• Aucun résultat trouvé

Gènes de susceptibilité – Polymorphismes et maladies

Dans le document UNE BIOLOGIE POUR LE DÉVELOPPEMENT (Page 137-142)

I. LE FABULEUX DESTIN DE LA BIOLOGIE

II.1. SANTÉ

II.1.2 Maladies génétiques – Thérapie génique

II.1.2.4. Gènes de susceptibilité – Polymorphismes et maladies

Comme cela a déjà été signalé, les mutations ne sont pas automati-quement responsables du déclenchement d’une maladie. Elles peuvent ne se manifester par aucun phénotype pathologique ou tout au plus provoquer un

« syndrome physiologique » sans réelle gravité. La probabilité d’apparition de la maladie qui peut en résulter, dépendra bien entendu de la nature du gène et de son rôle dans l’économie physiologique de l’individu mais aussi de la nature du changement occasionné dans la « séquence » du gène cible. L’intensité de la manifestation pathologique est également tributaire de l’environnement et elle est également fonction du terrain génétique global de l’individu concerné. Ainsi, une même mutation apparaissant chez deux individus distincts et concernant le même gène pourra dans un cas entraîner une maladie grave et dans l’autre ne se traduire que par un syndrome léger, voire par aucune manifestation.

Ce « terrain génétique » est par défi nition complexe. On peut y asso-cier des particularités épigénétiques (ex. : degré de méthylation de certaines portions de l’ADN) mais aussi, et surtout, des gènes de susceptibilité (ou de prédisposition) et des polymorphismes ou variations génétiques.

L’existence des gènes de prédisposition a été particulièrement bien documentée dans la recherche des causes d’apparition des cancers (cf. infra) et nous en avons vu des exemples se rapportant aux maladies à composantes multigéniques. Il existe une famille particulière de gènes de prédisposition qui a fait l’objet d’études très poussées dans la mesure où le système auquel contribuent ces gènes, le système HLA, intervient de façon prédominante dans la compatibilité aux greffes d’organes et dans la reconnaissance immunolo-gique, mais aussi parce qu’il se trouve être associé au degré de susceptibilité et de résistance vis-à-vis de diverses maladies.

l Système HLA et prédisposition aux maladies

Le système HLA comprend au moins une demi-douzaine de gènes lesquels sont juxtaposés pour la plupart sur le chromosome 6 chez l’homme.

Parmi les gènes principaux tels que A, B, C, DR, DQ, OH, certains sont situés au voisinage du centromère et d’autres du télomère. Ainsi, chez l’homme, les gènes HLA pré-centromériques sont dits de classe II, ceux de classe I étant localisés près du télomère. Toutefois, il existe un grand nombre d’autres gènes HLA occupant d’autres positions. Les produits de ces gènes sont des glyco-protéines présentes à la surface de la plupart des cellules somatiques, dont le rôle est de « présenter » les antigènes étrangers aux cellules T lymphocytaires, cellules dont certaines sont cytotoxiques.

Santé 137

Chacun de ces gènes comprend des variations dans sa séquence (variantes appelées « allèles »). Celles-ci peuvent être très nombreuses (ex. : plusieurs centaines pour le gène B) et puisque chaque personne reçoit une série de ces « variants » par hérédité parentale, il en résulte que les combi-natoires d’allèles de gènes HLA peuvent atteindre des valeurs numériques extrêmement élevées. Pour le professeur J. Dausset qui reçut le prix Nobel de physiologie et médecine pour ses travaux sur le système HLA (1980), ces combinaisons alléliques constituent le « sceau de l’individualité génétique de chacun de nous ».

