     Inducible  aging  phenotype  in  cold  sensitive  Hydra  oligactis  (Ho_CS).  

Figure  2:     Somatic   interstitial   loss   upon   aging   and   pharmacological   induction   of   aging  in  Ho_CS  animals  maintained  at  18°C  

Figure  3:     Deficiency  in  the  inducibility  of  the  autophagy  flux  in  Ho_CS  animals   Figure  4:     Modulation  of  p62/SQSTM  expression  levels  in  Ho_CS  animals  

Figure  5:     Rapamycin   treatment   delays   aging   in   Ho_CS   without   enhancing   the   autophagy  flux  

Figure  6:     Rapamycin   promotes   epithelial   phagocytosis   and   lipid   droplet   formation   in  Hydra  

Figure  7:     Impact  of  WIPI2  silencing  on  autophagic  flux,  survival,  and  regeneration  in   H.  vulgaris  

Figure  8:     Schematic  view  of  the  inducibility  of  the  autophagic  flux  in  epithelial  cells   of  aging  and  non-­‐aging  Hydra  

 

(18)

Figure  S1:    Features   and   reversibility   of   the   cold-­‐induced   aging   phenotype   in  Ho_CS   animals  

Figure  S2:    RNA-­‐seq  profiles  of  20  genes  expressed  in  interstitial  cell  lineages  in  Ho_CS   and  Ho_CR  animals  maintained  at  18°C  or  transferred  to  10°C.  

Figure  S3:    Starvation-­‐induced  phenotypes  in  Ho_CR,  Ho_CS  and  Hv_sf1  animals   Figure  S4:    Phylogenetic  analysis  of  the  metazoan  LC3/ATG8  gene  families  and  RNA-­‐

seq   profiles   of   LC3A/B,   LC3C,   GABARAP   and   GABARAPL2   genes   in   H.  

vulgaris.  

Figure  S5:    Different  sensitivity  to  MG132  in  Ho_CS,  Ho_CR  and  Hv.  

Figure  S6:    Transcriptomic  analysis  of  75  autophagy  genes  in  aging  Ho_CS   Figure  S7:    RNA-­‐seq  profiles  of  75  genes  involved  in  autophagy  in  mammals  

Figure  S8:    Alignment   of   vertebrate   and   non-­‐vertebrate   p62/SQSTM1   protein   sequences  

Figure  S9:    Phylogenetic  and  expression  analysis  of  p62/SQSTM1  and  WIPI2  in  Hydra   Figure  S10:     Anti-­‐aging  roles  of  Rapamycin  in  Ho_CS  Hydra  

Figure  S11:     Alignment  of  vertebrate  and  non-­‐vertebrate  WIPI2  protein  sequences    

   

(19)

Discussion  

 

Figure  1:  The  MitoQ  and  Tiron  molecules

 

Figure  2:  Current  model  of  ROS-­‐apoptosis  crosstalk  during  AR  and  BR  in  Hydra    

(20)

List of Tables

 

Chapter  3  

Table-­‐S1A:     Sequence   Accession   Numbers   of   the   H.   vulgaris   (Hv)   and   H.   oligactis   (Ho_CS,  Ho_CR)  genes  involved  in  or  related  to  autophagy.  

Table-­‐S1B:     Sequence   Accession   Numbers   of   the   H.   vulgaris   (Hv)   and   H.   oligactis   (Ho_CS,   Ho_CR)   genes   involved   in   proliferation   and   differentiation   of   interstitial  cell  (i-­‐cell)  lineages.  

Table  S2:     Sequences   of   the   primers   used   to   build   the   mCherry-­‐GFP-­‐LC3A   autophagy  sensor  

Table  S3:     Sequences  of  the  siRNA  primers  used  to  silence  p62/SQSTM1  and  WIPI2    

Discussion  

Table  1:     Biological   effects   of   pharmacological   and   genetical   inhibition   of   ROS   metabolism  in  Hydra  

(21)

 

(22)

List of Abbreviations

AR  -­‐  Apical  Regeneration  

Ask1  -­‐  Apoptosis  signal-­‐regulating  kinase  1   ATP  -­‐  Adenosine  TriPhosphate  

