• Aucun résultat trouvé

2. Influence de la dilution sur la flamme non-pr´ em´ elang´ ee

2.2 R´ eponses de la flamme lors de l’ajout d’un diluant

2.2.3 Longueur de la flamme

La dilution impose enfin une modification de la morphologie de la flamme non-pr´em´elang´ee, notamment sa longueur, not´eeLf. La plupart des ´etudes concerne la dilution du fuel. Ainsi, Burke and Schumann [1928], pr´ecurseurs dans l’´etude de l’impact de la dilution sur Lf, ont montr´e exp´erimentalement que l’ajout de N2dans le fuel augmenteLf pour une flamme sous-ventil´ee (quantit´e de fuel en exc`es), et diminue Lf pour une flamme sur-ventil´ee (quantit´e d’air en exc`es). Plus tard, Roper et al. [1977]; G¨ulder and Snelling [1993] ont test´e l’impact de N2 sur diff´erents combustibles, et ont confirm´e la r´eduction deLf pour une flamme sur-ventil´ee. En outre, dans une configuration de flamme invers´ee (l’oxydant est inject´e au centre et le fuel en p´eriph´erie), Lee et al. [2005] ont constat´e une augmentation de Lf lorsque N2 est dilu´e dans l’´ethyl`ene. Pour les flammes laminaires lift´ees, Lee et al. [1994] ont observ´e que l’ajout de N2 dans le fuel entraˆıne une augmentation de la hauteur de stabilisation de flamme et une diminution de sa longueur jusqu’au point d’extinction.

En revanche, il existe peu d’´etudes concernant l’influence de la dilution de l’air sur la longueur de flammeLf d’une flamme non-pr´em´elang´ee. Kumar and Mishra [2008, 2009] ont rapport´e une augmentation d’environ 5% de Lf, lorsque 40% de N2 est ajout´e `a l’air dans le cas d’un brˆuleur type bluff-body. Cette croissance a ´et´e expliqu´ee par la baisse de la temp´erature qui

2.2. R´eponses de la flamme lors de l’ajout d’un diluant 49 agit sur la r´eduction de la diffusivit´e mol´eculaire de l’oxydant variant en T1.5. D’autre part, Oh and Shin [2006] ont list´e, sans les commenter, les valeurs de longueur de flamme mesur´ee par visualisation directe, obtenues avec plusieurs diluants inertes. Leurs r´esultats indiquent une augmentation de Lf pour des flammes accroch´ees laminaires.

Malgr´e l’´etablissement de plusieurs corr´elations reliant Lf `a diff´erentes grandeurs de l’´ ecou-lement (cf. section 1.1.2), peu d’´etudes ont saisi l’opportunit´e de les confronter entre elles ou de les comparer `a des mesures exp´erimentales afin de tester leur validation face `a la dilution de l’air. Cette approche fera l’objet des travaux pr´esent´es `a la section 7.4 de ce m´emoire.

50 BIBLIOGRAPHIE

Bibliographie

S.K. Aggarwal. Extinction of laminar partially premixed flames. Progress in Energy and

Combustion Science, 35 :528–570, 2009.

A.M. Briones, S.K. Aggarwal, and V.R. Katta. A numerical investigation of flame liftoff and stabilization and blowout. Physics of Fluids, 18 :043603, 2006.

S.P. Burke and T.E.W. Schumann. Diffusion flames. Industrial and Engineering Chemistry, 20 :998–1004, 1928.

A. Cavaliere and M. Joannon. Mild combustion.Progress in Energy and Combustion Science, 30 :329–366, 2004.

Y.-C. Chao, C.-Y. Wu, K.-Y. Lee, and Y.-H. Li. Effects of dilution on blowout limits of turbulent jet flames. Combustion Science and Technology, 176 :1735–1753, 2004.

S.H. Chung. Stabilization and propagation and instability of tribrachial triple flames.

Pro-ceedings of the Combustion Institute, 31 :877–892, 2007.

B.B. Dally, A.N. Karpetis, and R.S. Barlow. Structure of turbulent non-premixed jet flames in a diluted hot coflow. Proceedings of the Combustion Institute, 29 :1147–1154, 2002. B.B. Dally, E. Riesmeier, and N. Peters. Effect of fuel mixture on moderate and intense low

oxygen dilution combustion. Combustion and Flame, 137 :418–431, 2004.

