• Aucun résultat trouvé

La surimmunosuppression soulève des enjeux majeurs en transplantation rénale et plus généralement pour des organes solides. Actuellement il n’existe aucun test disponible cliniquement qui permette de prévenir les événements opportuns liés à ce statut. Dans cette étude nous décrivons pour la première fois, un test de diagnostic de la surimmunosuppression dans une cohorte prospective, longitudinale de 50 patients greffés pour un rein. Les PBMCs des patients ont été isolées, stimulées aux peptides de l’EBV puis étudiées en cytométrie de flux pour des marqueurs des cellules T et des monocytes. Les monocytes intermédiaires des

62 patients en surimmunosuppression ont sécrété des quantités plus faibles de TNFa, une cytokine spécialisée dans la réponse inflammatoire. Ce test doit être validé sur une cohorte plus grande avant d’être proposée pour un essai clinique voué à une application clinique de routine.

63

Bibliographie

1 Stevens, P. E. et al. Chronic kidney disease management in the United Kingdom: NEOERICA project results. Kidney international 72, 92-99, doi:10.1038/sj.ki.5002273 (2007).

2 Coresh, J. et al. Prevalence of chronic kidney disease in the United States. Jama 298, 2038-2047, doi:10.1001/jama.298.17.2038 (2007).

3 CORR. Canadian Organ Replacement Register Annual Report: Treatment of End-Stage Organ Failure in Canada, 2004 to 2013. (2015).

4 Fondation_canadienne_du_rein. (2012).

5 K/DOQI. K/DOQI Clinical Practice Guidelines on Chronic Kidney Disease. Report No. 0272- 6386, S11-S12 (American Journal of Kidney Diseases, 2002).

6 Levey, A. S. et al. A new equation to estimate glomerular filtration rate. Ann Intern Med 150, 604-612 (2009).

7 Barker, C. F. & Markmann, J. F. Historical overview of transplantation. Cold Spring Harbor perspectives in medicine 3, a014977, doi:10.1101/cshperspect.a014977 (2013).

8 Ullman, E. Tissue and Organ Transplantation. Annals of surgery 60, 195-219 (1914). 9 Carrel, A. Heterotransplantation of Blood Vessels Preserved in Cold Storage. The Journal of

experimental medicine 9, 226-228 (1907).

10 Jaboulay, M. Greffe du reins au pli du conde par soudures arterielles et veineuses (Kidney grafts in the antecubital fossa by arterial and venous anastomosis). Lyon Medical (1906). 11 Loeb, L. The biological basis of individuality. 98-106 (Charles C. Thomas, 1945).

12 Voronoy, U. Blocking the reticuloendothelial system in man in some forms of mercuric chloride intoxication and the transplantation of the cadaver kidney as a method of treatment for the anuria resulting from the intoxication [in Spanish]. Siglo Med 97 (1937).

13 Küss, R., Bourget, P. UNE HISTOIRE ILLUSTREE DE LA GREFFE D'ORGANES. La grande aventure du siècle. (Frison Roche (Editions), 1992).

14 Murray, J. E., Merrill, J. P. & Harrison, J. H. Renal homotransplantation in identical twins. 1955. Journal of the American Society of Nephrology : JASN 12, 201-204 (2001).

15 Merrill, J. P., Murray, J. E., Harrison, J. H. & Guild, W. R. Successful homotransplantation of the human kidney between identical twins. Journal of the American Medical Association 160, 277-282 (1956).

16 Murray, J. E. et al. Kidney transplantation in modified recipients. Annals of surgery 156, 337-355 (1962).

17 Hamburger, J. et al. Renal homotransplantation in man after radiation of the recipient. Experience with six patients since 1959. The American journal of medicine 32, 854-871 (1962).

18 Knoll, G. et al. Canadian Society of Transplantation: consensus guidelines on eligibility for kidney transplantation. CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne 173, S1-25, doi:10.1503/cmaj.1041588 (2005).

19 CORR. Canadian Organ Replacement Register Annual Report: Treatment of End-Stage Organ Failure in Canada, 2005 to 2014, CIHI Snapshot. (2016).

20 Findlay, M. D. et al. Factors influencing withdrawal from dialysis: a national registry study. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association, doi:10.1093/ndt/gfw074 (2016). 21 Cukor, D., Cohen, S. D., Peterson, R. A. & Kimmel, P. L. Psychosocial aspects of chronic

disease: ESRD as a paradigmatic illness. Journal of the American Society of Nephrology : JASN 18, 3042-3055, doi:10.1681/ASN.2007030345 (2007).