La fonction des gènes HLA est de permettre la distinction de ce que les immunologistes appellent le soi, du non-soi en conférant à l’organisme la possi-bilité de rejeter, immunologiquement, ce qui lui est étranger. Comme signalé plus haut, certaines variations (certains allèles) des gènes HLA sont associées à des risques accrus de maladies, dans des proportions variables. La connaissance de tels variants permet donc d’établir, en principe pour chaque individu, le risque de développer telle ou telle pathologie défi nie. Par exemple, un individu porteur de la variante B27 du gène HLA-B est confronté à 88 fois plus de risques de contracter une spondylarthrite ankylosante (sclérose de la colonne verté-brale). La présence du variant HLA-DQB1 est associée à une probabilité 50 fois plus grande de développer une rétinophatie (type bird-shot) et une narcolepsie (tendance à la somnolence). On connaît d’autres allèles HLA dont la présence est associée au développement de maladies auto-immunes tels que le diabète de type I chez l’enfant, ou la myasthénie, (maladie des muscles volontaires consécutive à la fabrication pathologique d’anticorps dirigés contre le récepteur musculaire à l’acétylcholine), ou encore la sclérose en plaque, la polyarthrite rhumatoïde, etc. Inversement, on connaît des variants alléliques qui confèrent une résistance naturelle contre certaines affections. Ainsi en est-il de HLA-DR2 qui protège l’individu porteur contre le diabète infantile ou encore HLA-B53 qui confère une résistance au paludisme, etc.

l Gènes de susceptibilité et polymorphismes type SNP

Indépendamment des variants génétiques du système HLA, on connaît aujourd’hui un grand nombre de gènes de prédisposition ou de résistance natu-relle à diverses pathologies. Plusieurs d’entre eux sont par exemple en rapport avec la probabilité de développer certains cancers. Ainsi le gène APC (présent sur le chromosome 5q21) est en partie responsable, sous certaines formes allé-liques, de la survenue du cancer du colon avec polypes (1 % des formes fami-liales). Des altérations du gène BCRA (chromosome 17q) sont associées à près de 40 % des formes familiales de cancers du sein à développement précoce, accompagnées souvent du cancer de l’ovaire. Un second gène de susceptibilité BCRA2, sur le chromosome 13, rend compte d’autres cancers du sein de type

familial. Ce ne sont là que des exemples parmi beaucoup d’autres. La connais-sance des gènes de prédisposition est à l’origine de l’essor d’une nouvelle forme de médecine baptisée « médecine prédictive », médecine aux deux visages puisque, d’un côté, elle devrait permettre d’instaurer assez tôt dans la vie des personnes à risque des traitements appropriés mais que, d’autre part, le fi chage génétique individuel s’il était systématisé, voire obligatoire, pourrait entraîner des déviances de toute nature et devrait en tout cas être fortement encadré au plan législatif. Signalons, enfi n, qu’à côté des gènes de susceptibilité à une maladie qui peuvent être sièges de mutations donnant lieu à une proba-bilité accrue d’en voir la manifestation, existent, disséminés dans le génome, des centaines de milliers de changements ponctuels ou « variations » pouvant ne concerner qu’une seule base de l’ADN. Ces polymorphismes au niveau d’un nucléotide unique, ou SNP, sont, comme nous l’avons déjà souligné, associables, statistiquement parlant, soit à des sensibilités accrues vis-à-vis de certaines pathologies, soit à des incompatibilités médicamenteuses. On sait que la localisation et la nature de ces polymorphismes diffèrent selon les ethnies, ce qui a incité parfois à des recherches comparatives relevant d’une génétique des populations. Dans d’autres cas, ces polymorphismes pourraient permettre d’établir, à l’intérieur d’une population donnée, les degrés d’effi ca-cité de certains médicaments, en fonction des polymorphismes observés dans les sous-groupes ethniques. Cette pharmacogénomique qui en est à ses débuts pourrait donc augurer d’une « pharmacothérapie à la carte » (le repérage dans une carte de variants SNP connus pour être responsables d’incompatibilité médicamenteuse pourrait alors conditionner une prescription ciblée).

