• Aucun résultat trouvé

II. Impact  of  our  study  on  injury-­‐induced  ROS  signaling  in  Hydra

5.   Conclusions  and  Perspectives

Work  presented  in  this  doctoral  thesis  can  be  summarized:  

A. Injury  in  Hydra  produces  ROS,  from  which  two  types  were  explored.  

B. Mitochondrial   superoxide   acts   in   the   cell-­‐autonomous   way,   orchestrating   wound  healing  possibly  through  Rho1/ROCK/F-­‐Actin  pathway.  This  molecule   is  produced  after  any  kind  of  injury,  but  symmetrically  after  the  bisection  in   AR  and  BR.    

C. Hydrogen  peroxide,  a  derivative  of  cellular  superoxide  is  a  putative  paracrine   signal  that  is  responsible  for  apical  regeneration.  This  molecule  is  unique  for   the  regeneration  process  and  is  produced  asymmetrically  after  the  cut.  

D. MAPK/ERK/RSK   pathway   is   activated   asymmetrically   in   AR   and   is   dependent   on   hydrogen   peroxide   production.   Hydrogen   peroxide   is   also   crucial  for  the  phosphorylation  of  CREB  and  injury-­‐induced  cell  death  during   the  AR.  

E. There  are  several  candidates  for  putative  redox  sensor  proteins  in  Hydra.  For   now,   Nrf-­‐l   shows   that   in   vitro   can   act   as   a   protein   that   initiates   an   antioxidative  response  by  binding  to  ARE.  

F. Hydra  serves  as  a  good  model  to  study  in  vivo  various  biological  processes  in   the  adult  with  the  use  of  genetically  encoded  biosensors.  

 

In  the  future  of  this  project,  we  are  going  to  focus  to  further  characterize  the  targets   of  both  mitoO2.-­‐,  and  H2O2  during  the  regeneration.  Our  best  candidate  as  a  target  of   mitoO2.-­‐,  is  Rho1/ROCK/F-­‐Actin  pathway.  We  can  dissect  this  pathway  either  with  the   RNAi  approach  or  with  the  pharmacological  inhibitors,  such  as  Y27632,  an  inhibitor   of  ROCK  phosphorylation.    

Confirming  that  H2O2  is  directly  inducing  the  cell  death  of  i-­‐cells  and  then  in  turn  gets   amplified  is  crucial  for  this  work.  Biggest  flaw  of  this  research  is  the  lack  of  ways  to   specifically  image  H2O2.  Even  though  effort  to  obtain  HyPer  transgenic  lines  was  not   fruitful,  there  are  another  options.  One  of  them  is  roGFP-­‐orp1,  a  redox  sensitive  GFP   protein  that  is  used  for  H2O2  quantification.  With  this  tool,  first  thing  to  explore  would   be  a  spatiotemporal  distribution  of  H2O2  during  regeneration.  First,  does  any  part  of   the  cell  that  is  committed  to  regenerate  shows  higher  levels  of  H O  than  the  other  

parts?   We   could   look   if   H2O2   is   accumulating   during   the   earliest   time   points   at   the   plasma  membrane,  which  would  suggest  that  NOX  enzymes  are  involved  in  producing   the  paracrine  H2O2,  as  we  hypothesize  at  the  moment.  Second,  we  could  specifically   pinpoint  at  what  time  the  amplification  occurs,  and  if  the  cell  death  is  following  it,  or   it  occurs  in  the  same  time.  Third,  we  could  also  examine  the  cells  that  are  committed   to  die,  i-­‐cells  and  its  progenitors.  What  is  the  level  of  H2O2,  and  if  they  accumulate  it,  is   it  transient  or  sustained  during  the  early  phases  of  regeneration?  

MAPK/ERK   activation   plays   an   important   role   in   the   apical   regeneration   in  Hydra.  

Further  way  to  examine  it  in  the  presence/absence  of  ROS  is  as  well  with  the  existing   genetically   encoded   biosensors.   This   can   be   done   with   the   FRET   imaging   of   the   reversible  ERK  reporter  mRFP-­‐cdc25C-­‐eGFP  (Harvey  et  al.,  2008)  or  using  the  similar   variation   of   this   tool   (Burack   and   Shaw,   2005;   de   la   Cova   et   al.,   2017).   This   could   further  elucidate  the  function  of  H2O2  by  following  the  activity  of  its  putative  target:  

MAPK/ERK.  

