• Aucun résultat trouvé

II.1. Basics of the programmed cell-death machinery

Apoptosis  or  how  it  is  also  called  ‘programmed  cellular  suicide’  is  a  tightly  regulated   process  in  the  cell.  If  the  machinery  does  not  work  optimally  it  can  compromise  the   cell  or  not  execute  biological  processes  correctly.  The  common  part  for  all  apoptosis-­‐

related   processes   is   a   special   class   of   aspartate-­‐specific   cysteine   proteases,   called   caspases  (Degterev  et  al.,  2003).  They  are  divided  in  two  groups,  initiator  (long)  and   effector   (short)   caspases   based   on   the   length   of   their   pro-­‐domain.   When   becoming   active,   the   initiator   caspases   process   the   inactive   effector   caspase   via   proteolytic   cleavage,  and  from  there  effector  caspases,  now  active,  are  cleaving  different  cellular   substrates   causing   apoptotic   program   to   be   launched   in   the   cell   (Kumar,   2007).  

Together  with  how  apoptosis  is  tightly  regulated  biological  process  goes  the  fact  that   there  are  seven  different  caspase  genes  in  Drosophila  genome,  (Salvesen  and  Abrams,   2004).   In   homeostasis,   caspases   are   constantly   under   the   inhibition   of   specialized   proteins,   most   important   being   Drosophila   inhibitor-­‐of-­‐apoptosis   (Diap1),   which   blocks   the   initiator   caspase   Dronc.   When   apoptosis   is   triggered   in   the   cell   with   the   proper  stimuli,  3  different  proteins  named  Reaper,  Hid  and  Grim  are  degrading  Diap1,   thus   making   Dronc   available   to   initiate   apoptosis   (Hay   et   al.,   1995;   Laundrie   et   al.,   2003;  Salvesen  and  Abrams,  2004;  Cashio  et  al.,  2005;  Xu  et  al.,  2005;  Hay  and  Guo,   2006;  Muro  et  al.,  2006;  Xu  et  al.,  2006;  Kumar,  2007).  

 

II.2. Discovery of cell death-induced compensatory proliferation

Pioneer  work  connecting  apoptosis  with  wound  healing  and  regeneration  started  in   Drosophila   melanogaster.   Apoptotic   cells   were   shown   to   provide   different   kind   of   signals  that  are  directly  in  charge  of  wound  healing  and  regeneration.  Already  in  the  

’70   it   was   known   that   larval   imaginal   disks   in   flies   can   regenerate   even   after   more   than   50%   of   cells   that   were   destroyed   via   radiation   (Haynie   and   Bryant,   1977).  

Additional   information   came   few   years   after   in   the   early   ’80   when   a   group   of   radiologists   found   out   by   using   electron   microscopy   that   not   only   apoptosis,   but   radiation-­‐induced   necrosis   contributes   to   the   massive   lesions   in   imaginal   disk,   but   still   does   not   impact   the   proper   regeneration   of   wings   in   the   flies   (Abbott,   1983).  

Induced  cell  death  was  shown  to  launch  the  process  of  cellular  proliferation  of  nearby   living  tissue  (Graves  and  Schubiger,  1982;  Ijiri  and  Potten,  1986;  Ruifrok  et  al.,  1997).  

These   observations   led   to   the   hypothesis   that   dying   cells   have   a   specific   way   of   signaling   with   nearby   living   tissue,   pointing   to   the   phenomena   initially   named   as  

“Altruistic   cell   death”,   a   process   widely   used   across   metazoan   and   non-­‐metazoan   organisms  (Kondo,  1988)  that  is  today  known  as  compensatory  proliferation.    