64 22 Elliott, S. & Sinclair, A. M. The effect of erythropoietin on normal and neoplastic cells.

Biologics : targets & therapy 6, 163-189, doi:10.2147/BTT.S32281 (2012).

23 Laragh, J. H. & Sealey, J. E. in Comprehensive Physiology (John Wiley & Sons, Inc., 2010).

24 Voelker, R. Cost of transplant vs dialysis. JAMA 281, 2277-2277, doi:10.1001/jama.281.24.2277-JQU90004-2-1 (1999).

25 Dean, L. Chapter 5 : Blood Groups and Red Cell Antigens [Internet]. (Bethesda (MD): National Center for Biotechnology Information (US), 2005).

26 Koo, T. Y. & Yang, J. Current progress in ABO-incompatible kidney transplantation. Kidney research and clinical practice 34, 170-179, doi:10.1016/j.krcp.2015.08.005 (2015).

27 Urschel, S. et al. ABO-incompatible heart transplantation in early childhood: an international multicenter study of clinical experiences and limits. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation 32, 285-292, doi:10.1016/j.healun.2012.11.022 (2013).

28 Gulati, P. Janeway's Immunobiology, 7th Edition by Kenneth Murphy, Paul Travers, and Mark Walport. Biochemistry and Molecular Biology Education 37, 134-134, doi:10.1002/bmb.20272 (2009).

29 Abbas A.K., L. A. H., Pillai S. Cellular and Molecular Immunology, 6th Edition (Elsevier, 2007).

30 Morris, G. P. & Allen, P. M. How the TCR balances sensitivity and specificity for the recognition of self and pathogens. Nature immunology 13, 121-128, doi:10.1038/ni.2190 (2012).

31 Sayegh, M. H. & Turka, L. A. The role of T-cell costimulatory activation pathways in transplant rejection. The New England journal of medicine 338, 1813-1821, doi:10.1056/NEJM199806183382506 (1998).

32 Nankivell, B. J. & Alexander, S. I. Rejection of the kidney allograft. The New England journal of medicine 363, 1451-1462, doi:10.1056/NEJMra0902927 (2010).

33 Naesens, M., Kuypers, D. R. & Sarwal, M. Calcineurin inhibitor nephrotoxicity. Clinical journal of the American Society of Nephrology : CJASN 4, 481-508, doi:10.2215/CJN.04800908 (2009).

34 Racusen, L. C. et al. The Banff 97 working classification of renal allograft pathology. Kidney international 55, 713-723, doi:10.1046/j.1523-1755.1999.00299.x (1999).

35 Chandraker A., S. M. H., Singh A.K. Core concept in renal transplantation. (Springer, 2012).

36 Cornell, L. D., Smith, R. N. & Colvin, R. B. Kidney Transplantation: Mechanisms of Rejection and Acceptance. Annual Review of Pathology: Mechanisms of Disease 0, 070912132245001, doi:10.1146/annurev.pathmechdis.3.121806.151508 (2007).

37 Vallin, P., Desy, O., Beland, S., Wagner, E. & De Serres, S. A. Clinical relevance of circulating antibodies and B lymphocyte markers in allograft rejection. Clinical biochemistry 49, 385-393, doi:10.1016/j.clinbiochem.2015.12.008 (2016).

38 Loupy, A. et al. Complement-binding anti-HLA antibodies and kidney-allograft survival. The New England journal of medicine 369, 1215-1226, doi:10.1056/NEJMoa1302506 (2013). 39 Duquesnoy, R. J. Clinical usefulness of HLAMatchmaker in HLA epitope matching for organ

transplantation. Curr Opin Immunol 20, 594-601, doi:S0952-7915(08)00115-5 [pii] 10.1016/j.coi.2008.06.010 (2008).

40 Soulillou, J. P., Peyrat, M. A. & Guenel, J. Association between treatment-resistant kidney- allograft rejection and post-transplant appearance of antibodies to donor B-lymphocyte alloantigens. Lancet 1, 354-356 (1978).

