• Aucun résultat trouvé

Fonction de transfert du filtre d’ordre 2

F.4 Calcul des conditions initiales A et B

G.1.3 Fonction de transfert du filtre d’ordre 2

1 + iω ω0 k. (G.3)

Le module de cette fonction de transfert d’ordre k est donné par :

|Hk(ω)| = 1 s 1 + ω ω0 2 k. (G.4)

La pulsation de coupure ωk d’un tel filtre est telle que :

|Hkk)| = |Hkk)|max

2 (G.5)

Dans notre cas, on a |Hkk)|max= 1 et donc : 1 s 1 + ωk ω0 2 k = √1 2 (G.6) Soit : 1 + ωk ω0 2!k = 2 (G.7) et donc : ωk = ω0 q 21/k− 1 (G.8)

G.1.3 Fonction de transfert du filtre d’ordre 2

Pour démoduler le signal de la photodidiode, nous utilisons un filtre passe-bas d’ordre 2 de fréquence de coupure f2. La fonction de transfert de ce filtre est alors donnée par :

H2(ω) = 1



1 + iω ω0

avec :

ω0= q2πf2 2 − 1

[1] S. Ezekiel and S. Balsamo, “Passive ring resonator laser gyroscope,” Applied Physics Letters, vol. 30, pp. 478–480, 1977.

[2] G. A. Sanders, M. Prentiss, and S. Ezekiel, “Passive ring resonator method for sensitive inertial rotation measurements in geophysics and relativity,” Optics Letters, vol. 6, pp. 569– 571, 1981.

[3] G. Sanders, L. K. Strandjord, J. Wu, W. Williams, M. Smiciklas, M. Salit, C. Narayanan, E. Benser, and T. Qiu, “Improvements of compact resonator fiber optic gyroscopes,” in

2017 DGON Inertial Sensors and Systems (ISS), pp. 1–12, 2017.

[4] G. A. Sanders, L. K. Strandjord, J. Wu, W. Williams, M. Smiciklas, M. Salit, C. Narayanan, and T. Qiu, “Development of compact resonator fiber optic gyroscopes,” in 2017 IEEE

International Symposium on Inertial Sensors and Systems (INERTIAL), pp. 168–170, 2017.

[5] T. Qiu, J. Wu, L. K. Strandjord, and G. A. Sanders, “Performance of resonator fiber optic gyroscope using external-cavity laser stabilization and optical filtering,” in OFS2014

23rd International Conference on Optical Fiber Sensors, pp. 91570B–91570B, International

Society for Optics and Photonics, 2014.

[6] W. Liang, V. S. Ilchenko, A. A. Savchenkov, E. Dale, D. Eliyahu, A. B. Matsko, and L. Maleki, “Resonant microphotonic gyroscope,” Optica, vol. 4, pp. 114–117, 2017.

[7] H. Ma, J. Zhang, L. Wang, Y. Lu, D. Ying, and Z. Jin, “Resonant micro-optic gyro using a short and high-finesse fiber ring resonator,” Optics Letters, vol. 40, pp. 5862–5865, 2015. [8] H. Jiao, L. Feng, J. Wang, K. Wang, and Z. Yang, “Transmissive single-beam-splitter re-sonator optic gyro based on a hollow-core photonic-crystal fiber,” Optics Letters, vol. 42, pp. 3016–3019, 2017.

[9] H. Jiao, L. Feng, K. Wang, N. Liu, and Z. Yang, “Analysis of polarization noise in transmis-sive single-beam-splitter resonator optic gyro based on hollow-core photonic-crystal fiber,”

Optics Express, vol. 25, pp. 27806–27817, 2017.

[10] P. G. Savage, Strapdown analytics, vol. 2. Strapdown Associates Maple Plain, MN, 2000. [11] R. M. Rogers, Applied mathematics in integrated navigation systems, vol. 1. Aiaa, 2003. [12] H. C. Lefèvre, The fiber-optic gyroscope. Artech house, 2014.

[13] W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, and M. O. Scully, “The ring laser gyro,” Reviews of Modern Physics, vol. 57, pp. 61–104, 1985. [14] B. R. Johnson, E. Cabuz, H. B. French, and R. Supino, “Development of a mems gyroscope

for northfinding applications,” in IEEE/ION Position, Location and Navigation Symposium, pp. 168–170, 2010.

[15] “https ://www.siliconsensing.com/media/30885/crh02-01-0100-132-rev-1.pdf.”

[16] G. Remi, I. Dutta, D. Savoie, B. Fang, C. L. Alzar Garrido, C. Guerlin, M. Meunier, T. Leveque, B. Venon, M. Lours, and A. Landragin, “Gyromètre à atomes froids de grande sensibilité,” Revue Française de Métrologie, vol. 2016-1, 2016.

