• Aucun résultat trouvé

La préparation motrice est une étape complexe, à l’interface entre les aspects cognitifs et moteurs et qui met en jeu des processus neurophysiologiques excitateurs et inhibiteurs qui interagissent ensemble. Les travaux réalisés dans le cadre de la thèse révèlent que le contexte dans lequel le mouvement est préparé s’avère primordial. En effet, la revue systématique a permis de préciser le rôle de cinq régions corticales lors des différentes composantes inhérentes à la préparation motrice et a soulevé l’importance du choix du paradigme de temps de réaction utilisé. L’étude de la modulation de l’excitabilité corticospinale et des mouvements évoqués par la TMS a démontré des différences dans le contrôle corticospinal des muscles fléchisseurs et extenseurs du coude tout au long de la phase de la préparation motrice. L’étude 3 a mis en évidence pour la première fois un effet de l’anticipation de la douleur associée à un mouvement sur les changements d’excitabilité corticospinale associés à la préparation d’un mouvement. Ces résultats ont confirmé les prédictions de la théorie d’adaptation du contrôle moteur en présence de douleur qui suggère la mise en place de stratégies de protection se reflétant à travers une augmentation de l’excitabilité corticospinale du muscle antagoniste et à l’inverse une diminution du muscle agoniste au mouvement douloureux. Ces résultats démontrent finalement qu’une composante cognitive de l’expérience de douleur suffit à la mise en place de ces stratégies de protection. Compte tenu de l’importance de ces stratégies, bénéfiques à court terme mais néfastes à long terme, il apparaît nécessaire de poursuivre la caractérisation des mécanismes neurophysiologiques qui les sous-tendent afin de pouvoir être un jour en mesure d’identifier et de prévenir cette transition.

Bibliographie

Adam JJ, Backes W, Rijcken J, Hofman P, Kuipers H & Jolles J (2003). Rapid visuomotor preparation in the human brain: a functional MRI study. Cogn brain Res 16, 1–10.

Al-Obaidi SM, Nelson RM, Al-Awadhi S & Al-Shuwaie N (2000). The role of anticipation and fear of pain in the persistence of avoidance behavior in patients with chronic low back pain. Spine (Phila Pa 1976) 25, 1126–1131.

Albe-Fessar D, Berkley KJ, Kruger L, Ralston HJ & Willis WD (1985). Diencephalic mechanisms of pain sensation. Brain Res Rev 9, 217–296.

Alexander G (1986). Parallel Organization of Functionally Segregated Circuits Linking Basal Ganglia and Cortex. Annu Rev Neurosci 9, 357–381.

Allen GI & Tsukahara N (1974). Cerebrocerebellar communication systems. Physiol Rev 54, 957–1006.

Apkarian AV, Bushnell MC, Treede RD & Zubieta JK (2005). Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 9, 463–484.

Ariani G, Wurm MF & Lingnau A (2015). Decoding Internally and Externally Driven Movement Plans. J Neurosci 35, 14160–14171.

Arias P, Corral-Bergantinos Y, Robles-Garcia V, Madrid A, Oliviero A & Cudeiro J (2016). Bilateral tDCS on primary motor cortex: Effects on fast arm reaching tasks. PLoS One 11, 1–17.

Asmundson GJG, Norton PJ & Norton GR (1999). Beyond pain: The role of fear and avoidance in chronicity. Clin Psychol Rev 19, 97–119.

Atlas LY & Wager TD (2012). How expectations shape pain. Neurosci Lett 520, 140–148. Axelrod FB & Hilz MJ (2003). Inherited Autonomic Neuropathies. Semin Neurol 23, 381–390. Babiloni C, Brancucci A, Babiloni F, Capotosto P, Carducci F, Cincotti F, Arendt-Nielsen L,

Chen ACN & Rossini PM (2003). Anticipatory cortical responses during the expectancy of a predictable painful stimulation. A high-resolution electroencephalography study. Eur J Neurosci 18, 1692–1700.

