• Aucun résultat trouvé

25

II.1 Plan d’expérience des facteurs couple (A), masse (R), vitesse de rotation (V), leurs interactions et le couple de résistance . . . 49 II.2 Décélérations obtenues pour des séries de tests effectuées sur divers cor-

ridors et divers chargements de FRM . . . 70 II.3 Types de roues testées . . . 75

LISTE DES TABLEAUX

II.4 Evolution du paramètre de résistance au roulement de la roue arrière se- lon le gonflage et le type de sol . . . 80 II.5 Valeurs géométriques et mécaniques de l’expérience . . . 95 IV.1 Comparaison des masses calculées et mesurées (valeurs absolues en Kg) . 119 IV.2 Evolutions du centre de gravité athlète et du centre de pression (ath-

5

lète+fauteuil) dans la direction arrière/avant du repère fauteuil, selon le réglage antéropostérieur du siège . . . 130 VI.1 Facteurs testés dans le plan d’expérience fractionnaire . . . 143 VI.2 Plan d’expérience fractionnaire à 2 niveaux et décélérations obtenues . . 144 VI.3 Comparaison entre mesures effectuées et simulation de rotation libre, en

10

choisissant des paramètres de résistance au pivotement de 3,5 et 4,5×10−3

m ou de 4 et 24×10−3 m pour les roues avant et arrière, respectivement . 159

VI.4 Influences relatives d’une variation de 30 % des paramètres sur la décélé- ration angulaire . . . 160 VI.5 Influences relatives d’erreurs de mesure des paramètres sur la décéléra-

15

tion angulaire . . . 161 VI.6 Stephane Houdet, Roland Garros 2012 . . . 165 G.19 Coefficients gii et hii . . . 322

[1] R. Aissaoui and G. Desroches. Stroke pattern classification during manual wheel- chair propulsion in the elderly using fuzzy clustering. Journal of Biomechanics, 41(11) :2438 – 2445, 2008.

[2] A. Baca. Precise determination of anthropometric dimensions by means of image

5

processing methods for estimating human body segment parameter values. J Biomech, 29(4) :563–567, Apr 1996.

[3] J. Bascou, C. Sauret, H. Pillet, A. Bonnefoy, P. Thoreux, and F. Lavaste. Evolu- tions of the wheelchair user’s centre of mass and centre of pressure according to the seat fore-aft position during sprinting : a case study of an elite wheelchair

10

tennis player. Computer Methods in Biomechanics and Biomedical Engineering, 15(sup1) :210–211, 2012.

[4] J. Bascou, C. Sauret, H. Pillet, F. Lavaste, and P. Vaslin. Influence of fore-aft seat position and rolling drag force on wheelchair propulsive performance. Journal of Biomechanics, 45 suppl.1 :S508, 2012.

15

[5] J. Bascou, C. Sauret, H. Pillet, P. Vaslin, P. Thoreux, and F. Lavaste. A method for the field assessment of rolling resistance properties of manual wheelchairs. Comput Methods Biomech Biomed Engin, Jan 2012.

[6] M. Begon and P. Lacouture. Modélisation anthropométrique pour une analyse mécanique du geste sportif. Movement & Sport Sciences, 54 :11–33, 2005.

20

[7] M.L. Boninger, M. Baldwin, R.A. Cooper, A. Koontz, and L. Chan. Manual wheel- chair pushrim biomechanics and axle position. Archives of Physical Medicine and Rehabilitation, 81(5) :608–613, May 2000.

[8] M.P. Bougenot, N. Tordi, F. Grappe, J.D. Rouillon, and A. Belli. Détermination sur le terrain des résistances à l’avancement en fauteuil roulant. Actes du 8e Congrès

25

de l’ACAPS Macolin : Suisse, pages 285–286, 1999. cited By (since 1996) 1.

[9] H. Brody and R. Cross. The Physics and Technology of Tennis. Racquet Tech Publishing, 2002.

BIBLIOGRAPHIE

[10] C. Brubaker. Ergonometric considerations. J Rehabil Res Dev Clin Suppl, (2) :37– 48, 1990.