41 Wiebe, C. et al. Evolution and clinical pathologic correlations of de novo donor-specific HLA antibody post kidney transplant. American journal of transplantation : official journal of the

65 American Society of Transplantation and the American Society of Transplant Surgeons 12, 1157-1167, doi:10.1111/j.1600-6143.2012.04013.x (2012).

42 Mauiyyedi, S. et al. Chronic humoral rejection: identification of antibody-mediated chronic renal allograft rejection by C4d deposits in peritubular capillaries. Journal of the American Society of Nephrology : JASN 12, 574-582 (2001).

43 Loupy, A. et al. Outcome of subclinical antibody-mediated rejection in kidney transplant recipients with preformed donor-specific antibodies. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 9, 2561-2570, doi:10.1111/j.1600-6143.2009.02813.x (2009).

44 Gloor, J. M. et al. Transplant glomerulopathy: subclinical incidence and association with alloantibody. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 7, 2124-2132, doi:AJT1895 [pii]

10.1111/j.1600-6143.2007.01895.x (2007).

45 Haas, M. et al. Banff 2013 meeting report: inclusion of c4d-negative antibody-mediated rejection and antibody-associated arterial lesions. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 14, 272-283, doi:10.1111/ajt.12590 (2014).

46 Nankivell, B. J. et al. The natural history of chronic allograft nephropathy. The New England journal of medicine 349, 2326-2333, doi:10.1056/NEJMoa020009 (2003).

47 Soehnlein, O. & Lindbom, L. Phagocyte partnership during the onset and resolution of inflammation. Nature reviews. Immunology 10, 427-439, doi:10.1038/nri2779 (2010). 48 Gordon, S. Phagocytosis: An Immunobiologic Process. Immunity 44, 463-475,

doi:10.1016/j.immuni.2016.02.026 (2016).

49 van Furth, R. & Cohn, Z. A. The origin and kinetics of mononuclear phagocytes. The Journal of experimental medicine 128, 415-435 (1968).

50 Yona, S. et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38, 79-91, doi:10.1016/j.immuni.2012.12.001 (2013).

51 Hashimoto, D. et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38, 792-804, doi:10.1016/j.immuni.2013.04.004 (2013).

52 Swirski, F. K. et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325, 612-616, doi:10.1126/science.1175202 (2009).

53 Ziegler-Heitbrock, L. et al. Nomenclature of monocytes and dendritic cells in blood. Blood 116, e74-80, doi:10.1182/blood-2010-02-258558 (2010).

54 Ziegler-Heitbrock, L. & Hofer, T. P. Toward a refined definition of monocyte subsets. Frontiers in immunology 4, 23, doi:10.3389/fimmu.2013.00023 (2013).

55 Wong, K. L. et al. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood 118, e16-31, doi:10.1182/blood-2010-12-326355 (2011).

56 Rivier, A. et al. Blood monocytes of untreated asthmatics exhibit some features of tissue macrophages. Clinical and experimental immunology 100, 314-318 (1995).

57 Ziegler-Heitbrock, H. W. et al. The novel subset of CD14+/CD16+ blood monocytes exhibits features of tissue macrophages. European journal of immunology 23, 2053-2058, doi:10.1002/eji.1830230902 (1993).

58 Skrzeczynska-Moncznik, J. et al. Peripheral blood CD14high CD16+ monocytes are main producers of IL-10. Scandinavian journal of immunology 67, 152-159, doi:10.1111/j.1365- 3083.2007.02051.x (2008).

66 59 Grage-Griebenow, E. et al. Identification of a novel dendritic cell-like subset of CD64(+) /

CD16(+) blood monocytes. European journal of immunology 31, 48-56, doi:10.1002/1521- 4141(200101)31:1<48::AID-IMMU48>3.0.CO;2-5 (2001).

60 Zawada, A. M. et al. SuperSAGE evidence for CD14++CD16+ monocytes as a third monocyte subset. Blood 118, e50-61, doi:10.1182/blood-2011-01-326827 (2011).

61 Belge, K. U. et al. The proinflammatory CD14+CD16+DR++ monocytes are a major source of TNF. J Immunol 168, 3536-3542 (2002).

62 Rossol, M., Kraus, S., Pierer, M., Baerwald, C. & Wagner, U. The CD14(bright) CD16+ monocyte subset is expanded in rheumatoid arthritis and promotes expansion of the Th17 cell population. Arthritis and rheumatism 64, 671-677, doi:10.1002/art.33418 (2012). 63 Cros, J. et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via

TLR7 and TLR8 receptors. Immunity 33, 375-386, doi:10.1016/j.immuni.2010.08.012 (2010).