Babiloni C, Brancucci A, Capotosto P, Arendt-Nielsen L, Chen ACN & Rossini PM (2005). Expectancy of Pain Is Influenced by Motor Preparation: A High-Resolution EEG Study of Cortical Alpha Rhythms. Behav Neurosci 119, 503–511.

Babiloni C, Capotosto P, Brancucci A, Del Percio C, Petrini L, Buttiglione M, Cibelli G, Romani GL, Rossini PM & Arendt-Nielsen L (2008). Cortical Alpha Rhythms Are Related to the Anticipation of Sensorimotor Interaction Between Painful Stimuli and Movements: A High-Resolution EEG Study. J Pain 9, 902–911.

Babiloni C, Capotosto P, Del Percio C, Babiloni F, Petrini L, Buttiglione M, Cibelli G, Marusiak J, Romani GL, Arendt-Nielsen L & Rossini PM (2010). Sensorimotor interaction between somatosensory painful stimuli and motor sequences affects both

anticipatory alpha rhythms and behavior as a function of the event side. Brain Res Bull 81, 398–405.

Baker KS, Mattingley JB, Chambers CD & Cunnington R (2011). Attention and the readiness for action. Neuropsychologia 49, 3303–3313.

Bank PJM, Peper CE, Marinus J, Beek PJ & van Hilten JJ (2013). Motor consequences of experimentally induced limb pain: A systematic review. Eur J Pain 17, 145–157. Barker AT & Jalinous R (1985). Non-invasive magnetic stimulation of the human motor

cortex. Lancet1106–1107.

Bastian A, Riehle A, Erlhagen W & Schöner G (1998). Prior information preshapes the

population representation of movement direction in motor cortex. Neuroreport 9, 315–319. Baumert A, Sinclair C, MacLeod C & Hammond G (2011). Negative emotional processing

induced by spoken scenarios modulates corticospinal excitability. Cogn Affect Behav Neurosci

11, 404–412.

Beck AT (1979). Cognitive therapy of depression. Guilford press.

Becker BJ (1988). Synthesizing standardized mean-change measures. Br J Math Stat Psychol 41, 257–278.

Berardelli A, Hallett M, Rothwell JC, Agostino R, Manfredi M, Thompson PD & Marsden CD (1996). Single-joint rapid arm movements in normal subjects and in patients with motor disorders. Brain 119, 661–674.

Bestmann S & Duque J (2016). Transcranial magnetic stimulation: Decomposing the processes underlying action preparation. Neuroscientist 22, 392–405.

Bestmann S & Krakauer JW (2015). The uses and interpretations of the motor-evoked potential for understanding behaviour. Exp Brain Res 233, 679–689.

Billot M, Neige C, Gagné M, Mercier C & Bouyer LJ (2018). Effect of Cutaneous Heat Pain on Corticospinal Excitability of the Tibialis Anterior at Rest and during Submaximal Contraction. Neural Plast 2018, 1–7.

Bizzi E, Tresch M, Saltiel P & d’Avella A (2000). New perspectives on spinal motor systems. Nat Rev Neurosci 1, 101--8.

Björklund RA (1991). Reaction Time and Movement Time Measured in a Key-Press and a Key-Release Condition. Percept Mot Ski 72, 663–673.

Bolognini N, Miniussi C, Savazzi S, Bricolo E & Maravita A (2009). TMS modulation of visual and auditory processing in the posterior parietal cortex. Exp Brain Res 195, 509–517. Bolognini N & Ro T (2010). Transcranial Magnetic Stimulation: Disrupting Neural Activity to

Alter and Assess Brain Function. J Neurosci 30, 9647–9650.

Bornhövd K, Quante M, Glauche V, Bromm B, Weiller C & Büchel C (2002). Painful stimuli evoke different stimulus–response functions in the amygdala, prefrontal, insula and somatosensory cortex: a single‐trial fMRI study. Brain 125, 1326–1336.

training time, sensory loss and pain on human motor learning. J Oral Rehabil 37, 704–718. Bouffard J, Bouyer LJ, Roy J-S & Mercier C (2014). Tonic Pain Experienced during

Locomotor Training Impairs Retention Despite Normal Performance during Acquisition. J Neurosci 34, 9190–9195.