O.L. G¨ulder and D.R. Snelling. Influence of nitrogen dilution and flame temperature on soot formation in diffusion flames. Combustion and Flame, 92 :115–124, 1993.

H. Guo and G. Smallwood. A numerical study on the influence of CO2 addition on soot formation in an ethylene/air diffusion flame. Combustion Science and Technology, 180 : 1695–1708, 2008.

A.K. Gupta. Flame characteristics and challenges with high temperature air combustion. In

International joint Power Generation Conference, IJPGC2000-15087, 2000.

P. Han, M.D. Checkel, B.A. Fleck, and N.L. Nowicki. Burning velocity of methane/diluent mixture with reformer gas addition. Fuel, 86 :585, 2007.

R.T.E. Hermanns, A.A. Konnov, R.J.M. Bastiaans, L.P.H. De Goey, K. Lucka, and H. K¨ohne. Effects of temperature and composition on the laminar burning velocity of CH4+H2+O2+N2 flames. Fuel, 89 :114, 2009.

M. Katsuki and T. Hasegawa. The science and technology of combustion in highly preheated

BIBLIOGRAPHIE 51 V.R. Katta, F. Takahashi, and G.T. Linteris. Suppression of cup-burner flames using carbon

dioxide in microgravity. Combustion and Flame, 137 :506–522, 2004.

P. Kumar and D.P. Mishra. Characterization of bluff-body stabilized LPG jet diffusion flame with N2 dilution. Energy conversion and Management, 49 :2698–2703, 2008.

P. Kumar and D.P. Mishra. Experimental study ofN2 dilution on bluff-body stabilized LPG jet diffusion flame. Combustion, Explosion, and Shock Waves, 45 :1–7, 2009.

B.J. Lee, J.S. Kim, and S.H. Chung. Effect of dilution on the liftoff of non-premixed jet flames. Proceedings of the Combustion Institute, 25 :1175–1181, 1994.

E.J. Lee, K.C. Oh, and H.D. Shin. Soot formation in inverse diffusion flames of diluted ethene. Fuel, 84 :543–550, 2005.

F. Liu, H. Guo, G.J. Smallwood, and O.L. G¨ulder. The chemical effects of carbon dioxide as an additive in an ethylene diffusion flame : implications for soot and N Ox formation.

Combustion and Flame, 125 :778–787, 2001.

Y. Liu, J.M. Most, P. Bauer, and A. Claverie. Reaction zone characterization of counter-flow diffusion flame with diluted and preheated reactants. Int. J. Miner. Metall. Mater., 16 : 278, 2009.

A. Lock, A.M. Briones, S.K. Aggarwal, I.K. Puri, and U. Hegde. Liftoff and extinction characteristics of fuel- and air-stream diluted methane-air flames. Combustion and Flame, 149 :340–352, 2007.

A. Lock, S.K. Aggarwal, I.K. Puri, and U. Hegde. Suppression of fuel and air stream diluted methane-air partially premixed flames in normal and microgravity. Fire Safety Journal, 43 :24–35, 2008.

A. Lock, S.K. Aggarwal, and I.K. Puri. Effect of fuel type on the extinction of fuel and air stream diluted partially premixed flames. Proceedings of the Combustion Institute, 32 : 2583–2590, 2009.

H. Machrafi, S. Cavadias, and P. Guibert. An experimental and numerical investigation on the influence of external gas recirculation on the HCCI autoignition process in an engine : Thermal, diluting, and chemical effects. Combustion and Flame, 155 :476–489, 2008. E. Masson. Etude experimentale des champs dynamiques et scalaires de la combustion sans

flamme. PhD thesis, INSA de Rouen, 2005.

A. Matynia, J.-L. Delfau, L. Pillier, and C. Vovelle. Comparative study oh the influence of CO2andH2Oon the chemical structure of lean and rich methane-air flames at atmospheric pressure. Combustion, Explosion, and Shock Waves, 45 :635–645, 2009.

52 BIBLIOGRAPHIE

A. Milani and A. Saponaro. Diluted combustion technologies. International Flame Research

Foundation Combustion Journal, 01 :200101, 2001.

J. Oh, Q.S. Khan, and Y. Yoon. Nitrogen dilution effect on flame stability in a lifted non-premixed turbulent hydrogen jet with coaxial air. Fuel, 89 :1493–1498, 2010.

K.C. Oh and H.D. Shin. The effect of oxygen and carbon dioxide concentration on soot formation in non-premixed flames. Fuel, 85 :615–624, 2006.

