• Aucun résultat trouvé

Fluorescent Antibody) pour diagnostiquer une suspicion de la tularémie

Réactifs :

1. conjugué d’anticorps polyclonaux anti Francisella tularensis du lapin marqués par la Fluorescéine isothiocyanate (FITC).

2. Une solution saline tamponnée au phosphate = Phosphate-buffered saline (PBS).

Matériels :

1. Des lames de verre, deux anneaux gravés. 2. Gaz ou de l'alcool brûleur.

3. Cuves de Coplin ou autres pots capables de tenir la (les) lame(s). 4. Microscope à fluorescence, avec filtre de FITC.

1. Prélèvements primaires : étaler une fine couche de l'échantillon sur la lame. Les frottis doivent être faits avec une concentration de cellules qui permet de visualiser clairement les bactéries individuelles. La goutte épaisse contenant trop de cellules peuvent donner une lecture indistincte.

2. Prélèvement de cultures : à partir d'une culture de 24 heures, utiliser une boucle d’inoculation pour recueillir les bactéries dans le 3ème

quart de la croissance. Préparer une suspension équivalente à 0,5 McFarland dans une solution saline. bien Mélanger. Utilisez un coton-tige stérile pour l’étaler sur la lame.

3. Laisser le frottis sécher à l'air.

4. fixer le frottis par la chaleur en passant la lame à travers une flamme, puis laisser refroidir.

5. Ajouter 20 µl de conjugué (assez pour couvrir la zone de frottis) et incuber pendant 30 minutes à température ambiante. Utilisez une chambre humidifiée à l'incubation pour éviter l'évaporation.

6. Remplir une cuve de Coplin avec du PBS et laisser tremper la lame pendant 10 minutes. Rejeter le PBS à partir du récipient et remplir avec du PBS frais. Faire tremper la lame pendant encore 10 minutes.

7. Retirer la lame de PBS et rincer à l'H2O distillée pour enlever le reste du sel. 8. Laisser la lame sécher à l'air.

9. Observer la lame en utilisant un microscope à fluorescence et filtre FITC. Les lames peuvent être analysées à l'aide des objectifs: G ×40, G ×63 ou G ×100 [170].

RESUME

Thèse n° : La tularémie :Maladie ré-émergente curable.

Auteur : Mr ELBHAR ABDESSAMAD encadré par le Pr S. ELHAMZAOUI. Mots clés : Tularémie, Francisella tularensis, infection ulcéroganglionnaire, SDRA,

Fluoroquinolones.

La tularémie est une anthropozoonose bactérienne due à Francisella tularensis qui est un petit coccobacille Gram négatif, aérobie, non mobile et à tropisme intracellulaire et qui est considéré comme l’une des bactéries pathogènes les plus infectieuses connues. Cette maladie est présente dans le monde entier, mais survient essentiellement dans l’hémisphère nord: en Amérique du Nord, en Europe et en Asie centrale, et les épidémies connues sont limitées. Elle est distinguée par une riche diversification dans son tableau clinique, ses réservoirs et ses modes de transmission et c’est important de noter que Francisella est la seule bactérie qui peut franchir la peau saine et atteindre la circulation sanguine, mais heureusement malgré toutes ces données de gravité jusqu’à ce jour aucune transmission interhumaine n’a été déclarée.

Le diagnostic de cette pathologie est réalisé par de nombreuses méthodes et il repose essentiellement sur les constatations cliniques et sur des techniques bactériologiques, sérologiques et biomoléculaires.

La tularémie est une maladie rare mais dangereuse, voire mortelle surtout en cas de propagation d’un aérosol de la bactérie (précisément la sous espèce tularensis), ce qui la rend capable d’être une arme utilisée à des fins bioterroristes ou dans les guerres bactériologiques. La combinaison entre une très bonne connaissance de la maladie et l’application correcte des recommandations thérapeutiques et prophylactiques, reste (quel que soit le scénario d’exposition) la meilleure solution pour améliorer la prise en

SUMMARY

Thesis n° : Tularemia: Reemergent treatable disease.

Author : Mr. ELBHAR ABDESSAMAD supervised by Professor S. ELHAMZAOUI.

Key words : Tularemia, Francisella tularensis, Ulcero-glandular infection, SDRA, Fluoroquinolones.