[17] D. Savoie, Fonctionnements continu et entrelacé d’un gyromètre à atomes froids et

amélio-ration de sa stabilité. PhD thesis, Ecole doctorale Physique en Île-de-France, 2017.

[18] F. Aronowitz, “The laser gyro,” Laser applications, vol. 1, pp. 133–200, 1971.

[19] D. F. ELWELL, “An attitude reference system with electrically suspended gyros,”

Naviga-tion, vol. 20, no. 4, pp. 321–328, 1973.

[20] V. G. Peshekhonov, “Gyroscopic navigation systems : Current status and prospects,”

Gy-roscopy and Navigation, vol. 2, p. 111, 2011.

[21] G. Sagnac, “L’ether lumineux demontré par l’effet du vent relatif d’ether dans un interfe-rometre en rotation uniforme,” C. R. Acad. Sci., vol. 157, pp. 708–710, 1913.

[22] G. Sagnac, “Sur la preuve de la réalité de l’éther lumineux par l’expérience de l’interféro-graphe tournant,” Comptes Rendus, vol. 157, pp. 1410–1413, 1913.

[23] A. Einstein, “Zur Elektrodynamik bewegter Körper,” Annalen der Physik, vol. 322, pp. 891– 921, 1905.

[24] G. B. Malykin, “The Sagnac effect : correct and incorrect explanations,” Physics-Uspekhi, vol. 43, p. 1229, 2000.

[25] F. Riehle, T. Kisters, A. Witte, J. Helmcke, and C. J. Bordé, “Optical ramsey spectroscopy in a rotating frame : Sagnac effect in a matter-wave interferometer,” Physical Review Letters, vol. 67, pp. 177–180, 1991.

[26] A. Lenef, T. D. Hammond, E. T. Smith, M. S. Chapman, R. A. Rubenstein, and D. E. Pritchard, “Rotation sensing with an atom interferometer,” Physical Review Letters, vol. 78, pp. 760–763, 1997.

[28] F. Harress, Die Geschwindigkeit des Lichtes in bewegten Körpern, Inaugural-Dissertation. Buchdruckerei G. Richters, 1912.

[29] S. Schwartz, Gyrolaser à état solide. Application des lasers à atomes à la gyrométrie. Thèse, École Polytechnique, 2006.

[30] J. C. Hafele and R. E. Keating, “Around-the-world atomic clocks : Predicted relativistic time gains,” Science, vol. 177, pp. 166–168, 1972.

[31] J. C. Hafele and R. E. Keating, “Around-the-world atomic clocks : Observed relativistic time gains,” Science, vol. 177, pp. 168–170, 1972.

[32] V. Vali and R. Shorthill, “Fiber ring interferometer,” Applied Optics, vol. 15, pp. 1099–1100, 1976.

[33] H. Lefèvre, “Comprendre et apprécier le gyrofibre : le gyro aux performances ultimes ?,”

Photoniques, pp. 40–43, 2016.

[34] G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at honeywell,”

SPIE Proceedings, vol. 9852, pp. 07–1, 07–14, 2016.

[35] P. B. Ruffin, C. M. Lofts, C. C. Sung, and J. L. Page, “Reduction of nonreciprocity noise in wound fiber optic interferometers,” Optical Engineering, vol. 33, pp. 33 – 33 – 5, 1994. [36] W. M. Macek and D. Davis Jr, “Rotation rate sensing with traveling-wave ring lasers,”

Applied Physics Letters, vol. 2, pp. 67–68, 1963.

[37] F. Bretenaker and N. Treps, Le laser : 50 ans de découvertes. EDP Sciences, 2012. [38] É. Gourgoulhon, Special relativity in general frames. Springer, 2016.

[39] J.-C. Beugnot, La diffusion Brillouin dans les fibres optiques microstructurées. PhD thesis, Université de Franche-Comté, 2007.

[40] S. Schwartz, F. Goldfarb, and F. Bretenaker, “Some considerations on slow- and fast-light gyros,” Optical Engineering, vol. 53, pp. 53(1) – 53 (4), 2014.

[41] R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science, vol. 285, pp. 1537–1539, 1999.

[42] G. A. Sanders, L. K. Strandjord, and T. Qiu, “Hollow core fiber optic ring resonator for rotation sensing,” in Optical Fiber Sensors, p. ME6, Optical Society of America, 2006. [43] H. A. Haus, Waves and fields in optoelectronics. Prentice-Hall, 1984.

[44] L. F. Stokes, M. Chodorow, and H. J. Shaw, “All-single-mode fiber resonator,” Optics

Letters, vol. 7, pp. 288–290, 1982.

[45] J. Helmcke, S. A. Lee, and J. L. Hall, “Dye laser spectrometer for ultrahigh spectral reso-lution : design and performance,” Applied Optics, vol. 21, pp. 1686–1694, 1982.

