• Aucun résultat trouvé

Cette étude fondamentale a contribué à l’élucidation du rôle de chaque constituant majeur des oléosomes dans la stabilité de ces derniers en milieux aqueux. C’est grâce à la caractérisation de chaque constituant séparément et à la reconstitution de corps lipidiques en employant différents rapports d’agents émulsifiants que nous avons pu observer leurs fonctions et interactions.

Les phospholipides ont confirmé leur très bon pouvoir émulsifiant grâce aux forces électrostatiques, pendant que les oléosines ont montré des bonnes propriétés rhéologiques à l’interface. D’autre part, la présence de constituants non membranaires ne semble pas contribuer positivement à la stabilité d’oléosomes en milieu aqueux à pH natif.

La caractérisation rhéologique des oléosines et phospholipides a permis d’observer l’influence que les phospholipides ont dans le comportement des oléosines à l’interface. Un effet synergique a été observé lorsque ces deux molécules ont été présentes. Nous pensons que celui-ci est dû aux interactions électrostatiques entre ces deux molécules.

2.8

Références bibliographiques

1. Patel, N., Schmid, U., and Lawrence, M.J., Phospholipid-Based Microemulsions

Suitable for Use in Foods. Journal of Agricultural and Food Chemistry, 2006. 54(20):

p. 7817-7824.

2. Harada, T., Kashihara, K., and Nio, N., Oleosin/phospholipid complexes suitable for

use as emulsion stabilizers, and process for producing the same. 2002, (Ajinomoto

Co., Inc., Japan). WO 2002026788. p. 29.

3. Tzen, J.T. and Huang, A.H., Surface structure and properties of plant seed oil bodies. The Journal of Cell Biology, 1992. 117(2): p. 327-335.

4. Li, M., Smith, L.J., Clark, D.C., Wilson, R., and Murphy, D.J., Secondary structures

of a new class of lipid body proteins from oilseeds. The Journal of Biological

Chemistry, 1992. 267(12): p. 8245-8253.

5. Bradstreet, R.B., Kjeldahl Method for Organic Nitrogen. Analytical Chemistry, 2002. 26(1): p. 185-187.

6. Moore, S. and Stein, W., Aminoacid determination, methods and techniques. Journal of Biological Chemistry, 1951. 192: p. 663-670.

7. Murphy, D.J., Keen, J.N., O'Sullivan, J.N., Au, D.M.Y., Edwards, E.-W., Jackson, P.J., Cummins, I., Gibbons, T., Shaw, C.H., and Ryan, A.J., A class of amphipathic

proteins associated with lipid storage bodies in plants. Possible similarities with

animal serum apolipoproteins. Biochimica et Biophysica Acta (BBA) - Gene

Structure and Expression, 1991. 1088(1): p. 86-94.

8. Lee, K. and Huang, A.H.C., Genomic Nucleotide Sequence of a Brassica napus 20-

Kilodalton Oleosin Gene. Plant Physiology, 1991. 96(4): p. 1395-1397.

9. Shaikh, N.A., Assessment of Various Techniques for the Quantitative Extraction of

Lysophospholipids from Myocardial Tissues. Analytical Biochemistry, 1994. 216(2):

p. 313-321.

10. Simpson, T. and Nakamura, L., Phospholipid degradation in membranes of isolated

soybean lipid bodies. Journal of the American Oil Chemists' Society, 1989. 66(8): p.

1093-1096.

11. Novotná, Z., Kás, J., Daussant, J., Sajdok, J., and Valentová, O., Purification and

12. Gaonkar, A.G., Interfacial tensions of vegetable oil/water systems: effect of oil

purification. Journal of the American Oil Chemists' Society, 1989. 66(8): p. 1090-

1092.

13. Israelachvili, J.N., Intermolecular and surface forces. 2nd ed. 1992, London: Academic Press, Inc. p. 213-259.

14. Moncelli, M.R., Becucci, L., and Guidelli, R., The intrinsic pKa values for

phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine in

monolayers deposited on mercury electrodes. Biophysical Journal, 1994. 66(6): p.

1969-1980.

15. Tsui, F.C., Ojcius, D.M., and Hubbell, W.L., The intrinsic pKa values for

phosphatidylserine and phosphatidylethanolamine in phosphatidylcholine host

bilayers. Biophysical Journal, 1986. 49(2): p. 459-468.