II.1.2.5. Thérapie génique – Le gène médicament et la chirurgie du gène

Depuis les débuts des années 90 (Anderson, M. Blaese), les biologistes ont tenté de corriger les maladies génétiques ou d’en atténuer les effets en ayant recours à la thérapie génique, chez des animaux de laboratoire tout d’abord puis chez l’homme. L’idée de cette intervention était simple : introduire dans le génome d’un animal malade ou d’un patient porteur d’une mutation, cause d’une maladie génétique déterminée, (ex. myopathie de Duchenne, mucovisci-dose, affection immunitaire ou cancers spécifi ques), un gène approprié capable de suppléer la fonction défi ciente provoquée par la mutation, et de corriger ainsi une altération physiologique ou un trouble de développement. L’introduction du gène « compensateur », ou « correcteur », est réalisée en ayant recours à un véhicule moléculaire, appelé « vecteur » auquel le « gène-médicament » est associé artifi ciellement et l’on attend de cette intervention que le « gène d’in-térêt » soit incorporé dans l’ADN du patient pour corriger les conséquences phénotypiques de la mutation. En général, deux voies d’intervention ont été

Santé 139

utilisées : dans l’une d’elles, les cellules du patient (le plus souvent d’origine médullaire, parfois également des kératinocytes) sont cultivées in vitro, traitées par le recombinant « gène-vecteur », puis réinjectées chez le donneur. Dans d’autres cas, on utilise la voie systémique c’est-à-dire que le traitement se fait directementin vivo. Les vecteurs utilisés sont souvent des virus offrant l’avan-tage de pouvoir s’intégrer dans le génome cellulaire. Il s’agit, certes, de virus préalablement « désarmés », c’est-à-dire qui ont été privés de leur pouvoir de réplication. On a recours, dans bon nombre de cas, à des rétrovirus (pour les interventionsex-vivo) et à des adénovirus, ou au virus AAV (associated adeno-virus) pour une thérapie directe, in vivo.

Le nombre d’essais qui ont été réalisés chez l’animal – le plus souvent la souris, porteuse d’affections d’origine génétique bien déterminées – est consi-dérable, essais souvent assortis de résultats spectaculaires (ex. : guérison de la souris drépanocytaire, porteuse de la mutation responsable de l’anémie falciforme).

Toutefois les essais de thérapie génique chez l’homme ont, à part une exception remarquable (cf. infra), rencontré de sérieuses diffi cultés. Celles-ci peuvent ressortir de plusieurs causes : trop faible expression du « transgène » (c’est-à-dire du gène introduit artifi ciellement à des fi ns thérapeutiques), limi-tation dans la production des vecteurs appropriés, incapacité du transgène à s’intégrer dans le génome de l’hôte ; production de lymphocytes cytotoxiques ou d’anticorps dirigés contre certains motifs chimiques de la protéine nouvel-lement exprimée, etc.

l Travaux d’A. Fischer et M. Cavazzana Calvo

On sait cependant qu’un protocole de thérapie génique a pu être appliqué avec succès à l’espèce humaine, grâce aux travaux réalisés en 2000 par le groupe d’Alain Fischer et de Marina Cavazzana-Calvo à l’Hôpital Necker. Ces chercheurs sont parvenus à guérir de jeunes enfants atteints d’une maladie très sévère entraînant l’incapacité de la moelle osseuse à synthétiser les lympho-cytes T et NK (natural killers). Il en résulte, chez les enfants non traités, un défaut grave de résistance à toutes sortes d’infections ; d’où l’obligation pour assurer leur survie, de les maintenir totalement isolés dans une atmosphère confi née (enfants bulles). La mutation responsable affecte la synthèse du récep-teur aux cytokines (facrécep-teurs indispensables à la maturation des lymphocytes).

A. Fischer et M. Cavazzana-Calvo ont eu l’idée de transférer le gène non muté grâce à un vecteur rétroviral dans les cellules progénitrices hématopoïétiques prélevées de ces jeunes patients, de les mettre en culture pour en augmenter le nombre puis de les injecter à nouveau une fois modifi ées. Ce procédé a été répété sur un certain nombre « d’enfants bulles », souvent avec un succès quasi

total et apparemment durable, permettant d’abandonner tout confi nement.