[46] T. Day, E. K. Gustafson, and R. L. Byer, “Sub-Hertz relative frequency stabilization of two-diode laser-pumped Nd :YAG lasers locked to a Fabry-Perot interferometer,” IEEE

Journal of Quantum Electronics, vol. 28, pp. 1106–1117, 1992.

[47] T. Hansch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Optics Communications, vol. 35, pp. 441 – 444, 1980.

[48] G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (fm) spectroscopy,” Applied Physics B, vol. 32, pp. 145–152, 1983.

[49] E. D. Black, “An introduction to pound–drever–hall laser frequency stabilization,”

Ameri-can Journal of Physics, vol. 69, pp. 79–87, 2001.

[50] X. Jin, Y. Lin, Y. Lu, H. Ma, and Z. Jin, “Short fiber resonant optic gyroscope using the high-frequency pound&#x2013 ;drever&#x2013 ;hall technique,” Appl. Opt., vol. 57, pp. 5789–5793, Jul 2018.

[51] R. Meyer, S. Ezekiel, D. W. Stowe, and V. Tekippe, “Passive fiber-optic ring resonator for rotation sensing,” Optics Letters, vol. 8, pp. 644–646, 1983.

[52] K. Hotate, K. Takiguchi, and A. Hirose, “Adjustment-free method to eliminate the noise induced by the backscattering in an optical passive ring-resonator gyro,” IEEE Photonics

Technology Letters, vol. 2, pp. 75–77, 1990.

[53] H. Ma, X. Zhang, Z. Jin, and C. Ding, “Waveguide-type optical passive ring resonator gyro using phase modulation spectroscopy technique,” Optical Engineering, vol. 45(8), 2006. [54] H. Ma, Z. He, and K. Hotate, “Sensitivity improvement of waveguide-type optical passive

ring resonator gyroscope by carrier suppression,” SPIE Proceedings, vol. 7503, pp. 7503(1) – 7503(4), 2009.

[55] L. Feng, M. Lei, H. Liu, Y. Zhi, and J. Wang, “Suppression of backreflection noise in a resonator integrated optic gyro by hybrid phase-modulation technology,” Applied Optics, vol. 52, pp. 1668–1675, 2013.

[56] R. V. Pound, “Electronic frequency stabilization of microwave oscillators,” Review of

Scien-tific Instruments, vol. 17, pp. 490–505, 1946.

[57] R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Applied

Physics B, vol. 31, pp. 97–105, 1983.

[58] J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Applied Physics Letters, vol. 39, pp. 680–682, 1981.

[59] O. Mor and A. Arie, “Performance analysis of drever-hall laser frequency stabilization using a proportional+integral servo,” IEEE Journal of Quantum Electronics, vol. 33, pp. 532–540, 1997.

[60] G. Feugnet, A. Ravaille, S. Schwartz, and F. Bretenaker, “Analysis of the design of a pas-sive resonant miniature optical gyroscope based on integrated optics technologies,” Optical

Engineering, vol. 56, pp. 56(1) – 56(10), 2017.

[61] K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Kerr effect in an optical passive ring-resonator gyro,” Journal of Lightwave Technology, vol. 4, pp. 645–651, 1986.

[62] K. Takiguchi and K. Hotate, “Partially digital-feedback scheme and evaluation of optical kerr-effect induced bias in optical passive ring-resonator gyro,” IEEE Photonics Technology

Letters, vol. 3, pp. 679–681, 1991.

[63] X. Li, J. Zhang, H. Ma, and Z. Jin, “Test and analysis of the optical kerr-effect in resonant micro-optic gyros,” IEEE Photonics Journal, vol. 6, pp. 1–7, 2014.

[64] G. A. Sanders, L. K. Strandjord, J. Wu, and T. Qiu, “Low noise resonator fiber optic gyro,” Oct.28 2014. US Patent 8,873,063.

[65] H. Ma, Z. He, and K. Hotate, “Reduction of backscattering induced noise by carrier sup-pression in waveguide-type optical ring resonator gyro,” Journal of Lightwave Technology, vol. 29, pp. 85–90, 2011.

[66] S. Schwartz, G. Feugnet, and F. Bretenaker, “Optical passive resonator gyro with three beams,” Oct. 31 2014. US Patent 9,803,981.

[67] K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Eigenstate of polarization in a fiber ring resonator and its effect in an optical passive ring-resonator gyro,” Applied Optics, vol. 25, pp. 2606–2612, 1986.

[68] G. A. Sanders, R. B. Smith, and G. F. Rouse, “Novel polarization-rotating fiber resonator for rotation sensing applications,” SPIE Proceedings, vol. 1169, pp. 373–381, 1989.

[69] X. Wang, Z. He, and K. Hotate, “Reduction of polarization-fluctuation induced drift in resonator fiber optic gyro by a resonator with twin 90 polarization-axis rotated splices,”

Optics Express, vol. 18, pp. 1677–1683, 2010.