Bouffard J, Bouyer LJ, Roy JS & Mercier C (2016). Pain Induced during Both the Acquisition and Retention Phases of Locomotor Adaptation Does Not Interfere with Improvements in Motor Performance. Neural Plast; DOI: 10.1155/2016/8539096.

Bouffard J, Salomoni SE, Mercier C, Tucker K, Roy J-S, van den Hoorn W, Hodges PW & Bouyer LJ (2018). Effect of experimental muscle pain on the acquisition and retention of locomotor adaptation: different motor strategies for a similar performance. J Neurophysiol

119, 1647–1657.

Boulinguez P, Jaffard M, Granjon L & Benraiss A (2008). Warning signals induce automatic EMG activations and proactive volitional inhibition: evidence from analysis of error distribution in simple RT. J Neurophysiol 99, 1572–1578.

Bourne S, Machado AG & Nagel SJ (2014). Basic anatomy and physiology of pain pathways. Neurosurg Clin N Am 25, 629–638.

Boyd SG, Rothwell JC, Cowan JMA, Webb PJ, Morley T, Asselman P & Marsden CD (1986). A method of monitoring function in corticospinal pathways during scoliosis surgery with a note on motor conduction velocities. J Neurol Neurosurg Psychiatry 49, 251–257.

Brass M & von Cramon DY (2004). Selection for Cognitive Control: A Functional Magnetic Resonance Imaging Study on the Selection of Task-Relevant Information. J Neurosci 24, 8847–8852.

Brass M & Haggard P (2008). The What, When, Whether Model of Intentional Action. Neurosci 14, 319–325.

Bromm B, Jahnke MT & Treede RD (1984). Responses of human cutaneous afferents to CO2 laser stimuli causing pain. Exp Brain Res 55, 158–166.

Bromm B & Treede RD (1991). Laser-evoked cerebral potentials in the assessment of cutaneous pain sensitivity in normal subjects and patients. Rev Neurol (Paris) 147, 625— 643.

Brouwer B & Ashby P (1990). Corticospinal projections upper and lower limb spinal motoneurons in man. Electroencephalogr Clin Neurophysiol 76, 509–519.

Brown CA, El-Deredy W & Jones AKP (2014). When the brain expects pain: Common neural responses to pain anticipation are related to clinical pain and distress in fibromyalgia and osteoarthritis. Eur J Neurosci 39, 663–672.

Buch ER, Mars RB, Boorman ED & Rushworth MFS (2010). A Network Centered on Ventral Premotor Cortex Exerts Both Facilitatory and Inhibitory Control over Primary Motor Cortex during Action Reprogramming. J Neurosci 30, 1395–1401.

Büchel C, Bornhovd K, Quante M, Glauche V, Bromm B & Weiller C (2002). Dissociable neural responses related to pain intensity, stimulus intensity, and stimulus awareness

within the anterior cingulate cortex: a parametric single-trial laser functional magnetic resonance imaging study. J Neurosci 22, 970–976.

Burgess P & Perl E (1967). Myelinated afferent fibres responding specifically to noxious stimulation of the skin. J Physiol 190, 541–562.

Burle B, Bonnet M, Vidal F & Possamaï C (2002). A transcranial magnetic stimulation study of information processing in the motor cortex : Relationship between the silent period and the reaction time delay. 207–217.

Burns E, Chipchase LS & Schabrun SM (2016). Primary sensory and motor cortex function in response to acute muscle pain: A systematic review and meta-analysis. Eur J Painn/a-n/a. Bushnell MC, Čeko M & Low LA (2013). Cognitive and emotional control of pain and its

disruption in chronic pain. Nat Rev Neurosci 14, 502–511. Byrt T (1996). How good is that agreement? Epidemiology 7, 561.