Tularemia is a bacterial anthropozoonosis due to Francisella tularensis, is a small Gram-negative bacillus, aerobic, non-motile with intracellular tropism and is considered one of the most infectious pathogenic bacteria known. The disease is found worldwide, but mainly occurs in the northern hemisphere: in North America, Europe and Central Asia, and the known epidemics are limited. It is distinguished by a rich diversity in its clinical presentation, its reservoirs and its modes of transmission and it is important to note that Francisella is the only bacteria that can cross the healthy skin and reach the bloodstream, but luckily despite all these data severity to date no human transmission have been reported.

The diagnosis of this pathology is performed by many methods and it is mainly based on clinical findings and bacteriological techniques, serological and molecular biological.

Tularemia is a rare but dangerous and deadly disease especially in case of an aerosol spread of the bacteria (specifically the subspecies tularensis), which enables it to be a weapon used in bioterrorism or in bacteriological wars. The combination of a very good knowledge of the disease and the correct application of therapeutic and prophylactic recommendations, remain (whatever the exposure’s scenario) the best solution to improve the care of patients and for a complete cure.

صخلم

مقر ةحورطأ : ايمرلاوتلا : ضرم رركتم روهظلا باق و ل جلاعلل . فلؤملا : ديسلا رحبلا دبع دمصلا ذاتسلأا فارشإب ة ةنيكس لا زمح ا يو . ةيساسلأا تاملكلا : ايمرلاوتلا )بنارلأا ىمح( ، لازيسنارف سيسنيرلاوت ، ىودع ةيحرقت ،ةيدقع رذانت قانتخلإا يوئرلا لا ،داح لا نولونيكورويلف . يمرلاوتلا يموثرج ضرم )بنارلأا ىمح( ا يناويح ب ةامسملا ايريتكبلا نع جتان أشنملا يرشب و لازيسنارف سيسنيرلاوت لخاد ءاحتنا تاذ و ةكرحتم ريغ ،ةيئاوه ،مارغلا ةيبلس تاروصع نع ةرابع يهو ، ربتعتو ،يولخ ىودعلا ةديدش ةضرمملا تايريتكبلا مهأ نم ةدحاو ةموثرجلا هذه . ا اذه ايسآ و ابوروأ ،ةيلامشلا اكيرمأ :ةيضرلأا ةركلل يلامشلا فصنلا يف اصوصخ ،ملاعلا يف رشتنم ضرمل نييعيبطلا نينضاحلا عونتو هضارعأ عونتب ضرملا اذه زيمتيو .ةدودحم لظت ةيئابولا تلااحلاف كلذ عم ،ىطسولا ذه نأ ركذلاب ريدجلا نمو ،هلاقتنا قرط عونتب اضيأو ةضرمملا هتموثرجل يتلا ةديحولا ايريتكبلا يه ةموثرجلا ه نسحلف ،اهتروطخ ىلع ةلادلا تايطعملا هذه لك مغرو .دلجلل اهقارتخا ربع ةيومدلا ةرودلا ىلإ لوصولا عيطتست رخلآ ناسنإ نم ضرملل لاقتنا يأ لجسي مل نلآا دحلو هنأ ،ظحلا . اظحلاملا ىلع ساسلأا يف زكتريو ،قرط ةدعب نكمم ضرملا اذه صيخشت ةيميثارجلا تاينقتلا و ةيريرسلا ت ةيئيزجويبلا و ةيلصملا . يمرلاوتلا ةللاسلا اديدحت( ةموثرجلل يئاوهلا راشتنلإا ةلاح يف اتيمم حبصي دقو ،ريطخ هنكلو ردان ضرم ا سيسنيرلاوت ةيموثرجلا بورحلا يف وأ يباهرإ حلاسك مدختست نلأ ةلباق ةموثرجلا نم لعجي يذلا ءيشلا ،) . ،اريخأ لظي ،ةيئاقولا و ةيجلاعلا ةيبطلا تايصوتلل حيحصلا قيبطتلا و ضرملا اذهل ةديجلا ةفرعملا نيب جمدلا نإف ىلإ مهب لوصولا و ىضرملاب ءانتعلإا لئاسو نم نيسحتلل لح لضفأ )ءادلا اذهب ةباصلإا تايثيح تناك امفيك( يلكلا ءافشلا ةلحرم .