[11] C. E. Brubaker. Wheelchair prescription : an analysis of factors that affect mobi- lity and performance. J Rehabil Res Dev, 23(4) :19–26, Oct 1986.

[12] M. Burton, A. Subic, M. Mazur, and M. Leary. Systematic design customization

5

of sport wheelchairs using the taguchi method. Procedia Engineering, 2(2) :2659– 2665, June 2010.

[13] R. Cabane. Methodes numeriques en algebre lineaire. Technical report, Tech- niques de l’ingénieur, 2010.

[14] J-C. Cabelguen. Développement d’outils pour l’analyse et la quantification des

10

interactions fauteuil/utilisateur/environnement lors du déplacement du fauteuil roulant manuel. These, ENSAM, 2008.

[15] R F Chandler, C E Clauser, J T McConville, H M Reynolds, and J W. Young. In- vestigation of inertial properties of the human body. Aerospace Medical Research Laboratory ; National Highway Traffic Safety Administration ; Civil Aeromedical

15

Institute ; Webb Associates, 1975.

[16] S-C. Chen, H-J. Hsieh, T-W. Lu, and C-H. Tseng. A method for estimating subject- specific body segment inertial parameters in human movement analysis. Gait Posture, 33(4) :695–700, Apr 2011.

[17] C. K. Cheng, H. H. Chen, C. S. Chen, C. L. Chen, and C. Y. Chen. Segment inertial

20

properties of chinese adults determined from magnetic resonance imaging. Clin Biomech (Bristol, Avon), 15(8) :559–566, Oct 2000.

[18] F. Chenier, P. Bigras, and R. Aissaoui. A new dynamic model of the manual wheelchair for straight and curvilinear propulsion. IEEE Int Conf Rehabil Ro- bot, 2011 :5975357, 2011.

25

[19] F. Chenier, P. Bigras, and R. Aissaoui. An orientation estimator for the wheel- chair’s caster wheels. IEEE Transactions on Control Systems Technology, 19 :1317–1326, 2011.

[20] J.J.C. Chua, F. Konstantin Fuss, and A. Subic. Rolling friction of a rugby wheel- chair. Procedia Engineering, 2(2) :3071 – 3076, 2010. <ce :title>The Engineering

30

of Sport 8 - Engineering Emotion</ce :title>.

[21] CIB. Tolerances on blemishes of concrete cib : International council for research and innovation in building and construction. CIB, 24, 1973.

[22] C.E. Clauser, J.T. McConville, and J. W. Young. Weight, volume, and center of mass of segments of the human body. Aerospace Medical Research Laboratory, Aerospace Medical Division, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio, 1969.

[23] PL. Coe. Aerodynamics characteristics of wheelchairs. NASA Technical Memo-

5

randum, 80191 :1–17, 1979.

[24] R.A. Cooper. A systems approach to the modeling of racing wheelchair propulsion. Journal of Rehabilitation Research and Development, 27(2) :151–162, 1990. cited By (since 1996) 13.

[25] C.A Coulomb. Théorie des machines simples. -, 1821.

10

[26] K.D. Coutts. Kinematics of sport wheelchair propulsion. Journal of Rehabilitation Research and Development, 27(1) :21–26, 1990. cited By (since 1996) 7.

[27] K.D. Coutts. Dynamic characteristics of a sport wheelchair. Journal of Rehabili- tation Research and Development, 28(3) :45–50, 1991. cited By (since 1996) 7. [28] K.D. Coutts. Dynamics of wheelchair basketball. Medicine and Science in Sports

15

and Exercise, 24(2) :231–234, 1992. cited By (since 1996) 17.

[29] K.D. Coutts. Drag and sprint performance of wheelchair basketball players. Jour- nal of Rehabilitation Research and Development, 31(2) :138–143, 1994. cited By (since 1996) 15.