64 Fabriek, B. O., Dijkstra, C. D. & van den Berg, T. K. The macrophage scavenger receptor CD163. Immunobiology 210, 153-160, doi:10.1016/j.imbio.2005.05.010 (2005).

65 Buechler, C. et al. Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro- and antiinflammatory stimuli. Journal of leukocyte biology 67, 97-103 (2000).

66 Sulahian, T. H. et al. Human monocytes express CD163, which is upregulated by IL-10 and identical to p155. Cytokine 12, 1312-1321, doi:10.1006/cyto.2000.0720 (2000).

67 Zwadlo-Klarwasser, G., Bent, S., Haubeck, H. D., Sorg, C. & Schmutzler, W. Glucocorticoid- induced appearance of the macrophage subtype RM 3/1 in peripheral blood of man. International archives of allergy and applied immunology 91, 175-180 (1990).

68 Wermuth, P. J. & Jimenez, S. A. The significance of macrophage polarization subtypes for animal models of tissue fibrosis and human fibrotic diseases. Clinical and translational medicine 4, 2, doi:10.1186/s40169-015-0047-4 (2015).

69 Poehlmann, H., Schefold, J. C., Zuckermann-Becker, H., Volk, H. D. & Meisel, C. Phenotype changes and impaired function of dendritic cell subsets in patients with sepsis: a prospective observational analysis. Crit Care 13, R119, doi:10.1186/cc7969 (2009).

70 Skrzeczynska, J., Kobylarz, K., Hartwich, Z., Zembala, M. & Pryjma, J. CD14+CD16+ monocytes in the course of sepsis in neonates and small children: monitoring and functional studies. Scandinavian journal of immunology 55, 629-638 (2002).

71 Castano, D., Garcia, L. F. & Rojas, M. Increased frequency and cell death of CD16+ monocytes with Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 91, 348-360, doi:10.1016/j.tube.2011.04.002 (2011).

72 Grip, O., Bredberg, A., Lindgren, S. & Henriksson, G. Increased subpopulations of CD16(+) and CD56(+) blood monocytes in patients with active Crohn's disease. Inflammatory bowel diseases 13, 566-572, doi:10.1002/ibd.20025 (2007).

73 Sen, A. et al. Increased Toll-like receptor-2 expression on nonclassic CD16+ monocytes from patients with inflammatory stage of Eales' disease. Investigative ophthalmology & visual science 52, 6940-6948, doi:10.1167/iovs.11-7834 (2011).

74 Moniuszko, M., Bodzenta-Lukaszyk, A., Kowal, K., Lenczewska, D. & Dabrowska, M. Enhanced frequencies of CD14++CD16+, but not CD14+CD16+, peripheral blood monocytes in severe asthmatic patients. Clin Immunol 130, 338-346, doi:10.1016/j.clim.2008.09.011 (2009).

75 Stansfield, B. K. & Ingram, D. A. Clinical significance of monocyte heterogeneity. Clinical and translational medicine 4, 5, doi:10.1186/s40169-014-0040-3 (2015).

76 Girlanda, R. et al. Monocyte infiltration and kidney allograft dysfunction during acute rejection. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 8, 600-607, doi:10.1111/j.1600-6143.2007.02109.x (2008).

67 77 Raftery, M. J. et al. The relevance of induced class II HLA antigens and macrophage

infiltration in early renal allograft biopsies. Transplantation 48, 238-243 (1989).

78 Pilmore, H. L., Painter, D. M., Bishop, G. A., McCaughan, G. W. & Eris, J. M. Early up- regulation of macrophages and myofibroblasts: a new marker for development of chronic renal allograft rejection. Transplantation 69, 2658-2662 (2000).

79 Kirk, A. D. et al. Results from a human renal allograft tolerance trial evaluating the humanized CD52-specific monoclonal antibody alemtuzumab (CAMPATH-1H). Transplantation 76, 120-129, doi:10.1097/01.TP.0000071362.99021.D9 (2003).

80 Ozdemir, B. H., Ozdemir, F. N., Gungen, Y. & Haberal, M. Role of macrophages and lymphocytes in the induction of neovascularization in renal allograft rejection. American journal of kidney diseases : the official journal of the National Kidney Foundation 39, 347- 353, doi:10.1053/ajkd.2002.30555 (2002).