[1] VERGE J, SAURAT P. La tularémie. Rev Med Vet 1947: 287–313

Tome X.

[2] VAISSAIRE J, MENDY C, LE DOUJET C, Le Coustumier A. La

Tularémie. La maladie et son épidémiologie en France ; Médecine et maladies infectieuses, 2005, 35: 273–280 Elsevier.

[3] Ellis J, Oyston PC, Green M, Titball RW. Tularemia. Clin Microbiol

Rev. 2002 Oct;15(4):631-46. PubMed PMID: 12364373. Pubmed Central PMCID: 126859. Epub 2002/10/05. eng.

[4] DENNIS DT, INGLESBY TV, HENDERSON DA et al. Tularemia as a

biological weapon. Medical and Public Health Management. JAMA. 2001, 285 : 2763- 2773.

[5] Guihot A, Bricaire F, Bossi P. Tularémie. EMC-Maladies Infectieuses

2 (2005) 1–10 Elsevier.

[6] Mailles A, Madani N, Maurin M, Garin-Bastuji B, Vaillant V.

Médecine et maladies infectieuses 40 (2010) 279–284 Elsevier Masson

[7] Petersen JM, Schriefer ME. Tularemia: emergence/re-emergence. Vet

Res 2005;36(3):455–67.

[8] Lagrange P, Reinert P. l’Antibiologie en pratique quotidienne, Paris :

Centre de documentation des laboratoires Bristol, Terre Neuve- Réf. 09/87, 12p.

[9] Bourée P. Du lièvre au bioterrorisme, la Tularémie. OptionBio 20 octobre

2008 n° 407.

[10] McCoy G. A plaque-like disease in rodents. Public Health Bull

[11] CAVALLINI J.L. La tularémie : une zoonose d'actualité. Mémoire pour

l'obtention du diplôme de médecine agricole. Institut national de médecine agricole, Faculté de médecine, 2003, 1- 6, 14, 20- 22p.

[12] RAOULT D. Dictionnaire de maladies infectieuses. Paris : Elsevier, 1998

: p 434-435 et 1096-1097 p.

[13] David L. Science and culture in traditional Japan, A.D 600-1854 (the

M.I.T East Asian science, Nr.6), Cambridge, Massachusetts, et Londres, Angleterre : The MIT Press, 1978, 387-392 p.

[14] Herbeuval D. Les bactéries hémotropes chez le chat. thèse de medecine

vétérinaire. Ecole nationale vétérinaire d’Alfort, 2002, 69-85p.

[15] DUFRENE M., VAISSAIRE J. Epidémiologie de la tularémie dans le

monde. Essai de synthèse bibliographique. Bull. Acad. Vét. de France, 1998, 71, 67-78 p.

[16] WOODS J.P, PANCIERA R.J, MORTON R.J, LEHENBAUER T. W. Feline tularemia. Compendium on Continuing Education, 1998, 20,

442-457 p.

[17] WOODS J.P, CRYSTAL M.A, MORTON R.J, PANCIERA R.J.

Tularemia in two cats. J. Am. Vet. Med. Assoc., 1998, 212, 81-83 p.

[18] Estavoyer JM, Couetdic G, Leroy J et al. Tularémie. Encycl Mèd Chir.

Maladies infectieuses, 1993, 8-035-F- 10, 8 p.

[19] Vaissaire J et Le Coustumier A. Cahier N°40 : Des agents très spéciaux

de la Société Française de Microbiologie, à Sète le 29 juin 2001, in Bull. Soc. Fr. Microbiol. 2003, 18(HS) : 70-71p.

[21] Pollitzer R. 1967. History and incidence of tularemia in the Soviet

Union. A review. Bronx, N.Y. Institute of Contemporary Russian Studies, Fordham University: 314-366 p.

[22] Sjostedt A. 2007. Tularemia: history, epidemiology, pathogen

physiology, and clinical manifestations. Ann N Y Acad Sci. 1105: 1-29 p.

[23] Eigelsbach H.T, Downs C. M. 1961. Prophylactic effectiveness of live

and killed tularemia vaccines. I. Production of vaccine and evaluation in the white mouse and guinea pig. J Immunol. 87: 415-25 p.

[24] EUZEBY J.P. Francisella, Francisella novicida, Francisella tularensis.

In : Dictionnaire de bactériologie vétérinaire, 2003, http:// www.bacterio.cict.fr/bacdico/ff/francisella.html.