Calvino B & Grilo RM (2006). Central pain control. Jt Bone Spine 73, 10–16.

Campbell JN & LaMotte RH (1983). Latency to detection of first pain. Brain Res 266, 203–208. Carlsen AN, Eagles JS & MacKinnon CD (2015). Transcranial direct current stimulation over

the supplementary motor area modulates the preparatory activation level in the human motor system. Behav Brain Res 279, 68–75.

Casey KL (1999). Forebrain mechanisms of nociception and pain: analysis through imaging. Proc Natl Acad Sci 96, 7668–7674.

Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM, Hall MG & Cohen LG (1997). Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 48, 1398–1403.

Chen R, Tam A, Bütefisch C, Corwell B, Ziemann U, John C, Cohen LG, Corwell B, Ziemann ULF, Chen R, Tam A, Bu C, Tam A, Bu C & Corwell B (1998a). Intracortical Inhibition and Facilitation in Different Representations of the Human Motor Cortex Intracortical Inhibition and Facilitation in Different Representations of the Human Motor Cortex. J Neurophysiol 80, 2870–2881.

Chen R, Yaseen Z, Cohen LG & Hallett M (1998b). Time course of corticospinal excitability in reaction time and self-paced movements. Ann Neurol 44, 317–325.

Cheong JY, Yoon TS & Lee SJ (2003). Evaluations of inhibitory effect on the motor cortex by cutaneous pain via application of capsaicin. Electromyogr Clin Neurophysiol 43, 203—210. Chouinard PA & Paus T (2006). The Primary Motor and Premotor Areas of the Human

Cerebral Cortex. Neurosci 12, 143–152.

Chung SW, Hill AT, Rogasch NC, Hoy KE & Fitzgerald PB (2016). Use of theta-burst stimulation in changing excitability of motor cortex: A systematic review and meta- analysis. Neurosci Biobehav Rev 63, 43–64.

Churchland MM, Cunningham JP, Kaufman MT, Ryu SI & Shenoy K V (2010). Cortical preparatory activity: representation of movement or first cog in a dynamical machine?

Neuron 68, 387–400.

Cincotta M, Giovannelli F, Borgheresi A, Balestrieri F, Toscani L, Zaccara G, Carducci F, Viggiano MP & Rossi S (2010). Optically tracked neuronavigation increases the stability of hand-held focal coil positioning: Evidence from “transcranial” magnetic stimulation- induced electrical field measurements. Brain Stimul 3, 119–123.

Cisek P & Kalaska JF (2005). Neural correlates of reaching decisions in dorsal premotor cortex: Specification of multiple direction choices and final selection of action. Neuron 45, 801–814.

Ciubotariu A, Arendt-Nielsen L & Graven-Nielsen T (2004). The influence of muscle pain and fatigue on the activity of synergistic muscles of the leg. Eur J Appl Physiol 91, 604–614. Clauwaert A, Torta DM, Danneels L & Van Damme S (2018). Attentional Modulation of

Somatosensory Processing During the Anticipation of Movements Accompanying Pain: An Event-Related Potential Study. J Pain 19, 219–227.

Coghill RC, Sang CN, Maisog JM & Iadarola MJ (1999). Pain intensity processing within the human brain: a bilateral, distributed mechanism. J Neurophysiol 82, 1934–1943.

Cohen J (1973). Eta-squared and partial eta-squared in fixed factor anova design. Educ Psychol Meas107–112.

Cohen LG, Roth BJ, Nilsson J, Dang N, Panizza M, Bandinelli S, Friauf W & Hallett M (1990). Effects of coil design on delivery of focal magnetic stimulation. Technical considerations. Electroencephalogr Clin Neurophysiol 75, 350–357.

Cohen O, Sherman E, Zinger N, Perlmutter S & Prut Y (2010). Getting ready to move: Transmitted information in the corticospinal pathway during preparation for movement. Curr Opin Neurobiol 20, 696–703.