AT-­‐rich  -­‐  Adenine  -­‐  Thymine  rich   BMP  -­‐  Bone  Morphogenetic  Proteins   BR  -­‐  Basal  Regeneration  

Ca2+  -­‐  Calcium  ions  

cAMP  -­‐  cyclic  Adenosine  MonoPhosphate   Cat  -­‐  Catalase  

CBP  -­‐  CREB  binding  protein   CG-­‐rich  -­‐  Cytosine  -­‐  Guanine  rich   cNeoblast  -­‐  Clonogenic  Neoblast  

cpYFP   -­‐   circularly   permuted   yellow   fluorescent  protein  

CRE  -­‐  cAMP  response  element  

CREB   -­‐   cAMP   Response   Element   Binding   Protein  

Cul3  -­‐  Cullin  3  

DAMP   -­‐   Damage-­‐Associated   Molecular   Pattern  

DIAP1  -­‐  Drosophila  Inhibitor  of  APoptosis  1   DNA  -­‐  DeoxyriboNucleic  Acid  

Dpp  -­‐  Decapentaplegic  (morphogen)   DrICE  -­‐  Death  related  ICE-­‐like  caspase   Dronc  -­‐  Death  regulator  Nedd2-­‐like  caspase   Dsp-­‐1  -­‐  Dorsal  switch  protein  1  

DUOX  -­‐  Dual  oxidase  

eESC  -­‐  epidermal  Epithelial  Stem  Cells   Gal4  -­‐  Galactose-­‐induced  gene  4   Gal80  -­‐  Galactose-­‐induced  gene  80  

Gal80TS   -­‐   Galactose-­‐induced   gene   80   (thermo  sensitive)  

gESC  -­‐  gastrodermal  Epithelial  Stem  Cells   GTP  -­‐  Guanosine  triphosphate  

H2O2  -­‐  hydrogen  peroxide   Hid  -­‐  Head  involution  defective   HO.  -­‐  Hydroxyl  radical  

Ho_CR  -­‐  Hydra  oligactis  Cold  Resistant   Ho_CS  -­‐  Hydra  oligactis  Cold  Sensitive   Hpa  -­‐  hours  post-­‐amputation  

Hsp70  -­‐  Heat  shock  protein  70   hyIAP  -­‐  Hydra  Inhibitor  of  APoptosis  

i-­‐cells  -­‐  Interstitial  stem  cells   Il1  –  Interleukin1  

Jak/Stat   -­‐   Janus   kinase/Signal   Transduces   and  Activator  of  Transcription  proteins   JNK  -­‐  c-­‐Jun  N-­‐terminal  kinases  

Keap1  -­‐  Kelch-­‐like  ECH-­‐associated  protein  1   MAPK  -­‐  Mitogen-­‐activated  protein  kinase   mpa  -­‐  minutes  post  amputation  

mtROS   -­‐   mitochondrial   Reactive   Oxygen   Species  

Myd88   -­‐   Myeloid   differentiation   primary   response  88  

NAC  -­‐  N-­‐Acetyl  Cysteine  

NADPH   -­‐   Nicotinamide   Adenine   Dinucleotide  Phosphate  (reduced  form)   NCBI   -­‐   National   Center   for   Biotechnology   Information  

NFE2F/Nrf2   -­‐   Nuclear   factor   erythroid   2-­‐

related  factor  2  

NOD   -­‐   Nucleotide-­‐binding   Oligomerization   Domain  

NOX  -­‐  NADPH  oxidase  

O2-­‐.  -­‐  superoxide  radical  anion   pCREB  -­‐  Phospho  CREB   pH3  -­‐  phospho  Histone  3  

Pi3K  -­‐  Phosphoinositide  3  Kinases   PUFA  -­‐  PolyUnsaturated  Fatty  Acids  

RHO-­‐1  -­‐  Ras  HOmolog  gene  family  -­‐  member   1  

RNAi  -­‐  RiboNucleic  Acid  interference   ROCK  -­‐  Rho-­‐associated  protein  kinase   ROS  -­‐  Reactive  Oxygen  Species   RSK  -­‐  Ribosomal  S6  Kinase  

siRNA  -­‐  small  interfering  Ribonucleic  Acid   SOD  -­‐  SuperOxide  Dismutase  