[25] Dumas (P-H). La Tularémie. Revue Méd. Vét., 2005, 156, 1, 43-49 p. [26] HOLLIS D.G, WEAVER R.E, STEIGERWALT A.G, WENGER J.D,

MOSS C.W, BRENNER D.J. Francisella philomeragia comb. Nov.

(formerly Yersinia philomeragia) and Francisella tularensis biogroup novicida (formerly Francisella novicida) associated with human disease. J.Clin. Microbiol., 1989 : 27, 1601-1608 p.

[27] Ottem, K. F, et al.. Characterization of Francisella sp., GM2212, the first

Francisella isolate from marine fish, Atlantic cod (Gadus morhua). Arch Microbiol. 2007 : 187, 343 p.

[28] Ottem, K. F, et al. New species in the genus Francisella

[29] Pilet C, Bourdon (J-L), Toma B, Marchal N, Balbastre C.

Bactériologie médicale et vétérinaire : systématique bactérienne; (2ed). Paris : Doin éditeurs, 1981, pages : 221- 223 p.

[30] Gesbert G. Transport des acides aminés et virulence nutritionnelle de

Francisella tularensis [Thèse]. Microbiologie et Parasitologie. Université

René Descartes - Paris V, 2014. 7-11p, 13-16p, 41-43p, 80-82 p.

[31] Ritter, D.B, and Gerloff R.K. Deoxyribonucleic acid hybridization

among some species of the genus Pasteurella. J. Bacteriol. 1966 : 92, 1838–1839 p.

[32] Forsman M, SANDSTRÖM G, and SJÖSTEDT A. Analysis of 16S

ribosomal DNA sequences of Francisella strains and utilization for determination of the phylogeny of the genus and for identification of strains by PCR. Int. J. Syst. Bacteriol. 1994 : 44, 38–46 p.

[33] Fryer J.L, Lannan C.N, Giovannoni S.J, and Wood N.D.

Piscirickettsia salmonis gen. nov., sp. nov., the Causative Agent of an Epizootic Disease in Salmonid Fishes†. Int. J. Syst. Bacteriol. 1992 : 42, 120–126 p.

[34] THOMAS R, JOHANSSON A, NEESON B et al. Discrimination of

human pathogenic subspecies of Francisella tularensis by using restriction fragment length polymorphism. J Clin Microbiol. 2003, 41 : 50-57 p.

[36] Larson C.L, Wicht W, and Jellison W.L. A new organism resembling

P. tularensis isolated from water. Public Health Rep. 1955 : 70, 253 p.

[37] Bercovier H, and Mollaret H. H. Yersinia. In Bergey’s Manual of

Systematic Bacteriology, (Baltimore: The Williams &Wilkins Co), pp. 1984: 503–506 p.

[38] Caipang C, Kulkarni A, Brinchmann M.F, Korsnes K, and Kiron V.

Detection of Francisella piscicida in Atlantic cod (Gadus morhua L) by the loop mediated isothermal amplification (LAMP) reaction. Vet. J. 2010: 184, 357–361p.

[39] Huber B, Escudero R, Busse H-J, Seibold E, Scholz H.C, Anda P, Kämpfer P, and Splettstoesser W.D.. Description of Francisella

hispaniensis sp. nov., isolated from human blood, reclassification of Francisella novicida (Larson et al. 1955) Olsufiev et al. 1959 as Francisella tularensis subsp. novicida comb. nov. and emended description of the genus Francisella. Int. J. Syst. Evol. Microbiol. 2010: 60, 1887–1896 p.

[40] Brevik Ø, Ottem K.F, Kamaishi T, Watanabe K, and Nylund A.

Francisella halioticida sp. nov., a pathogen of farmed giant abalone (Haliotis gigantea) in Japan. J. Appl. Microbiol. 2011 : 111, 1044–1056p.

[41] Ottem K.F, Nylund A, Karlsbakk E, Friis-Møller A, Kamaishi T.

Elevation of Francisella philomiragia subsp. noatunensis Mikalsen et al.(2007) to Francisella noatunensis comb. nov.[syn. Francisella piscicida Ottem et al.(2008) syn. nov.] and characterization of Francisella noatunensis subsp. orientalis subsp. nov., two important fish pathogens. J.

