• Aucun résultat trouvé

Evaluation du nombre d'intégration du transgène par Southern blot

Dans le document Disponible à / Available at permalink : (Page 102-115)

Les souris sont identifiées par ablation d'im doigt lorsqu'elles sont âgées d'une semaine à dix jours. A 4-5 semaines d'âge, un morceau de queue est prélevé et digéré durant une nuit à 55°C dans une solution (Tris 100 mM pH 8,5 ; EDTA 5 mM ; SDS 0,2% ; NaCl 200mM) contenant de la protéinase K düuée à 100 pg/ml. Le lendemain, l'ADN génomique est extrait grâce au kit Puregene Core de Qiagen et 10 pg sont clivés avec différentes enzymes de restriction (EcoRI, BamHI, HindHI et Kpnl). L'ADN digéré est ensuite séparé par électrophorèse sur gel d'agarose 1%. Après la migration, le gel est traité comme suit : dépurination à l'HCl 0,5 N ; dénaturation dans im tampon de NaOH 0,5 M et NaCl 1,5 M ; neutralisation dans xme solution de Tris 0,5 M et NaCl 1,5 M ; et enfin lavage avec du SSC concentré 20x (NaCl 3 M; Citrate de sodium 0,3 M). L'ADN est alors transféré par capillarité sur une membrane de nylon (Flybond N+, GE Healthcare) à laquelle il se lie de manière covalente grâce à ime exposition de 3 minutes aux ultra-violets. La membrane est pré-hybridée dans ime solution de saturation (Denhart lOx ; SSC 4,5x ; SDS 2%) contenant 700 pl d'ADN de sperme de hareng dénaturé. Après minimum 1 heure à 65°C, la solution est remplacée par rme même solution mais contenant la sonde radioactive marquée au [a-^^P] dCTP, dénaturée. Cette sonde correspond aux 376 dernières paires de bases du promoteur CAG - elle est localisée dans l'intron. L'hybridation se déroule durant une nuit à 65°C puis la membrane est lavée avec une solution de SDS 0,1% et SSC 4,5x. Les résultats sont finalement analysés par autoradiographie (film XAR, Kodak). La carte de restriction pour les différentes constructions est fournie ci- après, Figure 33.

HIII Kl BieiKI HIII

-98-Bibliographie

1. Steinman, R. M. & Witmer, M. D. Lymphoid dendritic cells are potent stimulators of the primary mixed leukocyte reaction in mice. Proc Natl Acad Sd U S A 75, 5132-6 (1978).

2. Steinman, R. M., Gutchinov, B., Witmer, M. D. & Nussenzweig, M. C. Dendritic cells are the principal stimulators of the primary mixed leukocyte reaction in mice. J Exp Med 157, 613-27 (1983).

3. Foti, M., Granucci, F. & Ricdardi-Castagnoli, P. A central rôle for tissue-resident dendritic cells in innate responses. Prends Immunol 25, 650-4 (2004).

4. Buckwalter, M. R. & Albert, M. L. Orchestration of the immune response by dendritic cells. Curr Biol 19, R355-61 (2009).

5. Banchereau, J. et al. Immunobiology of dendritic cells. Annu Rev Immunol 18, 767-811 (2000).

6. Kalinski, P., Hilkens, C. M., Wierenga, E. A. & Kapsenberg, M. L. T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol Today 20,561-7 (1999).

7. Joffre, O., Nolte, M. A., Sporri, R. & Reis e Sousa, C. Inflammatory signais in dendritic cell activation and the induction of adaptive immunity. Immunol Rev 227,234-47 (2009).

8. Reis e Sousa, C. Dendritic cells in a mature âge. Nat Rev Immunol 6, 476-83 (2006).

9. Sporri, R. & Reis e Sousa, C. Inflammatory mediators are insuffident for full dendritic cell activation and promote expansion of CD4+ T cell populations lacking helper function. Nat Immunol 6,163-70 (2005). 10. Palm, N. W. & Medzhitov, R. Pattern récognition receptors and control of adaptive immunity. Immimol

Rev 227,221-33 (2009).