[70] H. Ma, X. Lu, L. Yao, X. Yu, and Z. Jin, “Full investigation of the resonant frequency servo loop for resonator fiber-optic gyro,” Applied Optics, vol. 51, pp. 5178–5185, 2012.

[71] X. Yu, H. Ma, and Z. Jin, “Improving thermal stability of a resonator fiber optic gyro employing a polarizing resonator,” Optics Express, vol. 21, pp. 358–369, 2013.

[72] H. Shen, L. Li, J. Bi, J. Wang, and L. Chen, “Systematic and quantitative analysis of residual amplitude modulation in pound-drever-hall frequency stabilization,” Physical Review A, vol. 92, p. 063809, 2015.

[73] N. C. Wong and J. L. Hall, “Servo control of amplitude modulation in frequency-modulation spectroscopy : demonstration of shot-noise-limited detection,” Journal of the Optical Society

[74] Z. Tai, L. Yan, Y. Zhang, X. Zhang, W. Guo, S. Zhang, and H. Jiang, “Electro-optic modulator with ultra-low residual amplitude modulation for frequency modulation and laser stabilization,” Optics Letters, vol. 41, pp. 5584–5587, 2016.

[75] X. Wang, Z. He, and K. Hotate, “Resonator fiber optic gyro with bipolar digital serrodyne scheme using a field-programmable gate array-based digital processor,” Japanese Journal

of Applied Physics, vol. 50, p. 042501, 2011.

[76] Z. Jin, X. Yu, and H. Ma, “Resonator fiber optic gyro employing a semiconductor laser,”

Applied Optics, vol. 51, pp. 2856–2864, 2012.

[77] L. Wang, Y. Yan, H. Ma, and Z. Jin, “Resonant fiber optic gyro based on a sinusoidal wave modulation and square wave demodulation technique,” Applied Optics, vol. 55, pp. 3274– 3278, 2016.

[78] J. R. Haavisto, “Thin-film waveguides for inertial sensors,” SPIE Proceedings, vol. 0412, pp. 0412 – 0412 – 8, 1983.

[79] I. Fsaifes, G. Feugnet, A. Ravaille, B. Debord, F. Gérôme, A. Baz, G. Humbert, F. Benabid, S. Schwartz, and F. Bretenaker, “A test resonator for kagome hollow-core photonic crystal fibers for resonant rotation sensing,” Optics Communications, vol. 383, pp. 485 – 490, 2017. [80] B. Debord, Génération et micro-confinement de plasmas microondes dans des fibres optiques

creuses microstructurées. PhD thesis, Limoges, 2013.

[81] F. Benabid and P. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” Journal of Modern Optics, vol. 58, pp. 87–124, 2011.

[82] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,”

Physical Review Letters, vol. 58, pp. 2059–2062, 1987.

[83] F. Couny, F. Benabid, P. Roberts, P. Light, and M. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science, vol. 318, pp. 1118–1121, 2007. [84] R. Spreeuw, R. C. Neelen, N. Van Druten, E. Eliel, and J. Woerdman, “Mode coupling in

a he-ne ring laser with backscattering,” Physical Review A, vol. 42, p. 4315, 1990.

[85] P. Gysel and R. K. Staubli, “Statistical properties of rayleigh backscattering in single-mode fibers,” Journal of Lightwave Technology, vol. 8, pp. 561–567, 1990.

[86] A. Ravaille, G. Feugnet, I. Fsaifes, A. Baz, B. Debord, F. Gérôme, G. Humbert, F. Bena-bid, and F. Bretenaker, “In-situ measurement of backscattering in hollow-core fiber based resonant cavities,” IEEE Photonics Journal, vol. 9, pp. 1–7, 2017.

[87] S. Trebaol, Theoretical and experimental study on the dispersive properties of photonic

[88] S. W. Lloyd, V. Dangui, M. J. F. Digonnet, S. Fan, and G. S. Kino, “Measurement of reduced backscattering noise in laser-driven fiber optic gyroscopes,” Optics Letters, vol. 35, pp. 121–123, 2010.

[89] Y. Granjon, Automatique. 2001.

[90] D. W. Allan, “Statistics of atomic frequency standards,” Proceedings of the IEEE, vol. 54, pp. 221–230, 1966.

[91] W. J. Riley, “Handbook of frequency stability analysis,” 2008.

[92] M. Dupont-Nivet, Vers un accéléromètre atomique sur puce. PhD thesis, Université Paris-Saclay, 2016.

[93] L. C. Ng and D. J. Pines, “Characterization of ring laser gyro performance using the allan variance method,” Journal of Guidance, Control, and Dynamics, vol. 20, no. 1, pp. 211–214, 1997.