SPINK  -­‐  Serine  Protease  INhibitor  Kazal-­‐type   TOP:dsGFP   -­‐   TCF   optimal   promoter   :   destabilized  green  fluorescent  protein   TRL  –  Toll  like  receptors  

UAS  -­‐  Upstream  activating  sequence   Wg  –  wingless    

Z-­‐VAD  -­‐  Carbobenzoxy-­‐valyl-­‐alanyl-­‐aspartyl-­‐

[O-­‐methyl]-­‐  fluoromethylketone  

(23)

 

(24)

INTRODUCTION

 

(25)

 

(26)

I. Hydra, a versatile model for studying wound healing, regeneration, aging and autophagy

I.1. Hydra anatomy and morphology

Hydra  is  a  species  that  belongs  to  Cnidaria,  a  phylum  that  in  the  metazoan  kingdom   occupies  a  sister  group  position  to  Bilateria.  Hydra  exclusively  resides  in  fresh  water   and  exhibits  a  polyp-­‐like  structure  with  an  apical  to  basal  axis,  a  head-­‐like  structure   on  the  apical  side  and  a  basal  disc  also  named  foot  on  the  basal  side.  The  Hydra  head   consists   of   a   dome   shaped   structure   named   hypostome   surrounded   by   a   ring   of   tentacles   (Figure   1,   left).  At   the   tip   of   the   hypostome,   an   opening   serves   as   a   mouth/anus   that   leads   to   the   gastric   cavity   where   food   digestion   takes   place.   The   tentacles,  which  contribute  to  the  feeding  process,  are  mainly  made  of  large  epithelial   cells,   the   battery   cells   that   contain   terminally   differentiated   mechano-­‐sensory   cells   named   nematocytes.   These   stinging   cells   differentiate   highly   specialized   structures   filled   with   venom   called   nematocysts.   Upon   contact   with   the   prey,   the   nematocysts   get   explosively   discharged   into   the   target,   releasing   the   venom   that   paralyzes   the   prey.    On  the  basal  side,  Hydra  polyps  differentiate  a  basal  disk,  i.e.  a  structure  lined   with   mucous   cells   that   secrete   a   mucous   which   keeps   the   animal   attached   to   the   substrates  present  in  its  natural  habitat  (for  example,  lily  pads  at  the  surface  of  ponds,   stones   in   the   rivers,   wooden   sticks).   In   the   laboratory   conditions,   animals   are   maintained  in  glass  or  plastic  dishes  to  which  their  basal  disk  does  attach  as  well.  

Hydra  are  made  of  two  cell  layers,  the  inner  one  that  lines  the  gastric  cavity,  called   gastrodermis   or   endoderm,   and   the   outer   one   that   plays   a   protective   role,   named   epidermis  or  ectoderm.  These  two  layers  that  are  single-­‐cell  thick  are  separated  by  a   collagen-­‐containing  extracellular  structure  called  mesoglea  (Figure  1,  right).  Both  of   these   layers   are   filled   with   epithelial   cells   mostly   referred   as   endodermal   and   ectodermal   epithelial   stem   cells   (ESC)   (Bosch,   2007;   Galliot,   2012),   which   actually   correspond   to   gastrodermal   and   epidermal   stem   cells   respectively   (Buzgariu   et   al.,   2018).   These   two   stem   cell   types   are   unipotent,   meaning   that   they   self-­‐renew   and   only   provide   epithelial   cells   that   acquire   distinct   and   specific   features   at   the   extremities.   ESCs   constantly   self-­‐renew   along   the   body   column   while   passively   moving  towards  the  budding  region  as  well  as  the  apical  and  basal  extremities  of  the   animal  where  they  get  terminally  differentiated  to  be  finally  sloughed  off  (Hobmayer  

(27)

et  al.,  2012).  A  third  population  of  stem  cells,  the  interstitial  stem  cells,  often  shortly   named   i-­‐cells,   provide   all   the   other   cell   types,   including   the   germ   cells   when   the   animal  become  sexual,  the  gland  cells  that  populate  the  gastrodermis  and  all  cells  of   the  nervous  system,  making  them  a  classic  example  of  multipotent  stem  cells  (Figure   1,  right).  The  nerve  cells  form  in  Hydra  diffused  nervous  system.  I-­‐cells  are  located  in   the   central   part   of   animal   body   column,   where   they   are   ‘’squeezed’’   into   the   epidermal  ESCs.    