[42] Qu P-H, Chen S-Y, Scholz H.C, Busse H-J, Gu Q, Kampfer P, Foster J.T, Glaeser S.P, Chen C, Yang, Z-C. Francisella guangzhouensis sp.

nov., isolated from air-conditioning systems. Int. J. Syst. Evol. Microbiol.

2013 : 63, 3628–3635 p.

[43] LE PIHIVE E. Evaluation du rôle de la phosphatase acide AcpA dans la

virulence de Francisella tularensis. Thèse de Microbiologie, Grenoble I Sciences & Géographie, Université Joseph Fourier ; 2009 : 32-33, 44, 53-73p.

[44] Rotz L.D, Khan A.S, Lillibridge S.R, Ostroff S.M, Hughes J.M. Public health assessment of potential biological terrorism agents. Emerg. Infect. Dis. 2002 : 8, 225 p.

[45] Lberm C. Classement des agents biologiques. (INRS, Paris). Documents

pour le médecin du travail, N° 79, 3ème trimestre, 1999, 289-291p.

[46] AVRIL JL et al. Francisella tularensis. Bactériologie clinique. PARIS :

Ellipse (3ed). 2000,2 : 374-7 p.

[47] Sjöstedt A, Eriksson U, Berglund L, Tärnvik A. Detection of

Francisella tularensis in ulcers of patients with tularemia by PCR. J Clin Microbiol. 1997 May;35(5):1045-8. PubMed PMID: 9114378. Pubmed Central PMCID: PMC232700. eng.

[48] Shapiro DS, Schwartz DR. Exposure of laboratory workers to

Francisella tularensis despite a bioterrorism procedure. J Clin Microbiol. 2002 Jun;40(6):2278-81. PubMed PMID: 12037110. Pubmed Central

[50] Marchette N.J, and Nicholes P.S. Virulence and citrulline ureidase

activity of Pasteurella tularensis. J. Bacteriol. 1961: 82, 26-32 p.

[51] Larsson P et al. The complete genome sequence of Francisella

tularensis, the causative agent of tularemia. Nat Genet. 2005 : 37:

153-159 p.

[52] Petrosino J. F, et al. Chromosome rearrangement and diversification of

Francisella tularensis revealed by the type B (OSU18) genome sequence. J Bacteriol. 2006 : 188: 6977-6985 p.

[53] Chaudhuri R. R, et al. Genome sequencing shows that European isolates

of Francisella tularensis subspecies tularensis are almost identical to US laboratory strain SCHU S4. 2007 ; PLoS ONE. 2: e352.

[54] Beckstrom-Sternberg S. M, et al. Complete genomic characterization of

a pathogenic A.II strain of Francisella tularensis subspecies tularensis. 2007; PLoS ONE. 2: e947.

[55] Molins C.R, Delorey M.J, Yockey B.M, Young J.W, Sheldon S.W, Reese S.M, Schriefer M.E, and Petersen J.M. Virulence Differences

Among Francisella tularensis Subsp. tularensis Clades in Mice. 2010; PLoS ONE 5, e10205.

[56] Pandya G.A, Holmes M.H, Petersen J.M, Pradhan S, Karamycheva S.A, Wolcott M.J, Molins C, Jones M, Schriefer M.E, Fleischmann R.D, et al. Whole genome single nucleotide polymorphism based

phylogeny of Francisella tularensis and its application to the development of a strain typing assay. BMC Microbiol. 2009 : 9, 213 p.

[57] Rohmer, L., et al. Comparison of Francisella tularensis genomes reveals

evolutionary events associated with the emergence of human pathogenic strains. Genome Biol. 2007 : 8: R102.

[58] Broekhuijsen M, et al. Genome-wide DNA microarray analysis of

Francisella tularensis strains demonstrates extensive genetic conservation within the species but identifies regions that are unique to the highly virulent F. tularensis subsp. tularensis. J Clin Microbiol. 2003: 41: 2924-31 p.

[59] Parkhill J, et al. Genome sequence of Yersinia pestis, the causative agent

of plague. Nature. 2001: 413: 523-7 p.

[60] Parkhill J, et al. Comparative analysis of the genome sequences of

Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet. 2003 : 35: 32-40 p.

[61] Moore R. A, et al. Contribution of gene loss to the pathogenic evolution

of Burkholderia pseudomallei and Burkholderia mallei. Infect Immun. 2004 : 72: 4172-87 p.