81 Sund, S., Reisaeter, A. V., Scott, H., Mollnes, T. E. & Hovig, T. Glomerular monocyte/macrophage influx correlates strongly with complement activation in 1-week protocol kidney allograft biopsies. Clinical nephrology 62, 121-130 (2004).

82 Fahim, T. et al. The cellular lesion of humoral rejection: predominant recruitment of monocytes to peritubular and glomerular capillaries. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 7, 385-393 (2007).

83 Magil, A. B. & Tinckam, K. Monocytes and peritubular capillary C4d deposition in acute renal allograft rejection. Kidney international 63, 1888-1893, doi:10.1046/j.1523- 1755.2003.00921.x (2003).

84 Park, W. D., Griffin, M. D., Cornell, L. D., Cosio, F. G. & Stegall, M. D. Fibrosis with inflammation at one year predicts transplant functional decline. Journal of the American Society of Nephrology : JASN 21, 1987-1997, doi:10.1681/ASN.2010010049 (2010). 85 Hoffmann, S. C. et al. Functionally significant renal allograft rejection is defined by

transcriptional criteria. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 5, 573-581, doi:10.1111/j.1600-6143.2005.00719.x (2005).

86 De Serres, S. A. et al. Monocyte-secreted inflammatory cytokines are associated with transplant glomerulopathy in renal allograft recipients. Transplantation 91, 552-559, doi:10.1097/TP.0b013e318205b3c1 (2011).

87 Reinders, M. E., Rabelink, T. J. & Briscoe, D. M. Angiogenesis and endothelial cell repair in renal disease and allograft rejection. Journal of the American Society of Nephrology : JASN 17, 932-942, doi:10.1681/ASN.2005121250 (2006).

88 Ricardo, S. D., van Goor, H. & Eddy, A. A. Macrophage diversity in renal injury and repair. The Journal of clinical investigation 118, 3522-3530, doi:10.1172/JCI36150 (2008).

89 Koch, A. E., Polverini, P. J. & Leibovich, S. J. Induction of neovascularization by activated human monocytes. Journal of leukocyte biology 39, 233-238 (1986).

90 Leibovich, S. J. et al. Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha. Nature 329, 630-632, doi:10.1038/329630a0 (1987).

91 Zand, M. S. Immunosuppression and immune monitoring after renal transplantation. Seminars in dialysis 18, 511-519, doi:10.1111/j.1525-139X.2005.00098.x (2005).

92 Kahan, B. D., Rajagopalan, P. R. & Hall, M. Reduction of the occurrence of acute cellular rejection among renal allograft recipients treated with basiliximab, a chimeric anti- interleukin-2-receptor monoclonal antibody. United States Simulect Renal Study Group. Transplantation 67, 276-284 (1999).

93 Preville, X. et al. Mechanisms involved in antithymocyte globulin immunosuppressive activity in a nonhuman primate model. Transplantation 71, 460-468 (2001).

68 94 Barnett, A. N., Hadjianastassiou, V. G. & Mamode, N. Rituximab in renal transplantation.

Transplant international : official journal of the European Society for Organ Transplantation 26, 563-575, doi:10.1111/tri.12072 (2013).

95 Schwab, I. & Nimmerjahn, F. Intravenous immunoglobulin therapy: how does IgG modulate the immune system? Nature reviews. Immunology 13, 176-189, doi:10.1038/nri3401 (2013). 96 Fishman, J. A. Introduction: infection in solid organ transplant recipients. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 9 Suppl 4, S3-6, doi:10.1111/j.1600- 6143.2009.02887.x (2009).

97 Coutinho, A. E. & Chapman, K. E. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Molecular and cellular endocrinology 335, 2-13, doi:10.1016/j.mce.2010.04.005 (2011).

98 De Vries, F. et al. Use of inhaled and oral glucocorticoids, severity of inflammatory disease and risk of hip/femur fracture: a population-based case–control study. Journal of Internal Medicine 261, 170-177, doi:10.1111/j.1365-2796.2006.01754.x (2007).

99 Wei, L., MacDonald, T. M. & Walker, B. R. Taking glucocorticoids by prescription is associated with subsequent cardiovascular disease. Annals of internal medicine 141, 764- 770 (2004).