  Figure 1. Anatomy of a Hydra polyp

Hydra  displays  a  tube-­‐shaped  (left)  terminated  at  its  apical  side  by  a  dome  structure   named   hypostome,   encircled   with   tentacles   and   a   peduncle   region   that   precedes   the   basal  disc  at  its  basal  side.  Polyps  are  made  of  two  cellular  layers,  the  epidermis  (green)   and   the   gastrodermis   (light-­‐red)   which   are   separated   by   an   extra-­‐cellular   matrix   named   mesoglea.   Epidermis   and   gastrodermis   are   predominantly   made   of   epithelial   cells  that  are  specific  to  each  layer  and  cannot  replace  each  other.  The  third  stem  cell   lineage,  called  interstitial  stem  cells  (yellow)  can  differentiate  into  different  cell  types,   such   as   gland   cells   located   in   the   gastrodermis   (purple),   nematoblasts   (magenta),   precursors  to  nematocytes  and  nerve  cells  (not  shown).    

 

I.2. Hydra homeostasis and developmental properties

Hydra  is  characterized  by  a  highly  dynamic  homeostasis.  These  animals  represent  a   balance   between   an   intense   sustained   proliferation   of   stem   cells   in   its   central   part   and  cell  death  at  the  extremities  where  old  cells  are  discarded.  Both  endodermal  and   ectodermal  ESCs  belong  to  the  group  of  slow  self-­‐renewing  cells  that  have  a  cell  cycle   of  approximately  3-­‐4  days  while  i-­‐cells  have  a  faster  cell  cycle,  lasting  for  24-­‐30  hours   (Holstein   and   David,   1990).   Similarly   to   mammalian   embryonic   stem   cells,  Hydra   stem   cells   are   characterized   with   very   short   G1   phase   and   pausing   during   the   G2   (Savatier   et   al.,   1994;   Fluckiger   et   al.,   2006),   however   there   is   still   a   difference   between   ESCs   and   i-­‐cells.   While   ESCs   pause   in   G2-­‐phase   up-­‐to   2.5   to   3.5   days   (Holstein  et  al.,  1991),  i-­‐cells  have  a  shorter  G2  phase,  which  varies  between  4  and  18  

Epidermis Gastrodermis

Tentacles

Basal disk Hypostome

Peduncle

Mesoglea

(28)

h   (Holstein   and   David,   1990),   when   regularly   fed.   Additionally   they   have   a   specific   behavior  pattern  in  different  zones  along  the  body  column  of  the  Hydra.  While  in  the   central   part   of   the   animal   they   constantly   proliferate,   ESCs   get   passively   displaced   towards   the   apical   and   basal   extremities,   where   cell   cycling   stops   and   they   get   terminally  differentiated  to  mostly  battery  cells  or  mucous  cells  respectively,  except   of  few  epithelial  cells  that  remain  un-­‐differentiated  in  the  hypostome  (Dübel,  1989).  I-­‐

cells   behave   a   bit   differently,   since   a   large   amount   of   them   migrate   in   the   form   of   progenitors   toward   extremities,   where   they   get   differentiated   to   nerve   cells,   nematocytes   or   gland   cells.   It   is   important   to   stress   out   that   epithelial   cells   usually   differentiate   before   mitosis   during   the   G2   phase;   i-­‐cells   perform   this   in   the   G1/G0   phase,  as  a  post-­‐mitotic  event  (Buzgariu  et  al.,  2014).  When  they  reach  the  apical  or   basal   extremities,   these   terminally   differentiated   cells   get   expelled   from   the   animal   via  the  cell  death  process.  