11. Maldonado-Lopez, R. et al. CD8alpha+ and CD8alpha- subclasses of dendritic cells dired the development of distinct T helper cells in vivo. J Exp Med 189,587-92 (1999).

12. Kom, T., Bettelli, E., Oukka, M. & Kuchroo, V. K. IL-17 and Thl7 Cells. Annu Rev Immunol 27, 485-517 (2009).

13. Shortman, K. & Naik, S. H. Steady-state and inflammatory dendritic-cell development. Nat Rev Immunol 7,19-30 (2007).

14. Merad, M. & Mar\z, M. G. Dendritic cell homeostasis. Blood 113, 3418-27 (2009).

15. Naik, S. H. Demystifying the development of dendritic cell subtypes, a little. Immunol Cell Biol 86, 439-52 (2008).

16. Merad, M., Ginhoux, F. & Collin, M. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat Rev Immunol 8, 93547 (2008).

17. Poulin, L. F. et al. The dermis contains langerin+ dendritic cells that develop and function independently of epidermal Langerhans ceUs. J Exp Med 204,3119-31 (2007).

18. Iwasaki, A. Mucosal dendritic cells. Armu Rev Immimol 25,381418 (2007).

19. Merad, M. et al. Langerhans cells renew in the skin throughout life under steady-state conditions. Nat Immunol 3,113541 (2002).

20. Ginhoux, F. et al. Langerhans cells arise from monocytes in vivo. Nat Immunol 7, 265-73 (2006).

21. Hemmi, H. et al. Skin antigens in the steady State are trafficked to régional lymph nodes by transforming growth factor-betal-dependent cells. Int Immunol 13, 695-704 (2001).

22. Huang, F. P. et al. A discrète subpopulation of dendritic cells transports apoptotic intestinal épithélial cells to T cell areas of mesenteric lymph nodes. J Exp Med 191,435-44 (2000).

23. Randolph, G. J., Angeli, V. & Swartz, M. A. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat Rev Immunol 5, 617-28 (2005).

24. Wilson, N. S. et al. Normal proportion and expression of maturation markers in migratory dendritic cells in the absence of germs or Toll-like receptor signaling. Immunol Cell Biol 86,200-5 (2008).

25. Forster, R. et al. CCR7 coordinates the primary immime response by establishing functional microenvironments in secondary lymphoid organs. Cell 99,23-33 (1999).

26. Hawiger, D. et al. Dendritic cells induce peripheral T cell unresponsiveness under steady State conditions in vivo. J Exp Med 194, 769-79 (2001).

27. Steinman, R. M., Hawiger, D. & Nussenzweig, M. C. Tolerogenic dendritic cells. Annu Rev Immimol 21, 685-711 (2003).

28. Segura, E. & Villadangos, J. A. Antigen présentation by dendritic cells in vivo. Curr Opin Immunol 21, 105-10 (2009).

29. Carbone, F. R., Belz, G. T. & Heath, W. R. Transfer of antigen between migrating and lymph node- resident DCs in peripheral T-cell tolérance and immunity. Trends Immunol 25, 655-8 (2004).

30. Allan, R. S. et al. Epidermal viral immunity induced by CD8alpha+ dendritic cells but not by Langerhans cells. Science 301,1925-8 (2003).

31. Allan, R. S. et al. Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunity 25,153-62 (2006).

32. de Heusch, M. et al. Bidirectional MHC molécule exchange between migratory and résident dendritic cells. J Leukoc Biol 82,861-8 (2007).

33. De Smedt, T. et al. Antigen-spedfic T lymphocytes regulate lipopolysaccharide-induced apoptosis of dendritic cells in vivo. J Immimol 161, 4476-9 (1998).

34. Inaba, K. et al. Efficient présentation of phagocytosed cellular fragments on the major histocompatibüity complex class II products of dendritic cells. J Exp Med 188, 2163-73 (1998).