However  as  the  dying  cells  are  promptly  removed  via  phagocytosis,  the  study  of  the   mechanisms  driving  how  dying  cells  exactly  execute  compensatory  proliferation  was   not   so   easy.   In   the   early   2000’  Drosophila   geneticists   exploited   a   main   strength   of   Drosophila   model   to   study   cellular   pathways,   a   fact   that   it   is   very   easy   to   precisely   inhibit   or   over-­‐express   certain   genes.   In   this   case,   over-­‐expression   of   the   caspase-­‐

inhibitor  p35   was   used   to   tackle   this   issue.   P35   protein   is   the   inhibitor   of   effector   caspases,  named  DrICE  and  Dsp-­‐1  in  Drosophila  (Bump  et  al.,  1995;  Xue  and  Horvitz,   1995;  Yoo  et  al.,  2002;  Yu  et  al.,  2002).  Even  when  apoptosis  is  initiated  in  the  cell,   p35   blocks   the   cell   from   dying   by   inhibition   of   its   actual   execution.   And   because   of   that,   cells   are   practically   kept   alive   in   the   ‘undead’   state,   in   which   they   constantly   produce  signals  that  trigger  the  compensatory  proliferation  of  nearby  tissue,  leading   to   an   overgrowth   phenotype.   This   very   elegant   experimental   setup   allowed   researchers   to   further   characterize   components   of   the   apoptotic   pathway   and   their   exact  function  regarding  compensatory  proliferation  (Huh  et  al.,  2004;  Perez-­‐Garijo  et   al.,  2004;  Ryoo  et  al.,  2004;  Kondo  et  al.,  2006;  Wells  et  al.,  2006).  In  the  past  15  years   or   so,   the   non-­‐autonomous   role   of   programmed   cell   death   –   apoptosis   was   investigated   in   developmental   and   regenerative   contexts   and   its   critical   role   in   the   initiation  of  regeneration  was  established  in  several  model  organisms  (Bergmann  and   Steller,  2010;  Vriz  et  al.,  2014;  Perez-­‐Garijo  and  Steller,  2015).  

 

II.3. Molecular signaling involved in cell death-induced compensatory proliferation

Several   following   studies   were   performed   using   compensatory   proliferation   as   a   model,  mostly  to  help  characterize  which  components  of  the  apoptotic  pathway  are   involved   in   this   process   (Figure   5).   In   Drosophila,   several   independent   studies   converged   to   show   the   importance   of   the   initiator   caspase   Dronc   (Huh   et   al.,   2004;  

Kondo   et   al.,   2006;   Wells   et   al.,   2006)   and   the   inhibitor-­‐of-­‐apoptosis   protein   Diap1  

of  the  regenerative  program  in  planarians  (Hwang  et  al.,  2004;  Pellettieri  et  al.,  2010),   newts  (Vlaskalin  et  al.,  2004),  Xenopus  (Tseng  et  al.,  2007),  zebrafish  (Gauron  et  al.,   2013).  Similarly,  in  mouse,  the  caspases  3  and  7  (both  effector  caspases)  play  crucial   roles  in  epidermal  wound  healing  and  liver  regeneration,  as  mice  mutated  for  these   two  genes  show  reduced  cell  proliferation   and  are  deficient  for  skin  wound  healing   and  liver  regeneration  (Li  et  al.,  2010).      

 

Cell  death  machinery  in  Hydra  

The  Boettger  lab  convincingly  demonstrated  the  global  conservation  of  the  cell  death   machinery  in  Hydra  over  the  past  20  years  (Cikala  et  al.,  1999;  David  et  al.,  2005;  Lasi   et   al.,   2010a;   Lasi   et   al.,   2010b).   From   components   mentioned   above,  Hydra   does   express   hyCARD1/2   and   hyCaspA   predicted   as   orthologous   to   initiator   caspases   Dronc   in   Drosophila   or   Caspase-­‐9   in   mammals.   HyDEDCasp   and   hyDDCasp   are   predicted  to  perform  the  similar  function  of  Caspase-­‐10  in  mammals.  Concerning  the   effector   caspases,   Hydra   does   express   hyCaspB/C   as   a   predicted   ortholog   to   Drosophila’s  DrICE  and  Dsp-­‐1  and  mammalian  Caspase-­‐3.  As  explained  before,  DIAP  is   an  important  anti-­‐apoptotic  protein  in  the  fruit  fly,  and  hyIAP  is  presumed  to  perform   the  same  function  in  Hydra.