Hydra  is  a  very  attractive  model  system  due  to  the  simplicity  of  its  maintenance;  they   grow   quite   rapid,   doubling   time   being   around   3.5   days   together   with   possibility   to   culture   massive   numbers   of   clonally   derived   animals.   Animals   need   a   constant   temperature  of  ‘’wine  cellar’’  that  is  18°C,  and  to  be  fed  with,  freshly  hatched  Artemia   nauplii   as   described   by   (Bosch,   2007;   Bossert   and   Galliot,   2012).   Taken   together,   Hydra  provides  a  simple,  sustainable  and  useful  research  model  that  is  used  by  about   20   laboratories   around   the   world.   Beside   its   dynamic   homeostasis,   Hydra   is   characterized   by   a   series   of   developmental   properties   that   are   unusual   in   adult   organisms  as  described  in  the  next  part.  

 

Budding  and  sexual  reproduction  

Hydra   polyps   can   propagate   either   asexually   in   the   process   called   budding,   or   sexually   via   gametogenesis.   Budding   is   one   additional   consequence   of   the   dynamic   tissue  turnover  during  homeostasis.  In  normal  conditions  when  animals  are  regularly   fed,  a  small  bud  starts  to  grow  recruiting  the  cells  in  a  specific  region  of  the  parental   animal,   which   is   located   in   the   lower   bottom   of   the   polyp,   called   budding   zone.  

Budding  usually  has  the  similar  cycle  of  3-­‐4  days  where  a  small  bud  appears,  grows   and   finally   de-­‐attaches   from   the   parental   polyp.  Hydra   has   a   way   to   preserve   its   genetic  material  even  in  the  very  harsh  conditions.  When  there  is  a  lack  of  food,  or  the  

(29)

temperature   of   water   is   lower,   polyps   can   undergo   sexual   differentiation.   Some   animal  can  have  testis  and  change  to  oocyte,  however  the  opposite  is  occurring  more   frequently.    In  the  end  the  fertilized  egg  develops  into  the  embryo  that  can  stay  for   some   time   in   resting   stage   covered   with   protective,   chitinous   shell   called   thecae   (Bossert  and  Galliot,  2012).    

 

Aging  and  autophagy    

First  aging  experiments  conducted  in  Hydra  were  done  in  the  1950s  when  different   species  were  followed  over  several  years.  The  Belgian  biologist  Paul  Brien  compared   three  different  Hydra:  H.  vulgaris,  H.  oligactis  and  H.  viridisima.  He  found  that  when   animals   are   kept   at   native   conditions,   at   18°C   and   regularly   fed,   they   continue   to   reproduce   by   budding   and   there   is   no   sign   of   aging   or   how   he   called   it   at   the   time  

‘’exhaustion’’.  However,  if  he  would  challenge  these  ‘’cozy’’  conditions  for  the  animals   by   transferring   them   from   18°C   to   10°C,  H.   oligactis,   but   not  H.   vulgaris   started   to   show   very   interesting   behavior.   They   stopped   to   bud   and   turn   to   sexual   type   of   reproduction,  which  as  explained  in  the  previous  paragraph,  is  as  sign  of  stress  and  a   sort   of   a   defensive   mechanism   in  Hydra.   After   the   polyps   reached   sexual   maturity,   they  started  to  show  a  type  of  degeneration  that  is  very  similar  to  an  aging  phenotype   (Brien,  1953).  This  results  were  confirmed  and  further  characterized  by  more  recent   studies  where  it  was  shown  that  H.  oligactis  can  be  induced  to  age,  having  a  maximum   lifespan   of   120   days   post-­‐induction,   i.e.   transfer   to   10°C   (Yoshida   et   al.,   2006).  

Additional  insight  came  from  our  laboratory  where  two  distinct  strains  of  H.  oligactis   were   shown   to   behave   differently.   One   of   them,   now   called   Cold   resistant   (Ho_CR),   does   not   show   aging   phenotype   when   induced   for   gametogenesis,   while   the   other   named  Cold  sensitive  (Ho_CS)  does  (Tomczyk  et  al.,  2015;  Tomczyk  et  al.,  2017).    

Induction  of  autophagy  is  one  of  the  main  cellular  strategies  for  survival  during  the   harsh  conditions,  such  as  lack  of  food,  and  is  lately  being  linked  with  the  induction  of   cell   death,   since   the   macroautophagy   is   activated   via   the   same   signaling   pathways   that  also  controls  apoptosis  (Codogno  and  Meijer,  2005;  Das  et  al.,  2012).  Autophagy   was  not  heavily  studied  in  Hydra,  with  the  exception  being  the  laboratory  of  B.  Galliot.  