Dans deux cas toutefois (en 2002 puis 2003), les bébés traités sont décédés des suites d’une leucémie consécutive à l’intégration du gène compensateur au voisinage d’un « proto-oncogène » qui s’est ainsi trouvé activé. Désormais, il semble que les équipes aient réussi à maîtriser les modalités d’intégration du gène étranger ce qui devrait permettre d’intervenir sur une plus large échelle avec succès (des guérisons désormais plus nombreuses sont enregistrées).

De nombreux programmes de thérapie génique sont poursuivis au plan international. Toutefois, la piste de la thérapie génique est encore semée de diffi cultés signalées précédemment. Elle présente également des limites. Par exemple, l’introduction d’un très grand gène, comme celui de la dystrophine est diffi cile. Il existe également des maladies, comme la maladie neuromus-culaire de Steinert où, en dépit de l’introduction d’un gène sain, le gène muté continuerait à produire des substances toxiques pour la cellule.

l La stratégie du « saut d’exon »

C’est la raison pour laquelle certains biologistes ont imaginé d’autres modes de « chirurgie du gène » que la thérapie génique classique. Citons, par exemple, le recours à des molécules ou à des ARN antisens permettant d’éviter l’arrêt prématuré dans la synthèse d’une protéine essentielle, consécutif à la présence d’un codon « stop », (signifi ant « arrêt de lecture »). Une première solution repose sur l’utilisation d’une substance antibiotique telle que la tétra-cycline qui, en modifi ant les propriétés du ribosome, l’oblige à franchir « le signal d’arrêt ». Des essais avec une molécule fabriquée par une fi rme améri-caine (PTC therapeutic) sont en cours dans le traitement de la musoviscidose et de la maladie de Duchenne.

Une autre approche technique, particulièrement ingénieuse, consiste à avoir recours à des ARN antisens pour empêcher la lecture par le ribosome d’un exon muté, lecture qui entraînerait selon la mutation, soit la formation d’une protéine « tronquée », soit la formation d’une protéine altérée dans sa séquence. Certains chercheurs ont eu l’idée (Goyenvalle et al., 2004) de faire fabriquer par la cellule du patient à partir d’une construction génétique appro-priée, un ARN antisens dont la séquence est complémentaire de celle de l’exon muté. L’ARN antisens vient alors s’apparier avec l’exon défectueux et l’oc-culter, ce qui évite au système d’épissage d’intégrer cet exon au sein de l’ARN messager mature. La protéine correspondante que synthétise la cellule traitée est plus courte mais elle demeure très souvent fonctionnelle. Des résultats très encourageants ont été obtenus par cette technique, dite du « saut d’exon », chez des souris (mdg) ou des chiens dystrophiques, avec restauration d’une dystrophine fonctionnelle.

Santé 141

Enfi n, dans certains cas (tel celui de la maladie de Steinert déjà cité), l’ARN messager muté s’accumule dans le noyau de la cellule et agit comme un élément toxique. Des chercheurs canadiens ont eu alors recours au phéno-mène d’interférence par l’ARN et ont donc réussi à détruire cet ARN messager délétère. En résumé, il existe donc, comme on peut le voir, de très nombreuses

« pistes » qui sont présentement explorées pour palier les défauts génétiques responsables de maladies très diverses. Il est à espérer, à travers les exemples évoqués ci-dessus que, dans un avenir plus ou moins proche, leur diagnostic facilité permette d’instaurer des traitements ou accompagnements thérapeu-tiques plus appropriés et que la liste des maladies justiciables de la thérapie génique fi nisse par s’allonger.

II.1.2.6. Maladies et malformations congénitales de l’enfant

Dans le document UNE BIOLOGIE POUR LE DÉVELOPPEMENT (Page 137-142)