35. Kamath, A. T., Henri, S., Battye, F., Tough, D. F. & Shortman, K. Developmental kinetics and lifespan of dendritic cells in mouse lymphoid organs. Blood 100,1734-41 (2002).

36. Randolph, G. J., Ochando, J. & Partida-Sanchez, S. Migration of dendritic cell subsets and their precursors. Annu Rev Immunol 26,293-316 (2008).

37. Kissenpfenrdg, A. et al. Dynamics and fonction of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22, 643-54 (2(X)5). 38. Liu, K. et al. Origin of dendritic cells in peripheral lymphoid organs of mice. Nat Immunol 8, 578-83

(2007).

39. Wilson, N. S. et al. Most lymphoid organ dendritic cell types are phenotypically and functionally immature. Blood 102, 2187-94 (2003).

40. De Smedt, T. et al. Régulation of dendritic cell numbers and maturation by lipopolysaccharide in vivo. J Exp Med 184,1413-24 (1996).

41. Reis e Sousa, C. et al. In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas. J Exp Med 186,1819-29 (1997). 42. Pulendran, B. et al. Developmental pathways of dendritic cells in vivo: distinct function, phenotype, and

localization of dendritic ceU subsets in FLT3 ligand-treated mice. J Immunol 159, 2222-31 (1997).

43. Dudziak, D. et al. Differential antigen processing by dendritic cell subsets in vivo. Science 315, 107-11 (2007).

44. den Haan, J. M., Lehar, S. M. & Bevan, M. J. CD8(+) but not CD8(-) dendritic cells cross-prime cytotoxic T cells in vivo. J Exp Med 192,1685-96 (2000).

45. Belz, G. T. et al. The CD8alpha(+) dendritic cell is responsible for inducing peripheral self-tolerance to tissue-associated antigens. J Exp Med 196,1099-104 (2002).

46. Naik, S. H. et al. Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes. Nat Immunol 7, 663-71 (2006).

47. Waskow, C. et al. The receptor tyrosine kinase Flt3 is required for dendritic ceU development in peripheral lymphoid tissues. Nat Immunol 9, 676-83 (2008).

48. Kabashima, K. et al. Intrinsic lymphotoxin-beta receptor requirement for homeostasis of lymphoid tissue dendritic cells. Immunity 22,439-50 (2005).

49. Gunn, M. D. et al. Mice lacking expression of secondary lymphoid organ chemokine hâve defects in lymphocyte homing and dendritic ceU localization. J Exp Med 189,451-60 (1999).

50. Ato, M., Stager, S., Engwerda, C. R. & Kaye, P. M. Defective CCR7 expression on dendritic cells contributes to the development of viscéral leishmaniasis. Nat Immunol 3,1185-91 (2002).

51. Brocker, T., Riedinger, M. & Karjalainen, K. Targeted expression of major histocompatibility complex (MHC) class II molécules demonstrates that dendritic cells can induce négative but not positive sélection of thymriocytes in vivo. J Exp Med 185,541-50 (1997).

52. Bonasio, R. et al. Clonal délétion of thymocytes by drculating dendritic cells homing to the thymus. Nat Immunol 7,1092-100 (2006).

53. Proietto, A. I. et al. Dendritic ceUs in the thymus contribute to T-regulatory cell induction. Proc Natl Acad Sd U S A 105,19869-74 (2008).

54. Villadangos, J. A. & Schnorrer, P. Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat Rev Immimol 7, 543-55 (2007).

55. Yoneyama, H. et al. Evidence for recruitment of plasmacytoid dendritic cell precursors to inflamed lymph nodes through high endothélial venules. Int Immimol 16, 915-28 (2004).

56. Diacovo, T. G., Blasius, A. L., Mak, T. W., Cella, M. & Colonna, M. Adhesive mechanisms goveming interferon-producing cell recruitment into lymph nodes. J Exp Med 202, 687-96 (2005).

-100-57. Liu, Y. J. IPC; professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 23,275-306 (2005).