Similarly  to  the  pancreatic  autophagy  phenotype  observed  in  the  mutation  of  SPINK1   and  SPINK3  genes  in  human,  Hydra  Kazal1,  a  cytoprotective  protein,  shows  a  role  in  

(30)

prevention  of  excessive  autophagy  (Chera  et  al.,  2006).  Kazal1  silencing  leads  to  the   lower  budding  rate  and  excessive  cell  death  in  the  homeostatic  context,  followed  by   massive   autophagy   upon   amputation   (Chera   et   al.,   2006).   Interestingly   when   compared   with   starvation   in   control   animals   that   accumulate   autophagic   vacuoles   mostly  in  eESCs,  during  Kazal1  RNAi  gESCs  are  the  one  showing  massive  numbers  of   autophagosomes   (Chera   et   al.,   2009a).     Previously   autophagy   was   studied   in  Hydra   with  the  use  of  the  tools  that  provide  a  static  view  of  autophagy  such  as  biochemical   methods   and   mostly   immunohistochemistry,   using   the   antibodies   to   show   the   autophagosome   formation   (Chera   et   al.,   2006;   Buzgariu   et   al.,   2008;   Chera   et   al.,   2009a).    In  the  past  years,  we  managed  to  develop  an  autophagy  sensor  to  monitor   the   autophagic   flux   in   live,   intact   adult   animals.   As   a   side   project   of   my   doctoral   studies   I   developed   this   tool   derived   from   the   existing   elegant   method   used   in   mammalian  cells  (Pankiv  et  al.,  2007).  This  tool,  presented  in  Chapter  3  of  the  Result   section  of  this  thesis,  now  opens  the  possibility  us  to  quantify  autophagy  in  Hydra.  

 

Re-­‐aggregation  and  regeneration    

A   valuable   strategy   to   investigate   patterning   in   adult  Hydra   polyps   is   a   procedure   called   re-­‐aggregation.   Another   interesting   trait   of  Hydra   that   shows   how   resilient   these   animals   are;   re-­‐aggregation   can   be   performed   under   controlled   laboratory   conditions,   where   polyps   are   dissociated   to   the   single   cell   level.   Later   on,   a   cell   suspension   is   centrifuged   and   subsequently   aggregates   formed.   After   20-­‐30   hours   they  will  form  a  hollow  sphere,  and  finally  develop  into  one  or  more  individual  polyps   after  several  days  (Gierer  et  al.,  1972;  Technau  et  al.,  2000).  

As   a   regeneration   model,  Hydra   is   known   for   280   years   since   the   Swiss   scientist   Abraham   Trembley   (during   1740s)   discovered   that   it   can   regenerate   every   missing   part   when   cut.   From   then  Hydra   is   used   by   scientists   to   uncover   the   biological   mechanisms  that  support  such  an  efficient  regenerative  program.  In  the  18th  century,   it   was   not   clear   whether   cnidarian   polyps,   i.e.   corals,   hydra,   would   be   plant   or   animals.   To   solve   that   question,   Trembley   decided   to   cut   the   polyp   and   monitor   whether  it  regenerates.  Once  it  became  clear  to  him  that  Hydra  was  both  regenerating   and   behaving   as   an   animal   (not   aware   that   actually   Antonie   van   Leeuwenhoek   described  this  specie  as  animals  40  years  ago),  he  realized  that  he  had  made  a  major  

(31)

discovery,   that   of   whole   body   regeneration   in   the   animal   kingdom.   This   discovery   launched  the  whole  field  of  regenerative  biology.  Since  then,  Hydra  got  established  as   a   potent   model   to   study   how   animals   can   efficiently   repair   wounds   and   regenerate   every   missing   part   of   their   body.   Despite   decades   of   work   on   dissecting   its   regenerative   program,   much   of   it   is   still   not   understood.   In   the   next   section,   our   current  knowledge  on  the  cellular  and  molecular  basis  of  Hydra  regeneration  will  be   summarized.  