Collins BW, Cadigan EWJ, Stefanelli L & Button DC (2017). Corticospinal excitability of the biceps brachii is shoulder position dependent. J Neurophysiol 118, 3242–3251.

Conley AC, Marquez J, Parsons MW, Fulham WR, Heathcote A & Karayanidis F (2015). Anodal tDCS over the motor cortex on prepared and unprepared responses in young adults. PLoS One 10, 1–14.

Conte A, Gilio F, Iezzi E, Frasca V, Inghilleri M & Berardelli A (2007). Attention influences the excitability of cortical motor areas in healthy humans. Exp Brain Res 182, 109–117. Coombes SA & Misra G (2015). Pain and motor processing in the human cerebellum. Pain

157, 117–127.

Coombes SA, Tandonnet C, Fujiyama H, Janelle CM, Cauraugh JH & Summers JJ (2009). Emotion and motor preparation: A transcranial magnetic stimulation study of corticospinal motor tract excitability. Cogn Affect Behav Neurosci 9, 380–388.

Coombes SA, Wang W, Roy A & Ho RLM (2018). Neurophysiological evidence of the dynamic and adaptive pain-motor interaction. J Physiol 596, 2639–2640.

Corneal SF, Butler AJ & Wolf SL (2005). Intra- and Intersubject Reliability of Abductor Pollicis Brevis Muscle Motor Map Characteristics With Transcranial Magnetic

Stimulation. Arch Phys Med Rehabil 86, 1670–1675.

Correa Á, Cona G, Arbula S, Vallesi A & Bisiacchi P (2014). Neural dissociation of automatic and controlled temporal preparation by transcranial magnetic stimulation. Neuropsychologia

65, 131–136.

Crombez G, Eccleston C, Van Damme S, Vlaeyen JWS & Karoly P (2012). Fear-Avoidance Model of Chronic Pain. Clin J Pain 28, 475–483.

Crombez G, Vlaeyen JWS, Heuts PHTG & Lysens R (1999). Pain-related fear is more disabling than pain itself: Evidence on the role of pain-related fear in chronic back pain disability. Pain 80, 329–339.

Cui R., Egkher A, Huter D, Lang W, Lindinger G & Deecke L (2000). High resolution spatiotemporal analysis of the contingent negative variation in simple or complex motor tasks and a non-motor task. Clin Neurophysiol 111, 1847–1859.

Cuijpers P, Weitz E, Cristea IA & Twisk J (2016). Pre-post effect sizes should be avoided in meta-analyses. Epidemiol Psychiatr Sci 28, 1–5.

Cunnington R & Windischberger C (2005). Premovement activity of the pre-supplementary motor area and the readiness for action : Studies of time-resolved event-related functional MRI. 24, 644–656.

Cunnington R, Windischberger C, Deecke L & Moser E (2002). The Preparation and Execution of Self-Initiated and Externally-Triggered Movement: A Study of Event- Related fMRI. Neuroimage 15, 373–385.

D’Ostilio K, Goetz SM, Hannah R, Ciocca M, Chieffo R, Chen JCA, Peterchev A V. & Rothwell JC (2016). Effect of coil orientation on strength-duration time constant and I- wave activation with controllable pulse parameter transcranial magnetic stimulation. Clin Neurophysiol 127, 675–683.

Van Damme S, Legrain V, Vogt J & Crombez G (2010). Keeping pain in mind: A motivational account of attention to pain. Neurosci Biobehav Rev 34, 204–213.

Danev SG, de Winter CR & Wartna GF (1971). On the relation between reaction and motion time in a choice reaction task. Acta Psychol (Amst) 35, 188–197.

Daskalakis ZJ, Paradiso GO, Christensen BK, Fitzgerald PB, Gunraj C & Chen R (2004). Exploring the connectivity between the cerebellum and motor cortex in humans. J Physiol

557, 689–700.