J. Park, D.-J. Hwang, J.-G. Choi, K.-M. Lee, S.-I. Keel, and S.-H. Shim. Chemical effects of CO2 addition to oxidizer and fuel streams on flame structure in H2−O2 couterfolw diffusion flames. International Journal of Energy Research, 27 :1205–1220, 2003.

J. Park, D.J. Hwang, K.-T. Kim, S.-B. Lee, and S.-I. Keel. Evaluation of chemical effects of addedCO2 according to flame location. International Journal of Energy Research, 28 : 551–565, 2004.

W.M. Pitts, J.C. Yang, M.L. huber, and L.G. Blevins. Characterization and identification of super-effective thermal fire extinguishing agents - first annual report. Technical report, National Institute of Standards and Technology, 1999.

L. Qiao, Y. Gan, T. Nishiie, W.J.A. Dahmb, and E.S. Oran. Extinction of premixed me-thane/air flames in microgravity by diluents : effects of radiation and lewis number.

Com-bustion and Flame, 157 :1446–1455, 2010.

F.G. Roper, C. Smith, and A. Cunningham. The prediction of laminar jet diffusion flame sizes : Part ii. experimental verification. Combustion and Flame, 29 :227–234, 1977. C. Rottier. Etude exp´erimentale de l’influence des melanges gazeux sur la combustion sans

flamme. PhD thesis, INSA de Rouen, 2010.

G.W. Sidebotham and I. Glassman. Flame temperature, fuel structure and fuel concentration effects on soot formation in inverse diffusion. Combustion and Flame, 90 :269–272, 1992. F. Takahashi and V.R. Katta. Further studies of the reaction kernel structure and

sta-bilization of jet diffusion flames. Proceedings of the Combustion Institute, 30 :375–382, 2005.

F. Takahashi, G.T. Linteris, and V.R. Katta. Extinguishment mechanisms of coflow diffusion flames in a cup-burner apparatus. Proceedings of the Combustion Institute, 31 :2721–2729, 2007a.

F. Takahashi, G.T. Linteris, and V.R. Katta. Vortex-coupled oscillations of edge diffusion flames in coflowing air with dilution. Proceedings of the Combustion Institute, 31 :1575– 1582, 2007b.

BIBLIOGRAPHIE 53 F. Takahashi, G.T. Linteris, and V.R. Katta. Extinguishment of methane diffusion flames by carbon dioxide in coflow air and oxygen-enriched microgravity environments. Combustion

and Flame, 155 :37–53, 2008.

D. Trees, A. Gurdno, and K. Seshadri. Experimental and numerical studies on chemical inhibition of nonpremixed methane flames byCF3Br.Combustion Science and Technology, 124 :311–330, 1997.

L. Vanquickenborne and A. Van Tiggelen. The stabilization mechanism of lifted diffusion flames. Combustion and Flame, 10 :59–69, 1966.

N. Vora, J.E. Siow, and N.M. Laurendeau. Chemical scavenging activity of gaseous sup-pressants by using laser-induced fluorescence measurements of hydroxyl. Combustion and

Flame, 126 :1393–1401, 2001.

R. Weber, A.D. Verlan, S. Orsino, and N. Lallement. On emerging furnace design metho-dology that provides substantial energy saving and drastic reduction inCO2 andCO and N Ox emissions. Journal of the Institute of Energy, 72 :77–83, 1999.

J.A. W¨unning and J.G. W¨unning. Flameless oxidation to reduce thermal NO-formation.

Progress in Energy and Combustion Science, 23 :81–84, 1997.

S.H. Won, J. Kim, K.J. Hong, M.S. Cha, and S.H. Chung. Stabilization mechanism of lifted flame edge in the near field of coflow jets for diluted methane. Proceedings of the

Combustion Institute, 30 :339–347, 2005.

Y. Wu, I.S. Al-Rahbi, Y. Liu, and G.T. Kalghatgi. The stability of turbulent hydrogen jet flames with carbon dioxide and propane addition. Fuel, 86 :1840–1848, 2007.

T. Yamauchi. Outline of high performance industrial furnace and boiler development project.

In High Performance Industrial Furnace and Boiler, pages 2–12, 8-9 Mars 1999. Tokyo.

I.B. ¨Ozdemir and N. Peters. Characteristics of the reaction zone in a combustor operating at mild combustion. Experiments in Fluids, 30 :683–695, 2001.