 

I.3. Cellular basis of Hydra regeneration

Sources  of  cells  that  are  used  for  regeneration  vary  greatly  in  different  regenerative   animals.   At   the   moment   it   is   accepted   that   there   are   three   main   mechanisms   that   provide  new  cells  during  regeneration:  (1)  Stem  cell  activation,  where  resident  stem   cells  start  to  divide  and  produce  more  cells  like  itself,  following  by  differentiation  into   the   required   cellular   types   (Figure   2A,   top)   (Weissman   et   al.,   2001).   Clonogenic   Neoblasts   (cNeoblasts)   in   planarian   regeneration   (Wagner   et   al.,   2011)   and   i-­‐cell   progenitors  in  Hydra  mid-­‐gastric  apical  regeneration  (Chera  et  al.,  2009b)  are  a  good   example   of   stem   cell   activation.   (2)   De-­‐differentiation   is   a   process   where   differentiated  cells  temporarily  lose  their  differentiated  characters,  re-­‐enter  the  cell   cycle   and   produce   cells   that   can   now   act   as   progenitor   cells   that   continue   to   proliferate  for  a  while  to  form  a  blastema  and  subsequently  differentiate  to  form  the   missing   structure   (Figure   2A,   middle)   (Jopling   et   al.,   2011).   Cellular   de-­‐

differentiation   is   a   main   source   for   regeneration   in   zebrafish   heart   (Jopling   et   al.,   2010),   but   also   in   bone   regeneration   in   zebrafish   fin   (Knopf   et   al.,   2011).  (3)   New   cells   can   be   a   result   of   a   process   called  trans-­‐differentiation,   during   which   a   cell   changes  a  state  from  one  cell  type  to  another,  and  this  can  occur  without  cell  division   (Figure  2A,  bottom)  (Jopling  et  al.,  2011).  Trans-­‐differentiation  is  much  less  common   than  the  previously  mentioned  mechanisms.  Some  invertebrates  such  as  jellyfish  have   high   trans-­‐differentiation   potential,   but   this   is   heavily   reduced   in   vertebrate   regeneration  (Shen  et  al.,  2004).  Although  not  naturally  occurring,  but  rather  induced,   common  examples  of  this  mechanism  are  the  formation  of  the  lens  of  the  eye  in  the   chick   (Eguchi   and   Okada,   1973;   Araki   and   Okada,   1977),   or   newt   where   pigmented  

(32)

epithelial   cells   can   de-­‐differentiate   and   then   re-­‐differentiate   into   missing   lens   cells   (Jopling  et  al.,  2011).    

Additionally,  stem  cells  can  be  multipotent  or  be  restricted  for  their  contribution  to   the   novel   regenerated   structure.   Planarian   cNeoblast   are   an   example   of   classical   pluripotent   stem   cells,   while  Hydra’s   i-­‐cells   are   undifferentiated   multi-­‐potent   stem   cell  that  when  needed  can  provide  many  different  cellular  types,  such  as  nematocytes,   nerve  or  gland  cells  (Nishimiya-­‐Fujisawa  and  Kobayashi,  2012)  (Figure  2B),  while  for   example   in   salamander   and   axolotl,   limb   regeneration   is   occurring   in   a   much   more   restricted  fashion  (Figure  2C).  Axolotl  regenerates  its  limb  using  different  stem  cells   that   show   lineage   restriction,   and   there   is   no   contribution   of,   for   example,   muscle   cells  to  epidermis  regeneration  (Kragl  et  al.,  2009).    

  Figure 2. Sources of new cells in regeneration

(A)   Stem   cells   can   have   three   distinct   action   patterns   during   regeneration:   activation   (top),  de-­‐differentiation  (middle)  and  trans-­‐differentiation  (bottom).  (B)  cNeoblasts  (S.  

mediterranea)   and   i-­‐cells   (Hydra)   show   multi-­‐potency,   while   in   axolotl,   muscle,   skeleton  or  Schwan  cells  are  lineage-­‐restricted  during  regeneration   (C).  Scheme  after   (Tanaka  and  Reddien,  2011)  

 

It  is  important  to  state  that  apical  and  basal  regeneration  in  Hydra  are  very  different.  