Davare M, Montague K, Olivier E, Rothwell JC & Lemon RN (2009). Ventral premotor to primary motor cortical interactions during object-driven grasp in humans. Cortex 45, 1050–1057.

Davranche K, Tandonnet C, Burle B, Meynier C, Vidal F & Hasbroucq T (2007). The dual nature of time preparation: Neural activation and suppression revealed by transcranial magnetic stimulation of the motor cortex. Eur J Neurosci 25, 3766–3774.

Day BL, Dressler D, Maertens de Noordhout A, Marsden CD, Nakashima K, Rothwell JC & Thompson PD (1989). Electric and magnetic stimulation of human motor cortex: surface

EMG and single motor unit responses. J Physiol 412, 449–473.

Day BL, Rothwell JC, Thompson PD, Dick JPR, Cowan JM a., Berardelli A & Marsden CD (1987). Motor Cortex Stimulation in Intact Man. Brain 110, 1191–1209.

Derosiere G (2018). A Dynamical System Framework for Theorizing Preparatory Inhibition. J Neurosci 38, 3391–3393.

Desmurget M, Epstein CM, Turner RS, Prablanc C, Alexander GE & Grafton ST (1999). Role of the posterior parietal cortex in updating reaching movements to a visual target. 563– 567.

Desmurget M, Reilly KT, Richard N, Szathmari A, Mottolese C & Sirigu A (2009). Movement intention after parietal cortex stimulation in humans. Science 324, 811–813.

Desmurget M & Sirigu A (2009). A parietal-premotor network for movement intention and motor awareness. Trends Cogn Sci 13, 411–419.

Devanne H, Lavoie BA & Capaday C (1997). Input-output properties and gain changes in the human corticospinal pathway. Exp Brain Res 114, 329–338.

Diederichsen LP, Winther A, Dyhre-Poulsen P, Krogsgaard MR & Norregaard J (2009). The influence of experimentally induced pain on shoulder muscle activity. Exp brain Res 194, 329–337.

Dirnberger G, Fickel U, Lindinger G, Lang W & Jahanshahi M (1998). The mode of movement selection. Exp Brain Res 120, 263–272.

Drummond NM, Hayduk-Costa G, Leguerrier A & Carlsen AN (2017). Effector-independent reduction in choice reaction time following bi-hemispheric transcranial direct current stimulation over motor cortex. PLoS One 12, 1–12.

Dubé JA & Mercier C (2011). Effect of pain and pain expectation on primary motor cortex excitability. Clin Neurophysiol 122, 2318–2323.

Dubin AE & Patapoutian A (2010). Nociceptors: The sensors of the pain pathway. J Clin Invest

120, 3760–3772.

Duerden EG & Albanese MC (2013). Localization of pain-related brain activation: A meta- analysis of neuroimaging data. Hum Brain Mapp 34, 109–149.

Duque J, Greenhouse I, Labruna L & Ivry RB (2017). Physiological Markers of Motor Inhibition during Human Behavior. Trends Neurosci 40, 1–18.

Duque J & Ivry RB (2009). Role of Corticospinal Suppression during Motor Preparation. Cereb Cortex 19, 2013–2024.

Duque J, Labruna L, Cazares C & Ivry RB (2014). Dissociating the influence of response selection and task anticipation on corticospinal suppression during response preparation. Neuropsychologia 65, 2–11.

Duque J, Labruna L, Verset S, Olivier E & Ivry RB (2012). Dissociating the role of prefrontal and premotor cortices in controlling inhibitory mechanisms during motor preparation. J Neurosci 32, 806–816.

Duque J, Lew D, Mazzocchio R, Olivier E & Ivry RB (2010). Evidence for Two Concurrent Inhibitory Mechanisms during Response Preparation. J Neurosci 30, 3793–3802.

Ellis A (1962). Reason and emotion in psychotherapy. Lyle Stuart, Oxford, England. Elsayed GF, Lara AH, Kaufman MT, Churchland MM & Cunningham JP (2016).