We  have  shown  that  Hydra  Nrf-­‐l  performs  as  an  oxidative  sensor  in  mammalian  cell   culture.  Our  next  step  is  to  confirm  these  preliminary  data  with  the  functional  assays   in  vivo.  We  plan  to  test  this  in  several  contexts.  The  impact  of  Nrf-­‐l  in  Hydra  can  be   dissected  with  monitoring  the  wound  healing,  apical  regeneration,  cell  death  and  ROS   production  in  the  Nrf-­‐l  RNAi  animals.  Another  read-­‐out  of  the  Nrf-­‐l  on  the  molecular   level   could   be   the   level   of   p62   protein.   For   this,   we   will   utilize   our   custom   made   antibody  that  was  developed  for  the  running  ageing  project  of  the  lb.  

 

REFERENCES:

Peroxide  Modulates  the  Proliferation/Quiescence  Switch  in  the  Liver  During  Embryonic   Development   and   Posthepatectomy   Regeneration.  Antioxidants   &   Redox   Signaling   22,  921-­‐937.  

Belousov,   V.V.,   Fradkov,   A.F.,   Lukyanov,   K.A.,   Staroverov,   D.B.,   Shakhbazov,   K.S.,   Terskikh,  A.V.,  and  Lukyanov,  S.  (2006).  Genetically  encoded  fluorescent  indicator  for   intracellular  hydrogen  peroxide.  Nature  methods  3,  281-­‐286.  

Bement,   W.M.,   Yu,   H.Y.,   Burkel,   B.M.,   Vaughan,   E.M.,   and   Clark,   A.G.   (2007).   hydroids.  Journal  of  Experimental  Biology  206,  651-­‐658.  

Bode,  H.R.  (2003).  Head  regeneration  inHydra.  Developmental   Dynamics  226,  225-­‐ molecular  framework  for  Hydra  regeneration.  Developmental  biology  303,  421-­‐433.  

Bossert,  P.,  and  Galliot,  B.  (2012).  How  to  use  Hydra  as  a  model  system  to  teach  biology   baculovirus  antiapoptotic  protein  p35.  Science  269,  1885-­‐1888.  

Burack,   W.R.,   and   Shaw,   A.S.   (2005).  Live  Cell  Imaging  of  ERK  and  MEK.  Journal   of   Biological  Chemistry  280,  3832-­‐3837.  

Buzgariu,  W.,  Chera,  S.,  and  Galliot,  B.  (2008).  Methods  to  investigate  autophagy  during   drive  hydra  head  regeneration.  Developmental  cell  17,  279-­‐289.  

Chera,  S.,  Ghila,  L.,  Wenger,  Y.,  and  Galliot,  B.  (2011).  Injury-­‐induced  activation  of  the   MAPK/CREB  pathway  triggers  apoptosis-­‐induced  compensatory  proliferation  in  hydra   head  regeneration.  Development,  growth  &  differentiation  53,  186-­‐201.  

Cikala,  M.,  Wilm,  B.,  Hobmayer,  E.,  Bottger,  A.,  and  David,  C.N.  (1999).  Identification  of   that  generate  specificity  in  ROS  homeostasis.  Nature  reviews  Molecular  cell  biology   8,  813-­‐824.  

Das,   G.,   Shravage,   B.V.,   and   Baehrecke,   E.H.   (2012).   Regulation   and   Function   of   Autophagy  during  Cell  Survival  and  Cell  Death.  Cold   Spring   Harbor   Perspectives   in   Biology  4,  a008813-­‐a008813.  

Davalos,   D.,   Grutzendler,   J.,   Yang,   G.,   Kim,   J.V.,   Zuo,   Y.,   Jung,   S.,   Littman,   D.R.,   Dustin,  

Polyunsaturated-­‐fatty-­‐acid   oxidation   inHydra:   regioselectivity,   substrate-­‐dependent   enantioselectivity  and  possible  biological  role.  Biochemical  Journal  300,  501-­‐507.  

Ding,  W.X.,  Ni,  H.M.,  Gao,  W.,  Yoshimori,  T.,  Stolz,  D.B.,  Ron,  D.,  and  Yin,  X.M.  (2007).   clearance  by  recruiting  Atg12-­‐5-­‐16L1.  Molecular  cell  55,  238-­‐252.  

Dübel,  S.  (1989).  Cell  differentiation  in  the  head  of  Hydra.  Differentiation  41,  99-­‐109.   detection  by  osmotic  surveillance.  Nature  cell  biology  15,  1123-­‐1130.  

Fan,   X.,   Chen,   P.,   Tan,   H.,   Zeng,   H.,   Jiang,   Y.,   Wang,   Y.,   Wang,   Y.,   Hou,   X.,   Bi,   H.,   and   Huang,   M.   (2014).   Dynamic   and   coordinated   regulation   of   KEAP1-­‐NRF2-­‐ARE   and   p53/p21   signaling   pathways   is   associated   with   acetaminophen   injury   responsive   liver   regeneration.  Drug  metabolism  and  disposition:  the  biological  fate  of  chemicals   42,  1532-­‐1539.