100 Rizza, R. A., Mandarino, L. J. & Gerich, J. E. Cortisol-induced insulin resistance in man: impaired suppression of glucose production and stimulation of glucose utilization due to a postreceptor detect of insulin action. The Journal of clinical endocrinology and metabolism 54, 131-138, doi:10.1210/jcem-54-1-131 (1982).

101 Harding, M. W., Galat, A., Uehling, D. E. & Schreiber, S. L. A receptor for the immunosuppressant FK506 is a cis-trans peptidyl-prolyl isomerase. Nature 341, 758-760, doi:10.1038/341758a0 (1989).

102 Marks, A. R. Cellular functions of immunophilins. Physiological reviews 76, 631-649 (1996). 103 Liu, J. et al. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506

complexes. Cell 66, 807-815 (1991).

104 Clipstone, N. A. & Crabtree, G. R. Identification of calcineurin as a key signalling enzyme in T-lymphocyte activation. Nature 357, 695-697, doi:10.1038/357695a0 (1992).

105 Flanagan, W. M., Corthesy, B., Bram, R. J. & Crabtree, G. R. Nuclear association of a T-cell transcription factor blocked by FK-506 and cyclosporin A. Nature 352, 803-807, doi:10.1038/352803a0 (1991).

106 Masuda, E. S., Imamura, R., Amasaki, Y., Arai, K. & Arai, N. Signalling into the T-Cell Nucleus: NFAT Regulation. Cellular Signalling 10, 599-611, doi:http://dx.doi.org/10.1016/S0898-6568(98)00019-9 (1998).

107 Clipstone, N. A. & Crabtree, G. R. Calcineurin is a key signaling enzyme in T lymphocyte activation and the target of the immunosuppressive drugs cyclosporin A and FK506. Annals of the New York Academy of Sciences 696, 20-30 (1993).

108 Peters, D. et al. Potentiation of CD3-induced expression of the linker for activation of T cells (LAT) by the calcineurin inhibitors cyclosporin A and FK506. Blood 95, 2733-2741 (2000). 109 Dumont, F. J., Staruch, M. J., Fischer, P., DaSilva, C. & Camacho, R. Inhibition of T cell

activation by pharmacologic disruption of the MEK1/ERK MAP kinase or calcineurin signaling pathways results in differential modulation of cytokine production. J Immunol 160, 2579-2589 (1998).

110 Shin, G. T. et al. In vivo expression of transforming growth factor-beta1 in humans: stimulation by cyclosporine. Transplantation 65, 313-318 (1998).

111 Genazzani, A. A., Carafoli, E. & Guerini, D. Calcineurin controls inositol 1,4,5-trisphosphate type 1 receptor expression in neurons. Proceedings of the National Academy of Sciences of the United States of America 96, 5797-5801 (1999).

69 112 Rafiq, K. et al. Cyclosporin A increases IFN-gamma production by T cells when co-

stimulated through CD28. European journal of immunology 28, 1481-1491 (1998).

113 Kino, T. et al. FK-506, a novel immunosuppressant isolated from a Streptomyces. II. Immunosuppressive effect of FK-506 in vitro. The Journal of antibiotics 40, 1256-1265 (1987).

114 Pirsch, J. D., Miller, J., Deierhoi, M. H., Vincenti, F. & Filo, R. S. A comparison of tacrolimus (FK506) and cyclosporine for immunosuppression after cadaveric renal transplantation. FK506 Kidney Transplant Study Group. Transplantation 63, 977-983 (1997).

115 Textor, S. C. et al. Systemic and renal hemodynamic differences between FK506 and cyclosporine in liver transplant recipients. Transplantation 55, 1332-1339 (1993).

116 Shapiro, R. et al. The Superiority of Tacrolimus in Renal Transplant Recipients — The Pittsburgh Experience. Clinical transplants, 199-205 (1995).

117 Venkataramanan, R. et al. Clinical pharmacokinetics of tacrolimus. Clinical pharmacokinetics 29, 404-430, doi:10.2165/00003088-199529060-00003 (1995).

118 Cho, J. H. et al. Impact of cytochrome P450 3A and ATP-binding cassette subfamily B member 1 polymorphisms on tacrolimus dose-adjusted trough concentrations among Korean renal transplant recipients. Transplantation proceedings 44, 109-114, doi:10.1016/j.transproceed.2011.11.004 (2012).

119 KDIGO. KDIGO Clinical Pratice Guideline for the Care of Kidney Transplant Recipients. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 9 (2009).