58. Grouard, G. et al. The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. J Exp Med 185,1101-11 (1997).

59. Salio, M., Palmowski, M. J., Atzberger, A., Hermans, 1. F. & Cerundolo, V. CpG-matured murine plasmacytoid dendritic cells are capable of in vivo priming of functional CD8 T cell responses to endogenous but not exogenous antigens. J Exp Med 199, 567-79 (2004).

60. Krug, A. et al. Interferon-producing cells fail to induce prolifération of naive T cells but can promote expansion and T helper 1 différentiation of antigen-experienced unpolarized T cells. J Exp Med 197, 899- 906 (2003).

61. Naik, S. H., Corcoran, L. M. & Wu, L. Development of murine plasmacytoid dendritic cell subsets. Immunol Cell Biol 83, 563-70 (2005).

62. Serbina, N. V., Salazar-Mather, T. P., Biron, C. A., Kuziel, W. A. & Pâmer, E. G. TNF/iNOS-producing dendritic cells médiate innate immune defense against bacterial infection. Immunity 19,59-70 (2003). 63. De Trez, C. et al. iNOS-producing inflcinunatory dendritic cells constitute the major infected cell type

during the chronic Leishmania major infection phase of C57BL/6 résistant mice. PLoS Pathog 5, el000494 (2009).

64. Kool, M. et al. Cutting edge: alum adjuvant stimulâtes inflammatory dendritic cells through activation of the NALP3 inflammasome. J Immunol 181,3755-9 (2008).

65. Geissmann, F., Jung, S. & Littman, D. R. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19, 71-82 (2003).

66. Xu, Y., Zhan, Y., Lew, A. M., Naik, S. H. & Kershaw, M. H. Differential development of murine dendritic cells by GM-CSF versus Flt3 ligand has implications for inflammation and trafficking. J Immunol 179, 7577-84 (2007).

67. Kondo, M., Weissman, 1. L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661-72 (1997).

68. Akashi, K., Traver, D., Miyamoto, T. & Weissman, I. L. A clonogenic common myeloid progenitor that gives rise to ail myeloid lineages. Nature 404,193-7 (2000).

69. Manz, M. G., Traver, D., Miyamoto, T., Weissman, I. L. & Akashi, K. Dendritic cell potentials of early lymphoid and myeloid progenitors. Blood 97,3333-41 (2001).

70. Traver, D. et al. Development of CD8alpha-positive dendritic cells from a common myeloid progenitor. Science 290,2152-4 (2000).

71. Chicha, L., Jarrossay, D. & Manz, M. G. Clonal type I interferon-producing and dendritic cell precursors are contained in both human l3miphoid and myeloid progenitor populations. J Exp Med 200, 1519-24 (2004).

72. Karsunky, H., Merad, M., Cozzio, A., Weissman, I. L. & Manz, M. G. Flt3 ligand régulâtes dendritic cell development from Flt3+ lymphoid and myeloid-committed progenitors to Flt3+ dendritic cells in vivo. J Exp Med 198,305-13 (2003).

73. D'Amico, A. & Wu, L. The early progenitors of mouse dendritic cells and plasmacytoid predendritic ceUs are within the bone marrow hemopoietic precursors expressing Flt3. J Exp Med 198, 293-303 (2003). 74. Mende, I., Karsunky, H., Weissman, I. L., Engleman, E. G. & Merad, M. Flk2+ myeloid progenitors are

the main source of Langerhans cells. Blood 107,1383-90 (2006).

75. Fogg, D. K. et al. A clonogenic bone marrow progenitor spécifie for macrophages and dendritic cells. Science 311, 83-7 (2006).

76. Auffray, C. et al. CX3CR1+ CD115+ CD135+ common macrophageAOC precursors and the rôle of CX3CR1 in their response to inflammation. J Exp Med 206,595-606 (2009).

77. Onai, N. et al. Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nat Immunol 8,1207-16 (2007).

78. Naik, S. H. et al. Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat Immimol 8,1217-26 (2007).

79. Auffray, C., Emre, Y. & Geissmann, F. Homeostasis of dendritic cell pool in lymphoid organs. Nat Lmmimol 9, 584-6 (2008).