While  apical  regeneration  results  in  the  formation  of  a  complex  head  structure,  basal   regeneration   results   in   a   simpler   structure,   the   foot.   Also   apical   regeneration   is   simpler   to   follow,   since   it   is   visually   easier   to   monitor   the   morphological   changes   such  as  the  appearance  of  tentacle  rudiments  (Bode,  2003),  especially  with  kinetics-­‐

type   experiments,   and   thus   it   was   studied   much   more.   On   the   level   of   cellular  

A B

C

(33)

remodeling,  Hydra   apical   regeneration   can   be   divided   into   four   different   phases:  

early,  early-­‐late,  late  and  very  late  (Figure  3)  (Galliot,  2013).    

During   the   immediate   phase   (up   to   2   hours   post   amputation;   hpa)   (Figure   3,   top-­‐

left),   when   the   wound-­‐healing   process   is   launched,   several   important   events   take   place.   I-­‐cells,   located   in   epidermis   undergo   apoptosis   while   gastrodermal   ESCs   lose   their   typical   morphology.   In   the   early   phase,   between   2   and   12   hpa   (Figure   3,   bottom-­‐left),   apoptotic   i-­‐cells   are   engulfed   by   the   gastrodermal   ESCs,   that   now   transiently   lost   their   epithelial   organization,   which   they   re-­‐gain   in   the   early-­‐late   phase  (Figure  3,  top-­‐right).  Something  similar  to  these  cellular  changes  can  be  seen   during   the  Hydra   re-­‐aggregation   process   (Murate   et   al.,   1997).   After   the   wound   is   successfully   healed   during   the   earlier   phases,   the   late   phase   is   characterized   by   a   visible  re-­‐construction  event,  with  the  appearance  of  tentacle  rudiments  that  become   visible  from  40  hpa  (Figure  3,  bottom-­‐right)  (Galliot,  2013).  

 

  Figure 3. Phases of cellular remodeling during Hydra apical regeneration

Hydra   successfully   performs   the   wound   healing   process   during   immediate   to   early   phases  in  regeneration.  ESCs  in  gastrodermis  are  shown  in  gray  with  red  nuclei,  and  i-­‐

cells  as  green  spots  in  white  epidermal  ESCs.  I-­‐cells  that  undergo  apoptosis  are  shown   as   stars,   which   are   later   being   engulfed   by   gESCs   that   transiently   lost   their   epithelial   organization   (bottom-­‐left).   First   regeneration   visual   markers   can   be   seen   during   the   late  phase  (bottom-­‐right),  where  tentacle  rudiments  appear,  followed  by  formation  of   hypostome  (Explained  in  details  in  the  text).  Scheme  after  (Galliot,  2013)  

 

For   some   time,   it   was   considered   that   Hydra   undergoes   only   mophallaxis   –   a   regenerative  program  that  does  not  rely  on  cell  proliferation  (Bosch,  2007).  However,  

Immediate (0-2 hpa) Early (2-12 hpa) Early-late (>16 hpa) Late (>40 hpa)

Références

Documents relatifs

Once the code snippet has been executed a thousand time since the last VM start-up, the optimising JIT kicks in and gener- ates optimised native instructions using runtime

This paper describe an interesting landslide, failed during the night of 28 February 2004, that involved the village of Rossena: the failure damaged the village (Fig. 1), the road

reported a study of noticeable clinical importance which showed that Imatinib treatment of CML cells induced cytoprotective autophagy and that the inhibition of autophagy, by

marked differences compared to cis-eQTL identified using genetic link- age. 1) INRA, UMR1348 Pegase, Rennes, France; 2) Agrocampus Ouest, UMR1348 Pegase, Rennes, France; 3)

On the kinetics level, 4 of the 25 genes were up-regulated among the different time; on the MeJA response level, 8 genes of them were up regulated in the response to MeJA

Pour la première lettre nous avons 20 possibilités et pour chacune de ces 20 possibilités nous en avons 6 pour la deuxième, et pour chacune des 120 possibilités des deux

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Although this processed/partially degraded form of RoxS is just as func- tional as the full-length species in promoting ppnKB mRNA turnover in vivo, cleavage is not necessary