[62] Cole S. T, et al. Massive gene decay in the leprosy bacillus. Nature.

2001 : 409: 100711.

[63] Sjöstedt A. B. Genu I. Francisella Dorofe'ev 1947, 176 AL. In Bergey's

Manual of Systematic Bacteriology, 2005; Vol. 2. Springer, Ed.: 200-210. New-York.

[65] Sandstrom G, Lofgren S, and Tarnvik A. A capsule-deficient mutant of

Francisella tularensis LVS exhibits enhanced sensitivity to killing by serum but diminished sensitivity to killing by polymorphonuclear leukocytes. Infect Immun. 1988, 56: 1194-1202 p.

[66] Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol.

2004; 4: 499-511 p.

[67] Hajjar A. M, et al. Lack of in vitro and in vivo recognition of Francisella

tularensis subspecies lipopolysaccharide by Toll-like receptors. Infect Immun. 2006 ; 74: 6730-8 p.

[68] Telepnev M, et al. Francisella tularensis inhibits Toll-like

receptor-mediated activation of intracellular signalling and secretion of TNF-alpha and IL-1 from murine macrophages. Cell Microbiol. 2003; 5: 41-51 p.

[69] Phillips N. J, et al. Novel modification of lipid A of Francisella

tularensis. Infect Immun. 2004 ; 72: 5340-8 p.

[70] Vinogradov E, and Perry M. B. Characterisation of the core part of the

lipopolysaccharide O-antigen of Francisella novicida (U112). Carbohydr Res. 2004; 339: 1643-8 p.

[71] Thirumalapura N. R, et al. Structural analysis of the O-antigen of

Francisella tularensis subspecies tularensis strain OSU 10. J Med Microbiol. 2005 ; 54: 693-5p.

[72] Vinogradov E, et al. Characterization of the lipopolysaccharide

O-antigen of Francisella novicida (U112). Carbohydr Res. 2004; 339: 649-54 p.

survive in macrophages and do not induce protective immunity in mice. Vaccine. 2006; 24: 989-96 p.

[74] Li J, et al. Attenuation and protective efficacy of an O-antigen-deficient

mutant of Francisella tularensis LVS. Microbiology. 2007; 153: 3141-53p.

[75] Raynaud C, et al. Role of the wbt locus of Francisella tularensis in

lipopolysaccharide O-antigen biogenesis and pathogenicity. Infect Immun. 2007; 75: 536-41p.

[76] Nano F. E, et al. A Francisella tularensis pathogenicity island required

for intramacrophage growth. J Bacteriol. 2004 ; 186: 6430-6 p.

[77] Nano, F. E. and Schmerk C. The Francisella pathogenicity island. Ann

N Y Acad Sci. 2007; 1105:122-37 p.

[78] Deng K, et al. Identification of Francisella tularensis genes affected by

iron limitation. Infect Immun. 2006; 74: 4224-36 p.

[79] Lenco J, et al. Proteomics analysis of the Francisella tularensis LVS

response to iron restriction: induction of the F. tularensis pathogenicity island proteins IglABC. FEMS Microbiol Lett. 2007; 269: 11-21p.

[80] De Bruin O. M, Ludu J. S, Nano F. E. The Francisella pathogenicity

island protein IglA localizes to the bacterial cytoplasm and is needed for intracellular growth. BMC Microbiol. 2007; 7: 1 p.

[81] Lauriano C. M, et al. MglA regulates transcription of virulence factors

[83] Ludu J. S, et al. The Francisella Pathogenicity Island Protein PdpD is

required for full virulence and associates with homologues of the type VI secretion system. J. Bacteriol. 2008 ; 190: 4584-4595 p.

[84] Santic M, et al. The Francisella tularensis pathogenicity island protein

IglC and its regulator MglA are essential for modulating phagosome biogenesis and subsequent bacterial escape into the cytoplasm. Cell Microbiol. 2005; 7: 969-79 p.

[85] Lindgren H, et al. Factors affecting the escape of Francisella tularensis

from the phagolysosome. J Med Microbiol. 2004; 53: 953-8 p.

[86] Bonquist L, et al. MglA and Igl proteins contribute to the modulation of

Francisella tularensis live vaccine strain-containing phagosomes in

murine macrophages. Infect Immun. 2008; 76: 3502-10 p.