[30] M. Dabonneville, P. Kauffmann, P. Vaslin, N. de Saint Rémy, Y.b Couétard, and

20

M.b Cid. A self-contained wireless wheelchair ergometer designed for biomecha- nical measures in real life conditions. Technology and Disability, 17(2) :63–76, 2005. cited By (since 1996) 1.

[31] M. Damavandi, N. Farahpour, and P. Allard. Determination of body segment masses and centers of mass using a force plate method in individuals of different

25

morphology. Med Eng Phys, 31(9) :1187–1194, Nov 2009.

[32] M. de Groot, S. andde Bruin, S. P. Noomen, and L. H V van der Woude. Mechani- cal efficiency and propulsion technique after 7 weeks of low-intensity wheelchair training. Clin Biomech (Bristol, Avon), 23(4) :434–441, May 2008.

[33] S. de Groot, H.E.J. Veeger, A.P. Hollander, and L.H.V. van der Woude. Influence

30

of task complexity on mechanical efficiency and propulsion technique during learning of hand rim wheelchair propulsion. Medical Engineering & Physics, 27(1) :41–49, January 2005.

BIBLIOGRAPHIE

[34] S. de Groot, M. Zuidgeest, and L.H.V. van der Woude. Standardization of mea- suring power output during wheelchair propulsion on a treadmill : Pitfalls in a multi-center study. Medical Engineering & Physics, 28(6) :604–612, July 2006. [35] P. de Leva. Adjustments to zatsiorsky-seluyanov’s segment inertia parameters.

Journal of Biomechanics, 29(9) :1223 – 1230, 1996.

5

[36] N. de Saint-Remy. Modélisation et détermination des paramètres biomécaniques de la locomotion en fauteuil roulant manuel. PhD thesis, Laboratoire de Bioméca- nique, Arts et Métiers Paristech, 2005.

[37] N. de Saint-Remy, P. Vaslin, M. Dabonneville, and M. Cid. Computing wheelchair drag force from the system’s total weight value and distribution. Computer Me-

10

thods in Biomechanics and Biomedical Engineering, 10(sup1) :103–104, 2007. [38] N. de Saint de Saint-Rémy, P. Vaslin, M. Dabonneville, L. Martel, and A. Gavand.

Dynamique de la locomotion en fauteuil roulant manuel : influences de la masse totale et de sa répartition antéropostérieure sur la résultante des forces de frei- nage dynamics of manual wheelchair locomotion : influences of the level and the

15

fore-and-aft distribution of the total mass on the resultant braking force. Science & Sports, 18(3) :141–149, June 2003.

[39] W. T. Dempster. Space requirements of the seated operator. WADC Technical report TR-55-159(1955), 1955.

[40] R. Dumas, R. Aissaoui, D. Mitton, W. Skalli, and J.A. de Guise. Personalized body

20

segment parameters from biplanar low-dose radiography. IEEE Trans Biomed Eng, 52(10) :1756–1763, Oct 2005.

[41] R. Dumas, L. Chèze, and J-P. Verriest. Adjustments to mcconville et al. and young et al. body segment inertial parameters. J Biomech, 40(3) :543–553, 2007.

[42] J.L. Durkin, J.J. Dowling, and D.M. Andrews. The measurement of body seg-

25

ment inertial parameters using dual energy x-ray absorptiometry. J Biomech, 35(12) :1575–1580, Dec 2002.

[43] M.R. Eicholtz, J. J. Caspall, P.V. Dao, S. Sprigle, and A. Ferri. Test method for empirically determining inertial properties of manual wheelchairs. J Rehabil Res Dev, 49(1) :51–62, 2012.

30

[44] M. Espagnacq. Mortalité à long terme et devenir social des blessés médullaires tétraplégiques. Etudes à partir des enquêtes Tétrafigap 1995 et 2006. These, Uni- versité Panthéon-Sorbonne - Paris I, December 2008.

[45] J. Etiemble and al. Activité physique, contextes et effets sur la santé - Une expertise collective de l’INSERM, chapter 1. Editions Inserm, 2008.