80. Auffray, C., Sieweke, M. H. & Geissmarm, F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol 27, 669-92 (2009).

82. Onai, N., Obata-Onai, A., Tussiwand, R., Lanzavecchia, A. & Manz, M. G. Activation of the Flt3 signal transduction cascade rescues and enhances type I interferon-producing and dendritic cell development. J Exp Med 203, 227-38 (2006).

83. Laouar, Y., Welte, T., Fu, X. Y. & Flavell, R. A. STAT3 is required for Flt3L-dependent dendritic cell différentiation. Immunity 19, 903-12 (2003).

84. McKenna, H. J. et al. Mice lacking flt3 ligand hâve defident hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 95, 3489-97 (2000).

85. Tussiwand, R., Onai, N., Mazzucchelli, L. & Manz, M. G. Inhibition of natural type I IFN-producing and dendritic cell development by a small molécule receptor tyrosine kinase inhibitor with Flt3 affinity. J Immimol 175,3674-80 (2005).

86. Maraskovsky, E. et al. Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J Exp Med 184,1953-62 (1996). 87. Gilliet, M. et al. The development of murine plasmacytoid dendritic cell precursors is differentiaUy

regulated by FLT3-ligand and granulocyte/macrophage colony-stimulating factor. J Exp Med 195, 953-8 (2002).

88. Inaba, K. et al. Génération of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 176,1693-702 (1992). 89. Vremec, D. et al. The influence of granulocyte/macrophage colony-stimulating factor on dendritic cell

levels in mouse lymphoid organs. Eur J Immimol 27,40-4 (1997).

90. Hamilton, J. A. Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol 8, 533- 44 (2008).

91. Kingston, D. et al. The concerted action of GM-CSF and Flt3-ligand on in vivo dendritic cell homeostasis. Blood 114, 835-43 (2009).

92. Witmer-Pack, M. D. et al. Identification of macrophages and dendritic cells in the osteopetrotic (op/op) mouse. J Cell Sci 104 ( Pt 4), 1021-9 (1993).

93. Naik, S. H. et al. Cutting edge: génération of splenic CD8+ and CD8- dendritic ceU équivalents in Fms- like tyrosine kinase 3 ligand bone marrow cultures. J Immimol 174, 6592-7 (2005).

94. Pire, A. et al. Potent and spedfic genetic interférence by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-11 (1998).

95. Lippman, Z. & Martienssen, R. The rôle of RNA interférence in heterochromatic silendng. Nature 431, 364-70 (2004).

96. Place, R. F., Li, L. C., Pookot, D., Noonan, E. J. & Dahiya, R. MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci U S A105,1608-13 (2008).

97. Vasudevan, S., Tong, Y. & Steitz, J. A. Switching from repression to activation: microRNAs can up- regulate translation. Science 318,1931-4 (2007).

98. Ghildiyal, M. & Zamore, P. D. Small silendng RNAs: an expanding universe. Nat Rev Genet 10, 94-108 (2009).

99. Kim, V. N., Han, J. & Siomi, M. C. Biogenesis of small RNAs in animais. Nat Rev Mol Cell Biol 10,126-39 (2009).

100. Carthew, R. W. & Sontheimer, E. J. Origins and Mechanisms of miRNAs and siRNAs. Cell 136, 642-55 (2009).

101. Rodriguez, A., Griffiths-Jones, S., Ashurst, J. L. & Bradley, A. Identification of mammalian microRNA host genes and transcription units. Genome Res 14,1902-10 (2004).

102. Kim, Y. K. & Kim, V. N. Processing of intronic microRNAs. Embo J 26, 775-83 (2007).

103. Okamura, K., Hagen, J. W., Duan, H., Tyler, D. M. & Lai, E. C. The mirtron pathway generates nticroRNA-class regulatory RNAs in Drosophila. Cell 130, 89-100 (2007).

104. Berezikov, E., Chung, W. J., Willis, J., Cuppen, E. & Lai, E. C. Mammalian mirtron genes. Mol Cell 28, 328-36 (2007).

105. Ruby, J. G., Jan, C. H. & Bartel, D. P. Intronic microRNA precursors that bypass Drosha processing. Nature 448, 83-6 (2007).

106. Okamura, K. & Lai, E. C. Endogenous small interfering RNAs in animais. Nat Rev Mol Cell Biol 9, 673-8 (2008).

107. Ghildiyal, M. et al. Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science 320,1077-81 (2008).

108. Watanabe, T. et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts m mouse oocytes. Nature 453, 539-43 (2008).

-102-109. Aravin, A. A., Hannon, G. J. & Brennecke, J. The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 318, 761-4 (2007).

110. Bartel, D. P. MicroRNAs; genomics, biogenesis, mechanism, and function. Cell 116,281-97 (2004).

111. Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120,15-20 (2005).

112. Lindsay, M. A. microRNAs and the immune response. Prends Immunol 29, 343-51 (2008).

113. Baltimore, D., Boldin, M. P., O'Connell, R. M., Rao, D. S. & Taganov, K. D. MicroRNAs: new regulators of immime cell development and function. Nat Immunol 9, 839-45 (2008).

114. McManus, M. T. Small RNAs and immunity. Iirununity 21, 747-56 (2004).

115. Xiao, C. & Rajewsky, K. MicroRNA control in the immune System: basic principles. Ceü 136, 26-36 (2009).

116. Ventura, A. & Jacks, T. MicroRNAs and cancer: short RNAs go a long way. Cell 136, 586-91 (2009). 117. Yoo, B. C. et al. A systemic small RNA signaling System in plants. Plant Cell 16,1979-2000 (2004). 118. Baulcombe, D. RNA silencing in plants. Nature 431,356-63 (2004).

119. Umbach, J. L. & Cullen, B. R. The rôle of RNAi and microRNAs in animal virus réplication and antiviral immunity. Genes Dev 23,1151-64 (2009).

120. Haasnoot, J., Westerhout, E. M. & Berkhout, B. RNA interférence against viruses: strike and counterstrike. Nat Biotechnol 25,1435-43 (2007).

121. Wiarmy, F. & Zemicka-Goetz, M. Spedfic interférence with gene function by double-stranded RNA in early mouse development. Nat Cell Biol 2, 70-5 (2000).

122. Yang, S., Tutton, S., Pierce, E. & Yoon, K. Spécifie double-stranded RNA interférence in undifferentiated mouse embryonic stem cells. Mol Cell Biol 21, 7807-16 (2001).

123. Girard, A. & Hannon, G. J. Conserved thèmes in small-RNA-mediated transposon control. Prends Cell Biol 18,136-48 (2008).

124. Malone, C. D. & Harmon, G. J. Small RNAs as guardians of the genome. Cell 136, 656-68 (2009). 125. Seto, A. G., Kingston, R. E. & Lau, N. C. The coming of âge for Piwi proteins. Mol Cell 26, 603-9 (2007). 126. Borchert, G. M., Lanier, W. & Davidson, B. L. RNA polymerase III transcribes human microRNAs. Nat

Struct Mol Biol 13,1097-101 (2006).

127. Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase IL Embo J 23, 4051-60 (2004).

128. Cai, X., Hagedom, C. H. & Cullen, B. R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. Rna 10,1957-66 (2004).

129. Lee, Y. et al. The nuclear RNase III Drosha initiâtes microRNA processing. Nature 425, 415-9 (2003). 130. Han, J. et al. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18, 3016-27

(2004).

131. Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F. & Hannon, G. J. Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231-5 (2004).

132. Gregory, R. I. et al. The Microprocessor complex médiates the genesis of microRNAs. Nature 432, 235-40 (2004).

133. Bohnsack, M. T., Czaplinski, K. & Gorlich, D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that médiates nuclear export of pre-miRNAs. Rna 10,185-91 (2004).