[87] Twine S, et al. A mutant of Francisella tularensis strain SCHU S4

lacking the ability to express a 58-kilodalton protein is attenuated for virulence and is an effective live vaccine. 2005; 73: 8345-8352 p.

[88] Telepnev M, Golovliov I, Sjostedt A. Francisella tularensis LVS

initially activates but subsequently down-regulates intracellular signaling and cytokine secretion in mouse monocytic and human peripheral blood mononuclear cells. Microb Pathog. 2005; 38: 239-47 p.

[89] Mariathasen S, Weiss D.S, Dixit V.M, and Monack D.M. Innate

immunity against Francisella tularensis is dependent on the ASC /caspase-1 axis. 2005 ; J Exp Med 202, 1043-1049 p.

[90] Tempel R, et al. Attenuated Francisella novicida transposon mutants

5095-[91] Kostakioti M, et al. Mechanisms of protein export across the bacterial

outer membrane. J Bacteriol. 2005; 187: 4306-14 p.

[92] Gil H, Benach J. L, Thanassi D. G. Presence of pili on the surface of

Francisella tularensis. Infect Immun. 2004; 72: 3042-7 p.

[93] Holland I.B, Schmitt L, and Young J. Type 1 protein secretion in

bacteria, the ABC-transporter dependent pathway (review). 2005; Mol Membr Biol 22, 29-39 p.

[94] Eicher T, Cha H.J, Seeger M.A, Brandstatter L, El-Delik J, Bohnert J.A, Kern W.V, Verrey F, Grutter M.G, Diederichs K, et al.

Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop. Proc Natl Acad Sci UA, 2012 : 109, 5687–5692 p.

[95] Platz G.J, Bublitz D.C, Mena P, Benach J.L, Furie M.B, and Thanassi D.G. A tolC mutant of Francisella tularensis is hypercytotoxic compared

to the wild type and elicits increased proinflammatory responses from host cells. Infect Immun. 2010; 78, 1022-1031 p.

[96] Kadzhaev K, Zingmark C, Golovliov I, Bolanowski M, Shen H, Conlan W, and Sjostedt A. Identification of genes contributing to the

virulence of Francisella tularensis SCHU S4 in a mouse intradermal infection model. 2009; PLoS One 4, e5463.

[97] Chen I, and Dubnau D. DNA uptake during bacterial transformation.

[99] Chakraborty S, Monfett M, Maier T.M, Benach J.L, Frank D.W, and Thanassi D.G. Type IV pili in Francisella tularensis: roles of pilF

and pilT in fiber assembly, host cell adherence, and virulence. 2008; Infect Immun 76, 2852–2861p.

[100] Forslund A.L, Salomonsson E.N, Golovliov I, Kuoppa K, Michell S, Titball R, Oyston P, Noppa L, Sjostedt A, and Forsberg A. The

type IV pilin, PilA, is required for full virulence of Francisella tularensis subspecies tularensis. 2010; BMC Microbiol 10, 227 p.

[101] Horzempa J, O’Dee D.M, Stolz D.B, Franks J.M, Clay D, and Nau G.J. Invasion of Erythrocytes by Francisella tularensis. J. Infect. Dis.

2011; 204, 51–59 p.

[102] McCaffrey R.L, Allen L.A. Francisella tularensis LVS evades killing by

human neutrophils via inhibition of the respiratory burst and phagosome escape. J Leukoc Biol, 2006; 80, 1224–1230 p.

[103] Pechous R.D, McCarthy T.R, and Zahrt T.C. Working toward the

future: insights into Francisella tularensis pathogenesis and vaccine development. Microbiol Mol Biol, 2009; Rev 73, 684-711 p.

[104] Asare R, and Kwaik Y.A. Exploitation of host cell biology and evasion

of immunity by Francisella tularensis. Front Microbiol 2010; 1, 145 p.

[105] Chong A, and Celli J. The Francisella intracellular life cycle: toward

molecular mechanisms of intracellular survival and proliferation. Front Microbiol, 2010; 1, 138 p.

[106] Wehrly T.D, Chong A, Virtaneva K, Sturdevant D.E, Child R, Edwards J.A, Brouwer D, Nair V, Fischer E.R, Wicke L, et al.

revealed by transcriptional profiling inside macrophages. Cell. Microbiol. 2009; 11, 1128-1150 p.

[107] Clemens D.L, and Horwitz M.A. Uptake and intracellular fate of

Francisella tularensis in human macrophages. Ann N Acad Sci, 2007; 1105, 160-186p.

[108] Tamilselvam B, and Daefler S. Francisella targets cholesterol rich host

cell membrane domains for entry into macrophages. J Immunol, 2008; 180, 8262–8271 p.

[109] Hilbi H. Modulation of phosphoinositide metabolism by pathogenic

bacteria. Cell. Microbiol. 2006: 8, 1697–1706 p.

[110] Ireton K, and Cossart P. Host-pathogen interactions during entry and

actin-based movement of Listeria monocytogenes. Annu. Rev. Genet. 1997: 31, 113–138 p.

[111] Barel M, Hovanessian A.G, Meibom K, Briand J.P, Dupuis M, and Charbit A. A novel receptor - ligand pathway for entry of Francisella

tularensis in monocyte-like THP-1 cells: interaction between surface

nucleolin and bacterial elongation factor Tu. BMC Microbiol 2008: 8, 145 p.

[112] Clemens D.L, Lee B.Y, and Horwitz M.A. Francisella tularensis enters

macrophages via a novel process involving pseudopod loops. Infect Immun 2005; 73, 5892–5902 p.

phagosomes and escape into the cytoplasm in human macrophages. Infect Immun, 2004: 72, 3204–3217 p.

[115] Santic M, Asare R, Skrobonja I, Jones S, and Abu Kwaik Y.

Acquisition of the vacuolar ATPase proton pump and phagosome acidification are essential for escape of Francisella tularensis into the macrophage cytosol. Infect Immun 2008: 76, 2671–2677 p.

[116] Rajaram M.V.S, Butchar J.P, Parsa K.V.L, Cremer T.J, Amer A, Schlesinger L.S, and Tridandapani S. Akt and SHIP Modulate

Francisella Escape from the Phagosome and Induction of the Fas-Mediated Death Pathway. 2009; PLoS ONE 4, e7919.

[117] Su J, Asare R, Yang J, Nair M.K, Mazurkiewicz J.E, Abu Kwaik Y, and Zhang J.R. The capBCA Locus is Required for Intracellular Growth

of Francisella tularensis LVS. Front Microbiol 2011; 2, 83 p.

[118] Knodler L.A, and Celli J. Eating the strangers within: host control of

intracellular bacteria via xenophagy. Cell Microbiol 2011; 13, 1319– 1327p.

[119] Huynh K.K, and Grinstein S. Regulation of vacuolar pH and its

modulation by some microbial species. Microbiol. Mol. Biol. Rev. MMBR 2007; 71, 452–462 p.

[120] Bönquist L, Lindgren H, Golovliov I, Guina T, and Sjostedt A. MglA

and Igl proteins contribute to the modulation of Francisella tularensis live vaccine straincontaining phagosomes in murine macrophages. Infect Immun 2008; 76, 3502–3510 p.

[122] Nunes P, Demaurex N, and Dinauer M.C. Regulation Of The NADPH

Oxidase And Associated Ion Fluxes During Phagocytosis. Traffic n/a–n/a. 2013.

[123] Rosenberger C.M, and Finlay B.B. Phagocyte sabotage: disruption of

macrophage signalling by bacterial pathogens. Nat. Rev. Mol. Cell Biol. 2003: 4, 385–396 p.

[124] Markova N, Kussovski V, and Radoucheva T. Killing of Pseudomonas

pseudomallei by Polymorphonuclear Leukocytes and Peritoneal Macrophages from Chicken, Sheep, Swine and Rabbits. Zentralblatt Für Bakteriol. 1998; 288, 103–110 p.

[125] Mohapatra N.P, Soni S, Bell B.L, Warren R, Ernst R.K, Muszynski A, Carlson R.W, and Gunn J.S. Identification of an Orphan Response

Regulator Required for the Virulence of Francisella spp. and Transcription of Pathogenicity Island Genes. Infect Immun 2007; 75, 3305-3314 p.

[126] Mohapatra N.P, Soni S, Reilly T.J, Liu J, Klose K.E, and Gunn J.S.

Combined deletion of four Francisella novicida acid phosphatases attenuates virulence and macrophage vacuolar escape. Infect Immun