16. Stanislav, S.D., Johan, S., and Oystein, S., An experimental and theoretical approach

to the dynamic behavior of emulsions, in Emulsions and Emulsion stability. 2006,

CRC Taylor and Francis. p. 21-107.

17. Fang, Y. and Dalgleish, D.G., Casein adsorption on the surfaces of oil-in-water

emulsions modified by lecithin. Colloids and Surfaces B: Biointerfaces, 1993. 1(6): p.

357-364.

18. Murray, B.S. and Cros, L., Adsorption of [beta]-lactoglobulin and [beta]-casein to

metal surfaces and their removal by a non-ionic surfactant, as monitored via a quartz

crystal microbalance. Colloids and Surfaces B: Biointerfaces, 1998. 10(4): p. 227-

241.

19. Dukhin, S.S., Kretzschmar, G., Miller, R., and Editors, Dynamics of Adsorption at

Liquid Interfaces. Studies in Interface Science. Vol. 1. 1995. 604 pp.

20. Makievski, A.V., Miller, R., Fainerman, V.B., Kragel, J., and Wustneck, R.,

Adsorption of proteins at the gas-liquid and oil-water interfaces as studied by the

pendant drop method. Journal of Royal Society of Chemistry, 1999. 227(Food

Emulsions and Foams): p. 269-284.

21. Benjamins, J., Cagna, A., and Lucassen-Reynders, E.H., Viscoelastic properties of

triacylglycerol/water interfaces covered by proteins. Colloids and Surfaces A:

Physicochemical and Engineering Aspects, 1996. 114: p. 245-254.

22. Williams, A. and Prins, A., Comparison of the dilational behaviour of adsorbed milk

proteins at the air-water and oil-water interfaces. Colloids and Surfaces A:

Physicochemical and Engineering Aspects, 1996. 114: p. 267-275.

23. Yarranton, H.W., Sztukowski, D.M., and Urrutia, P., Effect of interfacial rheology on

model emulsion coalescence: I. Interfacial rheology. Journal of Colloid and Interface

24. White, D.A., Fisk, I.D., Mitchell, J.R., Wolf, B., Hill, S.E., and Gray, D.A.,

Sunflower-seed oil body emulsions: Rheology and stability assessment of a natural

emulsion. Food Hydrocolloids, 2008. 22(7): p. 1224-1232.

25. Katavic, V., Agrawal Ganesh, K., Hajduch, M., Harris Stefan, L., and Thelen Jay, J.,

Protein and lipid composition analysis of oil bodies from two Brassica napus

cultivars. Proteomics, 2006. 6(16): p. 4586-98.

26. Roux, E.M.A., Les oléosines, de nouveaux émulsifiants d'origine végétale.

Comparaison des globules lipidiques extraits de végétaux (A. thaliana) et de levures

(Y. lipolytica), in UMR de Chimie Biologique INRA/INA P-G. 2003, Institut National

Agronomique: Paris-Grignon. p. 1-199.

27. Murray, B.S. and Dickinson, E., Interfacial rheology and the dynamic properties of

adsorbed films of food proteins and surfactants. Food Science and Technology

International, Tokyo, 1996. 2(3): p. 131-145.

28. Walstra, P., Principles of emulsion formation. Chemical Engineering Science, 1993. 48(2): p. 333-49.

29. Wilde, P.J., Interfaces: their role in foam and emulsion behaviour. Current Opinion in Colloid & Interface Science, 2000. 5(3-4): p. 176-181.

30. Maget-Dana, R., The monolayer technique: a potent tool for studying the interfacial

properties of antimicrobial and membrane-lytic peptides and their interactions with

lipid membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1999.

1462(1-2): p. 109-140.

31. Roux, E., Baumberger, S., Axelos, M.A.V., and Chardot, T., Oleosins of Arabidopsis

thaliana: Expression in Escherichia coli, Purification, and Functional Properties.

Journal of Agricultural and Food Chemistry, 2004. 52(16): p. 5245-5249.

32. Marsh, D., Lateral pressure in membranes. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1996. 1286(3): p. 183-223.

33. Miller, R. Proteins at liquid/liquid interface-adsorption and rheological properties. in

Second World Congress on Emulsion. 1997. EDS, Paris.

34. Gaines, G.L., Jr., Insoluble Monolayers at Liquid-Gas Interfaces, ed. Wiley. 1966, New York. p. 386.

Chapitre 3

Procédé Intégré :

Approche Générique

3.1 Graines oléoprotéagineuses sélectionnées ... 101