134. Limd, E., Guttinger, S., Calado, A., Dahlberg, J. E. & Kutay, U. Nuclear export of microRNA preciusors. Sdence 303, 95-8 (2004).

135. Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Rôle for a bidentate ribonucléase in the initiation step of RNA interférence. Nature 409,363-6 (2001).

136. Elbashir, S. M., Lendeckel, W. & Tuschl, T. RNA interférence is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15,188-200 (2001).

137. Zhang, H., Kolb, F. A., Jaskiewicz, L., Westhof, E. & Filipowicz, W. Single processing center models for human Dicer and bacterial RNase III. Cell 118, 57-68 (2004).

138. Zhang, H., Kolb, F. A., Brondani, V., Billy, E. & Filipowicz, W. Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. Embo J 21, 5875-85 (2002).

139. Lee, Y. S. et al. Distinct rôles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117, 69-81 (2004).

140. Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R. & Tuschl, T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110, 563-74 (2002).

141. Khvorova, A., Reynolds, A. & Jayasena, S. D. Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209-16 (2003).

143. Peters, L. & Meister, G. Argonaute proteins: mediators of RNA silencing. Mol Cell 26, 611-23 (2007). 144. Tomari, Y., Matranga, C., Haley, B., Martinez, N. & Zamore, P. D. A protein sensor for siRNA

asymmetry. Sdence 306,1377-80 (2004).

145. Matranga, C., Tomari, Y., Shin, C., Bartel, D. P. & Zamore, P. D. Passenger-strand cleavage facilitâtes assembly of siRNA into Ago2-containmg RNAi enzyme complexes. Cell 123, 607-20 (2005).

146. Rand, T. A., Petersen, S., Du, F. & Wang, X. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123, 621-9 (2005).

147. Leuschner, P. J., Ameres, S. L., Kueng, S. & Martinez, J. Cleavage of the siRNA passenger strand during RISC assembly in human cells. EMBO Rep 7, 314-20 (2006).

148. Hutvagner, G. & Simard, M. J. Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9, 22-32 (2008).

149. Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305,1437-41 (2004).

150. Wu, L. & Belasco, J. G. Let me count the ways: mechanisms of gene régulation by miRNAs and siRNAs. Mol Cell 29,1-7 (2008).

151. Zieng, Y., Yi, R. & Cullen, B. R. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci U S A 100, 9779-84 (2003).

152. Doench, J. G., Petersen, C. P. & Sharp, P. A. siRNAs can function as miRNAs. Genes Dev 17, 438-42 (2003).

153. Llave, C., Xie, Z., Kasschau, K. D. & Carrington, J. C. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297, 2053-6 (2002).

154. Yekta, S., Shih, I. H. & Bartel, D. P. MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594-6 (2004).

155. Zamore, P. D., Tuschl, T., Sharp, P. A. & Bartel, D. P. RNAi: double-stranded RNA directs the ATP- dependent cleavage of mRNA at 21 to 23 nucléotide intervals. Cell 101, 25-33 (2000).

156. Orban, T. I. & Izaurralde, E. Decay of mRNAs targeted by RISC requires XRNl, the Ski complex, and the exosome. Rna 11,459-69 (2005).

157. Ambros, V. The functions of animal microRNAs. Nature 431, 350-5 (2004).

158. Bagga, S. et al. Régulation by let-7 and lin-4 miRNAs results in target mRNA dégradation. Cell 122, 553- 63 (2005).

159. Wu, L., Fan, J. & Belasco, J. G. MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sd U S A103, 4034-9 (2006).

160. Giraldez, A. J. et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternai mRNAs. Science 312, 75-9 (2006).

161. Behm-Ansmant, I. et al. mRNA dégradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev 20,1885-98 (2006).

162. Eulalio, A. et al. Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. Genes Dev 21,2558-70 (2007).

163. Eulalio, A. et al. Deadenylation is a widespread effect of miRNA régulation. Rna 15,21-32 (2009).

Dans le document Disponible à / Available at permalink : (Page 102-115)

Documents relatifs