Reorganization between preparatory and movement population responses in motor cortex. Nat Commun13239.

van Elswijk G, Schot WD, Stegeman DF & Overeem S (2008). Changes in corticospinal excitability and the direction of evoked movements during motor preparation: a TMS study. BMC Neurosci 9, 51.

Erlhagen W & Schöner G (2002). Dynamic field theory of movement preparation. Psychol Rev

109, 545–572.

Ervilha UF, Arendt-Nielsen L, Duarte M & Graven-Nielsen T (2004). Effect of load level and muscle pain intensity on the motor control of elbow-flexion movements. Eur J Appl Physiol 92, 168–175.

Ervilha UF, Farina D, Arendt-Nielsen L & Graven-Nielsen T (2005). Experimental muscle pain changes motor control strategies in dynamic contractions. Exp Brain Res 164, 215– 224.

Di Fabio R (1987). Reliability of computerized surface electromyography for determining the onsent of muscle activity. Phys Ther 67, 43–48.

Fairhurst M, Wiech K, Dunckley P & Tracey I (2007). Anticipatory brainstem activity predicts neural processing of pain in humans. Pain 128, 101–110.

Falla D, Andersen H, Danneskiold-Samsøe B, Arendt-Nielsen L & Farina D (2010).

Adaptations of upper trapezius muscle activity during sustained contractions in women with fibromyalgia. J Electromyogr Kinesiol 20, 457–464.

Falla D, Farina D, Dahl MK & Graven-Nielsen T (2006). Muscle pain induces task-dependent changes in cervical agonist/antagonist activity. J Appl Physiol 102, 601–609.

Farina D, Arendt-Nielsen L & Graven-Nielsen T (2005). Experimental muscle pain decreases voluntary EMG activity but does not affect the muscle potential evoked by

transcutaneous electrical stimulation. Clin Neurophysiol 116, 1558–1565.

Farina S, Valeriani M, Rosso T, Aglioti S, Tamburin S, Fiaschi a & Tinazzi M (2001).

Transient inhibition of the human motor cortex by capsaicin-induced pain. A study with transcranial magnetic stimulation. Neurosci Lett 314, 97–101.

Federico P & Perez MA (2017). Altered corticospinal function during movement preparation in humans with spinal cord injury. J Physiol 595, 233–245.

Fetz EE & Cheney PD (1980). Postspike facilitation of forelimb muscle activity by primate corticomotoneuronal cells. J Neurophysiol 44, 751–772.

Filimon F (2010). Human Cortical Control of Hand Movements: Parietofrontal Networks for Reaching, Grasping, and Pointing. Neurosci 16, 388–407.

Floeter MK, Gerloff C, Kouri J & Hallett M (1998). Cutaneous withdrawal reflexes of the upper extremity. Muscle and Nerve 21, 591–598.

Fossataro C, Bucchioni G, D’Agata F, Bruno V, Morese R, Krystkowiak P & Garbarini F (2018). Anxiety-dependent modulation of motor responses to pain expectancy. Soc Cogn Affect Neurosci1–10.

Frot M, Magnin M, Mauguière F & Garcia-Larrea L (2007). Human SII and posterior insula differently encode thermal laser stimuli. Cereb Cortex 17, 610–620.

Funderud I, Lindgren M, Løvstad M, Endestad T, Voytek B, Knight RT & Solbakk AK (2012). Differential Go/NoGo Activity in Both Contingent Negative Variation and Spectral Power. PLoS One; DOI: 10.1371/journal.pone.0048504.

Gallivan JP & Culham JC (2015). Neural coding within human brain areas involved in actions. Curr Opin Neurobiol 33, 141–149.

Gangitano M, Mottaghy FM & Pascual-Leone A (2008). Release of premotor activity after repetitive transcranial magnetic stimulation of prefrontal cortex. Soc Neurosci 3, 289–302. Garcia-Larrea L, Frot M & Valeriani M (2003). Brain generators of laser-evoked potentials: