• Aucun résultat trouvé

8. Avantages et inconvénients de la technique de la chambre de perméation

8.3. Conclusion

Malgré ces inconvénients, le modèle d’Ussing est un modèle particulièrement pertinent lors du développement préclinique, particulièrement lorsqu’il s’agit de mieux comprendre les mécanismes d’absorptions et / ou de toxicité.

64

Références

Al-Awqati, Q (2002) Alternative treatment for secretory diarrhea revealed in a new class of CFTR inhibitors. J Clin Invest 110(11): 1599-1601.

Artursson, P, Palm, K, Luthman, K (2001) Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Deliv Rev 46(1-3): 27-43.

Atisook, K, Carlson, S, Madara, JL (1990) Effects of phlorizin and sodium on glucose-elicited alterations of cell junctions in intestinal epithelia. Am J Physiol 258(1 Pt 1): C77-85.

Awad, WA, Hess, C, Khayal, B, Aschenbach, JR, Hess, M (2014) In vitro exposure to Escherichia coli decreases ion conductance in the jejunal epithelium of broiler chickens. PLoS One 9(3): e92156.

Berginc, K, Nagelj-Kovačič, N, Žakelj, S (2014) Buffers for in vitro evaluation of drug permeability: a review. J Pharm Res Opin 10: 107-124.

Bittner, B, Bravo González, RC, Bohrmann, B, Kuentz, M, Huwyler, J (2008) Drug-excipient interactions by Vitamin E-TPGS: in vitro studies on inhibition of P-glycoprotein and côlonic drug absorptio. J Drug Deliv Sci Tec 18: 145-148.

Boudry, G (2005) The Ussing chamber technique to evaluate alternatives to in-feed antibiotics for young pigs. Animal Research 54: 219-230.

Bouritius, H, Oprins, JC, Bindels, RJ, Hartog, A, Groot, JA (1998) Neuropeptide Y inhibits ion secretion in intestinal epithelium by reducing chloride and potassium conductance. Pflugers Arch 435(2): 219-226.

Brown, DR, O'Grady, SM (2008) The Ussing chamber and measurement of drug actions on mucosal ion transport. Curr Protoc Pharmacol Chapter 7: Unit 7 12.

Bucker, R, Troeger, H, Kleer, J, Fromm, M, Schulzke, JD (2009) Arcobacter butzleri induces barrier dysfunction in intestinal HT-29/B6 cells. J Infect Dis 200(5): 756-764. Caraballo, JC, Yshii, C, Westphal, W, Moninger, T, Comellas, AP (2011) Ambient particulate matter affects occludin distribution and increases alveolar transepithelial electrical conductance. Respirology 16(2): 340-349.

Clarke, LL (2009) A guide to Ussing chamber studies of mouse intestine. Am J Physiol

Gastrointest Liver Physiol 296(6): G1151-1166.

Collington, GK, Booth, IW, Knutton, S (1998) Rapid modulation of electrolyte transport in Caco-2 cell monolayers by enteropathogenic Escherichia coli (EPEC) infection. Gut

65

Deli, MA (2009) Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery. Biochim Biophys Acta 1788(4): 892-910.

Dittmann, I, Amasheh, M, Krug, SM, Markov, AG, Fromm, M, Amasheh, S (2014) Erratum to: Laurate Permeates the Paracellular Pathway for Small Molecules in the Intestinal Epithelial Cell Model HT-29/B6 via Opening the Tight Junctions by Reversible Relocation of Claudin-5. Pharm Res 32(2): 737.

Estudante, M, Maya, M, Morais, JG, Soveral, G, Benet, LZ (2013) Effect of P-glycoprotein on the rat intestinal permeability and metabolism of the BDDCS class 1 drug verapamil. Mol Pharm 10(11): 4038-4045.

Fasano, A, Fiorentini, C, Donelli, G, Uzzau, S, Kaper, JB, Margaretten, K, Ding, X, Guandalini, S, Comstock, L, Goldblum, SE (1995) Zonula occludens toxin modulates tight junctions through protein kinase C-dependent actin reorganization, in vitro. J Clin

Invest 96(2): 710-720.

Fortuna, A, Alves, G, Falcao, A, Soares-da-Silva, P (2012) Evaluation of the permeability and P-glycoprotein efflux of carbamazepine and several derivatives across mouse small intestine by the Ussing chamber technique. Epilepsia 53(3): 529-538.