[46] A. Faupin, P. Campillo, T. Weissland, P. Gorce, and A. Thevenon. The effects of rear-wheel camber on the mechanical parameters produced during the wheelchair sprinting of handibasketball athletes. Journal of Rehabilitation Research and

5

Development, 41(3 B) :421–428, 2004. cited By (since 1996) 3.

[47] A. Faupin, P. Gorce, P. Campillo, A. Thevenon, and O. Rémy-Néris. Kinematic analysis of handbike propulsion in various gear ratios : Implications for joint pain. Clinical Biomechanics, 21(6) :560 – 566, 2006.

[48] A. Faupin, P. Gorce, C. Meyer, and A. Thevenon. Effects of backrest positioning

10

and gear ratio on nondisabled subjects’ handcycling sprinting performance and kinematics. Journal of Rehabilitation Research and Development, 45 :109–116, 2008.

[49] FFH. Communication de la ffh. présentation, chiffres, 2009. [50] FFH. Communication de la ffh. Présentation, chiffress, 2011.

15

[51] T.G. Frank and E.W. Abel. A technique for the accurate measurement of low values of rolling resistance. PROC. INST. MECH. ENGRS. PART D, 202(D4, 1988) :251– 255, 1988. cited By (since 1996) 2.

[52] T.G. Frank and E.W. Abel. Measurement of the turning, rolling and obstacle resis- tance of wheelchair castor wheels. Journal of Biomedical Engineering, 11(6) :462–

20

466, November 1989.

[53] O. Freixes, S.A. Fernández, M. A. Gatti, M. J. Crespo, L. E. Olmos, and I. F. Ru- bel. Wheelchair axle position effect on start-up propulsion performance of persons with tetraplegia. J Rehabil Res Dev, 47(7) :661–668, 2010.

[54] K.J. Ganley and C.M. Powers. Determination of lower extremity anthropometric

25

parameters using dual energy x-ray absorptiometry : the influence on net joint moments during gait. Clin Biomech (Bristol, Avon), 19(1) :50–56, Jan 2004. [55] M. J. R. Gittoes, I.N. Bezodis, and C. Wilson. An image-based approach to ob-

taining anthropometric measurements for inertia modeling. J Appl Biomech, 25(3) :265–270, Aug 2009.

30

[56] P. Gorce and N. Louis. Wheelchair propulsion kinematics in beginners and expert users : Influence of wheelchair settings. Clinical Biomechanics, (0) :–, 2011.

BIBLIOGRAPHIE

[57] F. Grappe, R. Candau, B. Barbier, M. D. Hoffman, A. Belli, and J. D. Rouillon. Influence of tyre pressure and vertical load on coefficient of rolling resistance and simulated cycling performance. Ergonomics, 42(10) :1361–1371, 1999.

[58] L-Y. Guo, F-C. Su, H-W. Wu, and K-N. An. Mechanical energy and power flow of the upper extremity in manual wheelchair propulsion. Clinical Biomechanics,

5

18(2) :106–114, February 2003.

[59] Jr Hanavan. A mathematical model for the human body. amrl-tr-64-102. AMRL TR, pages 1–149, Oct 1964.

[60] C.M. Harris. Shock and Vibration Handbook. Mecanique et industrie, 1961. [61] H. Hatze. A mathematical model for the computational determination of parame-

10

ter values of anthropomorphic segments. Journal of Biomechanics, 13(10) :833– 843, 1980.

[62] C. Higgs. Racing wheelchairs : a comparison of three- and four-wheeled designs. The Free Library, 1992.

[63] C. Higgs. Wheeling in the wind : The effect of wind velocity and direction on the

15

aerodynamic drag of wheelchairs. SOURCE Adapted Physical Activity Quarterly, 9 Issue 1 :74 :87, 1992.

[64] M.D. Hoffman, G.Y. Millet, A.Z. Hoch, and R.B. Candau. Assessment of wheel- chair drag resistance using a coasting deceleration technique. American Journal of Physical Medicine and Rehabilitation, 82(11) :880–889, 2003. cited By (since

20

1996) 3.