120 Jackson, R. C., Weber, G. & Morris, H. P. IMP dehydrogenase, an enzyme linked with proliferation and malignancy. Nature 256, 331-333 (1975).

121 Allison, A. C. & Eugui, E. M. Preferential suppression of lymphocyte proliferation by mycophenolic acid and predicted long-term effects of mycophenolate mofetil in transplantation. Transplantation proceedings 26, 3205-3210 (1994).

122 Grailer, A., Nichols, J., Hullett, D., Sollinger, H. W. & Burlingham, W. J. Inhibition of human B cell responses in vitro by RS-61443, cyclosporine A and DAB486 IL-2. Transplantation proceedings 23, 314-315 (1991).

123 Cooper J.E., W. A. C. Novel immunosuppressive agents in kidney transplantation. Clinical Nephrology 73, 333-343 (2010).

124 Rother, R. P., Rollins, S. A., Mojcik, C. F., Brodsky, R. A. & Bell, L. Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nature biotechnology 25, 1256-1264, doi:10.1038/nbt1344 (2007).

125 Halloran, P. F. Immunosuppressive drugs for kidney transplantation. The New England journal of medicine 351, 2715-2729, doi:10.1056/NEJMra033540 (2004).

126 Meier-Kriesche, H. U., Schold, J. D., Srinivas, T. R. & Kaplan, B. Lack of improvement in renal allograft survival despite a marked decrease in acute rejection rates over the most recent era. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 4, 378-383 (2004). 127 Dharnidharka, V. R., Stablein, D. M. & Harmon, W. E. Post-transplant infections now

exceed acute rejection as cause for hospitalization: a report of the NAPRTCS. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 4, 384-389 (2004).

128 Budde, K., Matz, M., Durr, M. & Glander, P. Biomarkers of over-immunosuppression. Clinical pharmacology and therapeutics 90, 316-322, doi:10.1038/clpt.2011.111 (2011). 129 Sanders-Pinheiro, H. et al. Excessive immunosuppression in kidney transplant patients:

prevalence and outcomes. Transplantation proceedings 44, 2381-2383, doi:10.1016/j.transproceed.2012.07.137 (2012).

70 130 Arend, S. M., Mallat, M. J., Westendorp, R. J., van der Woude, F. J. & van Es, L. A. Patient

survival after renal transplantation; more than 25 years follow-up. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 12, 1672-1679 (1997).

131 Ojo, A. O. et al. Long-term survival in renal transplant recipients with graft function. Kidney international 57, 307-313, doi:10.1046/j.1523-1755.2000.00816.x (2000).

132 Matas, A. J., Gillingham, K. J. & Sutherland, D. E. Half-life and risk factors for kidney transplant outcome--importance of death with function. Transplantation 55, 757-761 (1993). 133 West, M., Sutherland, D. E. & Matas, A. J. Kidney transplant recipients who die with

functioning grafts: serum creatinine level and cause of death. Transplantation 62, 1029- 1030 (1996).

134 Pilmore, H., Dent, H., Chang, S., McDonald, S. P. & Chadban, S. J. Reduction in cardiovascular death after kidney transplantation. Transplantation 89, 851-857, doi:10.1097/TP.0b013e3181caeead (2010).

135 Fishman, J. A. Infection in solid-organ transplant recipients. The New England journal of medicine 357, 2601-2614, doi:10.1056/NEJMra064928 (2007).

136 Hirsch, H. H. & Steiger, J. Polyomavirus BK. The Lancet. Infectious diseases 3, 611-623 (2003).

137 Chesters, P. M., Heritage, J. & McCance, D. J. Persistence of DNA sequences of BK virus and JC virus in normal human tissues and in diseased tissues. The Journal of infectious diseases 147, 676-684 (1983).

138 Kuypers, D. R. Management of polyomavirus-associated nephropathy in renal transplant recipients. Nature reviews. Nephrology 8, 390-402, doi:10.1038/nrneph.2012.64 (2012). 139 Binet, I. et al. Polyomavirus disease under new immunosuppressive drugs: a cause of renal

graft dysfunction and graft loss. Transplantation 67, 918-922 (1999).

140 Namba, Y. et al. Prevalence, characteristics, and outcome of BK virus nephropathy in Japanese renal transplant patients: analysis in protocol and episode biopsies. Clinical

Documents relatifs