• Aucun résultat trouvé

Recommandations pour une architecture de réseaux de capteurs urbains :

Après avoir étudié séparément les deux architectures de réseaux de capteurs urbains sans-fil, nous présentons une analyse comparative de ces dernières et les recommandations d’usage selon le trafic à supporter par le réseau. Pour cela, nous restituons sur la Figure 6.13 les résultats obtenus pour chacune des configurations de réseau : 6.15a présente les résultats obtenus pour un déploiement d’une centaine de nœuds et dont la densité est d’une dizaine de nœuds par voisinage radio dans l’approche multi-saut, 6.14b, 6.14c et 6.13d illustrent les résultats pour des déploiements comportant un nombre de nœuds et une densité correspondant respectivement à une petite ville (6.14b), à une ville de taille moyenne (6.14c) jusqu’à un arrondissement peuplé d’une grande ville (6.13d).

On constate en premier lieu que l’architecture multi-sauts permet d’acheminer de l’ordre de deux fois plus de trafic sous exigence de durée de vie et de taux de livraison. En effet, l’architecture à radio longue portée supporte une période de génération de 3,1h pour un déploiement de 1000 nœuds, contre 1,5h pour l’architecture multi-sauts, de 11,7h contre 6,2h pour un déploiement de 5000 nœuds et de 23,6h contre 11,1h pour un déploiement de 10000 nœuds. On note également que l’architecture multi-sauts présente une consommation énergétique moyenne par nœud de deux à huit fois supérieure à celle de l’architecture longue portée pour une transmission journalière. En revanche, lorsque le trafic journalier excède quatre à cinq trames par jour, la consommation énergétique de l’architecture à radio longue-portée devient plus importante.

(a) NR= 100et d = 10

Suite à ces observations, nous déduisons les recommandations suivantes. Pour un trafic faible (inférieur ou égal à 1 trame par jour), sur des topologies de petite taille et jusqu’à un déploiement dans une agglomération de taille moyenne, l’architecture longue portée s’avère

(b) NR= 1000et d = 20

(d) NR= 10000et d = 80

Figure 6.13 – Comparaison des architectures longue portée et multi-saut

être la plus efficace du point de vue énergétique. Cette architecture étant par ailleurs moins complexe à déployer et maintenir (pas de topologie de routage à maintenir), elle semble être la topologie à privilégier. Notons néanmoins que son fonctionnement repose sur deux hypothèses qui peuvent ne pas être vérifiées dans des déploiements réalistes : (i) tous les nœuds capteurs sont capables de transmettre une trame de données à la passerelle, sans relayage intermédiaire, (ii) les nœuds capteurs sont en capacité de recevoir les trames d’ac-quittement émises par la passerelle. Compte tenu de la faible vraisemblance que ces deux hypothèses soient respectées par tous les nœuds capteurs, nous proposons un protocole de contrôle d’accès permettant le relayage des trames de données pour ce type d’architecture. Ce protocole, appelé SARI-MAC et décrit dans le Chapitre 8, permet en effet de lever les hypothèses (i) et (ii) à faible coût énergétique et de résoudre l’accès au médium sans nécessiter la détection des transmissions du voisinage radio (contrairement aux algorithmes de contention classiques).

Pour un trafic excédant 4 à 5 trames par jours et par nœud et pour des déploiements denses, nous recommandons faiblement l’usage d’une topologie multi-sauts. Cette topolo-gie ne permet de supporter qu’un trafic deux fois plus important que l’architecture à radio longue portée et entraîne une complexité accrue de son opération : mise en place d’une topologie de routage (dont le trafic n’a pas été pris en compte dans ces calculs), d’un mé-canisme de synchronisation, etc. Afin de viabiliser cette architecture, nous proposons deux protocoles CT-MAC et QOR qui adressent les causes principales de la dépense énergétique de cette architecture : l’écoute périodique qui est dimensionnée sur le trafic à supporter et le nombre de transmissions nécessaires pour acheminer une trame de son émetteur à la passerelle. CT-MAC, présenté dans le Chapitre 7, propose un algorithme de contention

permettant d’allouer plusieurs transmissions dans un même cycle d’activité radio. De fait, il permet soit de supporter davantage de trafic pour un cycle d’activité radio donné ou de diminuer la fréquence de l’écoute périodique et donc la consommation d’énergie pour un trafic donné. QOR, présenté dans le Chapitre 9, est un protocole de routage permettant l’usage de liens longue distance, asymétriques et transients afin de minimiser conjointement le nombre de retransmissions par trame de données et le délai de livraison. L’ensemble de ces contributions fait l’objet de la partie suivante du manuscrit.

Protocoles adaptés à la collecte de

données dans un réseau urbain

7

Protocole MAC synchronepour réseaux de capteurs

urbains sans-fil

multi-sauts : CT-MAC

7.1 Introduction

Dans le Chapitre 6, nous recommandons l’usage d’une architecture radio multi-sauts à protocole d’accès synchrone pour un réseau de capteurs urbain lorsque le trafic supporté est supérieur à 4-5 trames par nœud et par jour. Dans les Chapitres 4, 5 et 6, nous avons iden-tifié pour un tel scénario les principaux postes de dépense énergétique dans l’établissement et l’arbitrage d’une communication : (i) l’écoute périodique et (ii) la participation à une fenêtre de contention. Nous proposons maintenant un mécanisme de contention synchrone, Cascading Tournament MAC (CT-MAC) permettant d’arbitrer et d’établir plusieurs instants de transmission simultanément et de manière distribuée. CT-MAC supporte ainsi plusieurs émissions par période d’activité : le coût de l’arbitrage à l’accès est donc par-tagé entre plusieurs transmissions et la durée du sommeil entre les périodes d’activité est allongée. De cette façon, l’énergie dissipée par transmission diminue significativement.

L’idée clé de CT-MAC est de construire un classement des nœuds en compétition dans la fenêtre de contention. Alors que les mécanismes de la littérature visent à discriminer un unique émetteur, CT-MAC construit une liste ordonnée d’émetteurs. À cette liste ordonnée correspond un ordonnancement des émissions à des instants de transmission successifs.

Pour cela, CT-MAC repose sur un algorithme à 4 étapes : classement, suppression des doublons, annonce des émissions et transmissions (Fig. 7.1). La première étape emploie un algorithme de contention similaire aux mécanismes de contention à tonalité simple ATS grâce auquel chaque compétiteur s’attribue un rang, ce rang étant associé à un instant de transmission. L’étape de suppression des doublons utilise un algorithme ADB à distribution uniforme afin que chaque rang ne soit présent qu’une unique fois dans un deux-voisinage radio. L’annonce des transmissions est constituée d’une fenêtre de temps dans laquelle les nœuds émettent tour à tour, selon le rang obtenu, l’adresse de leur destinataire. Enfin, les transmissions ont lieu dans l’ordre des annonces de transmission aux instants de transmissions disponibles.