[65] M. Hofstad and P.E. Patterson. Modelling the propulsion characteristics of a stan- dard wheelchair. Journal of Rehabilitation Research and Development, 31(2) :129– 137, 1994. cited By (since 1996) 9.

[66] Y.C. Huang, L.Y. Guo, C.Y. Tsai, and F.C. Su. Effect of wheel camber on mechanical

25

energy and power flow analysis of the upper extremity in wheelchair propulsion. Journal of Biomechanics, 40(Supplement 2) :S469–S469, 2007.

[67] C.J. Hughes, W.H. Weimar, P.N. Sheth, and C.E. Brubaker. Biomechanics of wheel- chair propulsion as a function of seat position and user-to-chair interface. Archives of Physical Medicine and Rehabilitation, 73(3) :263–269, 1992. cited By (since

30

1996) 41.

[68] R. K. Jensen. Estimation of the biomechanical properties of three body types using a photogrammetric method. J Biomech, 11(8-9) :349–358, 1978.

[69] B.W. Johnson and J.H. Aylor. Dynamic modeling of an electric wheelchair. IEEE Transactions on Industry Applications, IA-21 :1284–1293, 1985.

[70] M. Kalos and P. Whitlock. Monte Carlo Methods. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008.

[71] JJ. Kauzlarich, T. Bruning, and JG. Thacker. Wheelchair caster shimmy and tur-

5

ning resistance. Journal of rehabilitation research and development, 21 :15–29, 1984.

[72] JJ. Kauzlarich and JG. Thacker. Wheelchair tire rolling resistance and fatigue. Journal of Rehabilitation Research and Development, 22, 1985.

[73] J.W. L. Keogh. Paralympic sport : an emerging area for research and consultancy

10

in sports biomechanics. Sports biomechanics / International Society of Biomecha- nics in Sports, 10(3) :234–53, 2011.

[74] I. Kingma, H. M. Toussaint, D. A. Commissaris, M. J. Hoozemans, and M. J. Ober. Optimizing the determination of the body center of mass. J Biomech, 28(9) :1137– 1142, Sep 1995.

15

[75] I. Kingma, H. M. Toussaint, M. P. De Looze, and J. H. Van Dieen. Segment inertial parameter evaluation in two anthropometric models by application of a dynamic linked segment model. J Biomech, 29(5) :693–704, May 1996.

[76] R. L. Kirby, M. T. Sampson, F. A. Thoren, and D. A. MacLeod. Wheelchair stabi- lity : effect of body position. J Rehabil Res Dev, 32(4) :367–372, Nov 1995.

20

[77] T. Kodek and M. Munih. An identification technique for evaluating body segment parameters in the upper extremity from manipulator-hand contact forces and arm kinematics. Clin Biomech (Bristol, Avon), 21(7) :710–716, Aug 2006.

[78] A. M. Koontz, B. M. Roche, J. L. Collinger, R. A. Cooper, and M. L. Boninger. Manual wheelchair propulsion patterns on natural surfaces during start-up pro-

25

pulsion. Archives of Physical Medicine and Rehabilitation, 90(11) :1916–1923, November 2009.

[79] Brian R. Kotajarvi, Michelle B. Sabick, Kai-Nan An, Kristin D. Zhao, Kenton R. Kaufman, and Jeffrey R. Basford. The effect of seat position on wheelchair pro- pulsion biomechanics. Journal of Rehabilitation Research and Development, 41,

30

2004.

[80] I.V. Kragelsky and N.B. Demkin. Contact area of rough surfaces. Wear, 3(3) :170 – 187, 1960.

BIBLIOGRAPHIE

[81] W.H. Kruskal and W.A. Wallis. Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, pages 583–621, 1952.

[82] A. Kwarciak, M. Yarossi, A. Ramanujam, S. A. Sisto, G. Forrest, and T. Dyson- Hudson. Poster 8 : Effect of tire type on manual wheelchair propulsion kinematics in persons with spinal cord injury. Archives of Physical Medicine and Rehabilita-

5

tion, 90(10) :e14–e14, October 2009.

[83] A. M. Kwarciak, M. Yarossi, A. Ramanujam, T. A Dyson-Hudson, and S. A. Sisto. Evaluation of wheelchair tire rolling resistance using dynamometer-based coast- down tests. J Rehabil Res Dev, 46(7) :931–938, 2009.

[84] F Lavaste. La propulsion du fauteuil roulant manuel. In Entretiens de Garches,

10

2008.

[85] M. Le-Guen. La boîte à moustaches de tukey un outil pour initier à la statis- tique. Technical report, CNRS Matisse, MATISSE-CNRS UMR8595, Maison des Sciences Economiques, 106-112 Boulevard de l’Hôpital, 75013 Paris, 2001.

[86] M. K. Lee, N. Sa. Le, A. C. Fang, and M. T H. Koh. Measurement of body seg-

15

ment parameters using dual energy x-ray absorptiometry and three-dimensional geometry : an application in gait analysis. J Biomech, 42(3) :217–222, Feb 2009. [87] E. D. Lemaire, M. Lamontagne, H. W. Barclay, T. John, and G. Martel. A tech-

nique for the determination of center of gravity and rolling resistance for tilt-seat wheelchairs. J Rehabil Res Dev, 28(3) :51–58, 1991.

20

[88] D. Lenzi, A. Cappello, and L. Chiari. Influence of body segment parameters and modeling assumptions on the estimate of center of mass trajectory. J Biomech, 36(9) :1335–1341, Sep 2003.

[89] F.X. Lepoutre, V. Delcroix, P. Fodé, A. Thevenon, I. Ville, P. Vaslin, L. Cheze, and E. Watelain. Le fauteuil roulant manuel : choix et réglages : une approche pluri-

25

disciplinaire. Sauramps Médical, 2011.

[90] N. Louis. Analyse biomécanique de la propulsion en fauteuil roulant à mains cou- rantes : indices d’évaluation ergonomique. PhD thesis, Laboratoire Handibio, Uni- versité du Sud Toulon - Var, 2010.

[91] R. A. Lukes, S. B. Chin, and S. J. Haake. The understanding and development of

30

cycling aerodynamics. Sports engineering, 8(2) :59–74, 2005.

[92] M. S. MacLeish, R. A. Cooper, J. Harralson, and JF Ster, 3rd. Design of a composite monocoque frame racing wheelchair. J Rehabil Res Dev, 30(2) :233–249, 1993.

[93] A. H. MacPhee, R. L. Kirby, A. C. Bell, and D. A. MacLeod. The effect of knee- flexion angle on wheelchair turning. Medical Engineering & Physics, 23(4) :275– 283, May 2001.

[94] H.B. Mann and D.R. Whitney. On a test of whether one of two random variables is stochastically larger than the other. The Annals of Mathematical Statistics, pages

5

50–60, 1947.

[95] J. E. Manson, P. Greenland, A. Z. LaCroix, M. L. Stefanick, C. P. Mouton, A. Ober- man, M. G. Perri, D. S. Sheps, M. B. Pettinger, and D. S. Siscovick. Walking compa- red with vigorous exercise for the prevention of cardiovascular events in women. New England Journal of Medicine, 347(10) :716–725, 2002.

10

[96] P. E. Martin, M. Mungiole, M. W. Marzke, and J. M. Longhill. The use of ma- gnetic resonance imaging for measuring segment inertial properties. J Biomech, 22(4) :367–376, 1989.

[97] J. M. Matheri and J. M. Frantz. Physical activity levels among young people with physical disabilities in selected high schools in kenya and their perceived barriers

15

and facilitators to participation. Journal of Community and health sciences, 4, 2009.

[98] C.A. McLaurin and C.E. Brubaker. Biomechanics and the wheelchair. Prosthet Orthot Int. 1991, Apr 15(1) :24–37, 1991.

[99] T. Monnet. Contribution à l’identification des paramètres inertiels des segments

20

du corps humain. PhD thesis, Faculté des Sciences Fondamentales et Appliquées, Université de Poitiers, 2007.

[100] A. D. Moss, N. E. Fowler, and V. L. Goosey-Tolfrey. The intra-push velocity pro- file of the over-ground racing wheelchair sprint start. Journal of Biomechanics, 38(1) :15 – 22, 2005.

25

[101] Viorel Paleu, Spiridon Cretu, Barbu Drãgan, and Rodica Bãlan. Test rig for fric- tion torque measurement in rolling bearings test rig for friction torque measu- rement in rolling bearings. The annuals of university “DUN ˘AREA DE JOS “ of galati, FASCICLE VIII, 2004.

[102] T. C. Pataky, V. M. Zatsiorsky, and J. H. Challis. A simple method to determine

30

body segment masses in vivo : reliability, accuracy and sensitivity analysis. Clin Biomech (Bristol, Avon), 18(4) :364–368, May 2003.

[103] J. C. Pezzack, R. W. Norman, and D. A. Winter. An assessment of derivative deter- mining techniques used for motion analysis. J Biomech, 10(5-6) :377–382, 1977.

BIBLIOGRAPHIE

[104] H. Pillet, X. Bonnet, F. Lavaste, and W. Skalli. Evaluation of force plate-less es- timation of the trajectory of the centre of pressure during gait. comparison of two anthropometric models. Gait & Posture, 31 :147–152, 2010.

[105] F. Pouly. Modélisation thermo mécanique d’un roulement à billes grande vitesse. PhD thesis, L’institut National des Sciences Appliquées de Lyon, 2010.

5

[106] M. Reed, M. Manary, and L. Schneider. Methods for measuring and representing automobile occupant posture. SAE Technical Paper, 1999.

[107] R. Riemer, E. T. Hsiao-Wecksler, and X. Zhang. Uncertainties in inverse dynamics solutions : a comprehensive analysis and an application to gait. Gait Posture, 27(4) :578–588, May 2008.

10

[108] L. A. Rozendaal, H. E. J. Veeger, and L. H. V. van der Woude. The push force pattern in manual wheelchair propulsion as a balance between cost and effect. Journal of Biomechanics, 36(2) :239–247, February 2003.

[109] Racing wheelchair aerodynamic design team RWADT. Wind tunnel testing at the university of illinois. Tests de fauteuil roulant d’athlétisme pour différentes

15

positions de l’athlète et, 2010.

[110] M. B. Sabick, K. D. Zhao, and K. N. An. A comparison of methods to compute the point of force application in handrim wheelchair propulsion : a technical note. J Rehabil Res Dev, 38(1) :57–68, 2001.

[111] C. Sauret. Cinétique et énergétique de la propulsion en fauteuil roulant manuel.

20

These, Université Blaise Pascal - Clermont-Ferrand II, March 2010.

[112] C. Sauret, J. Bascou, N. de Saint Rémy, H. Pillet, P. Vaslin, and F. Lavaste. As- sessment of field rolling resistance of manual wheelchairs. J Rehabil Res Dev, 49(1) :63–74, 2012.

[113] C. Sauret, J. Bascou, H. Pillet, F. Lavaste, and P. Vaslin. Repeatability of wheel-

25

chair deceleration tests using a 3-d accelerometer. Computer Methods in Biome- chanics and Biomedical Engineering, 13 :137–138, 2010.

[114] C. Sauret, J. Bascou, H. Pillet, F. Lavaste, and P. Vaslin. Assessing "power input" of the manual wheelchair user during real life ambulation. Journal of Biomecha- nics, 45 suppl.1 :S300, 2012.

30

[115] C. Sauret, N. de Saint Rémy, Ph. Vaslin, M. Cid, M. Dabonneville, and Ph. Kauff- mann. Theoretical comparison of the resultant braking force applied on a manual wheelchair within a propulsion cycle on the field and on laboratory ergometers. AMSE Journal Modelling Measurement and Control Series C, 67 :43–52, 2006.

[116] C. Sauret, P. Vaslin, M. Dabonneville, and M. Cid. Drag force mechanical power during an actual propulsion cycle on a manual wheelchair. IRBM, 30(1) :3–9, February 2009.

[117] C. Sauret, P. Vaslin, R. Dumas, J.. Bascou, H. Pillet, L. Chèze, M. Cid, and F. La- vaste. Assessment of the mechanical power developed by a manual wheelchair

5

user during ambulation in the field. In 3DAHM Proceedings, 2012.

[118] C. Sauret, P. Vaslin, R. Dumas, L. Cheze, N. De Saint Remy, A. Bonnefoy, and M. Cid. Respective contributions of the subject and the wheelchair to the total kinetic energy of manual wheelchair locomotion. Computer Methods in Biomecha- nics and Biomedical Engineering, 12 :227–228, 2009.

10

[119] C. Sauret, P Vaslin, F Lavaste, N. de Saint-Remy, and M. Cid. Effects of user’s actions on rolling resistance and wheelchair stability during handrim wheelchair propulsion in the field. J. Med Erg.Phys. (accepted), 2012.

[120] F. T. Schuller, S. I. Pinel, and H. R. Signer. Operating characteristics of a high- speed, jet-lubricated 3 5-millimeter-bore ball bearing with a single-outer-land-

15

guided cage. Technical Paper 1657, NASA, 1980.

[121] H. W. Scibbe, D. C. Glenn, and W. J. Anderson. Friction torque of ball bearings in vacuum with seven polytetrafluoroethylene-composition retainer materials. Tech- nical report, NASA, 1968.

[122] SKF. Calcul de moments de frottement dans les roulements. Technical report,

20

SKF, 2012.

[123] Soins-Handicaps. Le handicap moteur. Soins, 690(690) :57–58, Novembre 2004. [124] J. Stephant, A. Charara, and D. Meizel. Contact roue-sol : Comparaison de mo-

dèles d’efforts. In Journées "Automatique et Automobile", 2001.

[125] G. Taguchi. System of Experimental Design. New York : UNIPUB/Kraus Interna-

25

tional Publications, 1987.

[126] D. Theisen, M. Francaux, A. Fayt, and X. Sturbois. A new procedure to determine external power output during handrim wheelchair propulsion on a roller ergome- ter : A reliability study. International Journal of Sports Medicine, 17(8) :564–571, 1996. cited By (since 1996) 21.

30

[127] L. Tlili, S. Lebib, I. Moalla, S. Ghorbel, F.Z. BenSalah, C. Dziri, and F. Aouididi. Impact de la pratique sportive sur l’autonomie et la qualité de vie du paraplégique. Annales de Réadaptation et de Médecine Physique, 51(3) :179–183, April 2008.

BIBLIOGRAPHIE

[128] M. L. Van-Der-Linden, L. Valent, H. E. Veeger, and L. H. van der Woude. The effect of wheelchair handrim tube diameter on propulsion efficiency and force ap- plication (tube diameter and efficiency in wheelchairs). IEEE Trans Rehabil Eng, 4(3) :123–132, Sep 1996.

[129] L. H. V. Van-der Woude, M. Formanoy, and S. de Groot. Hand rim configuration :

5

effects on physical strain and technique in unimpaired subjects ? Med Eng Phys, 25(9) :765–774, Nov 2003.

[130] L. H. V. Van-der Woude, C. Geurts, H. Winkelman, and H. E J Veeger. Measure- ment of wheelchair rolling resistance with a handle bar push technique. J Med Eng Technol, 27(6) :249–258, 2003.

10

[131] L.H.V. Van-der Woude, G. De Groot, and A.P. Hollander. Wheelchair ergonomics and physiological testing of prototypes. Ergonomics, 29(12) :1561–1573, 1986. cited By (since 1996) 60.

[132] L.H.V. Van-der Woude, S. de Groot, and T.W.J. Janssen. Manual wheelchairs : research and innovation in sports and daily life. Science & Sports, 21(4) :226–235,

15

August 2006.

[133] L.H.V. Van-der Woude, J.J. Van Croonenborg, I. Wolff, A.J. Dallmeijer, and A.P.