Garnett, JP, Baker, EH, Baines, DL (2012) Sweet talk: insights into the nature and importance of glucose transport in lung epithelium. Eur Respir J 40(5): 1269-1276. Geraedts, MC, Troost, FJ, De Ridder, RJ, Bodelier, AG, Masclee, AA, Saris, WH (2012) Validation of Ussing chamber technology to study satiety hormone release from human duodenal specimens. Obesity (Silver Spring) 20(3): 678-682.

Gotoh, Y, Kamada, N, Momose, D (2005) The advantages of the Ussing chamber in drug absorption studies. J Biomol Screen 10(5): 517-523.

Griesmard, B Paramètres d’évaluation in vitro des antisécrétoires intestinaux. Doctorat Thèse de doctorat en médecine, Université Pierre et Marie Curie Paris VI Paris, 1994. Gunness, P, Michiels, J, De Smet, S, Vanhaecke, L, and Gidley, M (2014) Effects of oat beta-glucan on bile salts absorption across porcine intestinal mucosa using Ussing chamber system. FASEB J 28(1 Supp): 1.

He, F, Liu, W, Zheng, S, Zhou, L, Ye, B, Qi, Z (2012) Ion transport through dimethyl sulfoxide (DMSO) induced transient water pores in cell membranes. Mol Membr Biol

29(3-4 ): 107-113.

He, LQ, Yin, YL, Li, TJ, Huang, R, Xie, M, Wu, Z, & Wu, G (2013) Use of the Ussing chamber technique to study nutrient transport by epithelial Front Biosci 18: 1266-1274.

66

Inagaki-Tachibana, E, Tsukahara, T, Kaji, K, Eguchi, R, Kanazawa, H, Hayashi, H, Suzuki, Y (2009) Involvement of DNA fragmentation of enterocytes in mucosal injury to a mouse jejunum incubated in ussing chambers. Nagoya J Med Sci 71(1-2): 11-18. Karyekar, CS, Fasano, A, Raje, S, Lu, R, Dowling, TC, Eddington, ND (2003) Zonula occludens toxin increases the permeability of molecular weight markers and chemotherapeutic agents across the bovine brain microvessel endothelial cells. J

Pharm Sci 92(2): 414-423.

Kelley, TJ, al-Nakkash, L, Drumm, ML (1995) CFTR-mediated chloride permeability is regulated by type III phosphodiesterases in airway epithelial cells. Am J Respir Cell

Mol Biol 13(6): 657-664.

Kelley, TJ, Cotton, CU, Drumm, ML (1997) In vivo activation of CFTR-dependent chloride transport in murine airway epithelium by CNP. Am J Physiol 273(5 Pt 1): L1065-1072.

Lee H, Park JH, Park DI, Kim HJ, Cho YK, Sohn CI, Jeon WK, Kim BI, SW., C (2013) Mucosal mast cell count is associated with intestinal permeability in patients with diarrhea predominant irritable bowel syndrome. J Neurogastroenterol Motil 19: 244-250.

Lennernas, H, Nylander, S, Ungell, AL (1997) Jejunal permeability: a comparison between the ussing chamber technique and the single-pass perfusion in humans.

Pharm Res 14(5): 667-671.

Li, H, Sheppard, DN, Hug, MJ (2004) Transepithelial electrical measurements with the Ussing chamber. J Cyst Fibros 3 Suppl 2: 123-126.

Madara, JL, Dharmsathaphorn, K (1985) Occluding junction structure-function relationships in a cultured epithelial monolayer. J Cell Biol 101(6): 2124-2133.

Mardones, P, Andrinolo, D, Csendes, A, Lagos, N (2004) Permeability of human jejunal segments to gonyautoxins measured by the Ussing chamber technique. Toxicon 44(5): 521-528.

Martin J, Malreddy P, Iwamoto T, Freeman LC, Davidson HJ, Tomich JM, BD., S (2009) NC-1059: a channel-forming peptide that modulates drug delivery across in vitro corneal epithelium. Invest Ophthalmol Vis Sci 50(7): 3337-3345.

Matysiak-Budnik, T, Heyman, M, Candalh, C, Lethuaire, D, Megraud, F (2002) In vitro transfer of clarithromycin and amoxicillin across the epithelial barrier: effect of Helicobacter pylori. J Antimicrob Chemother 50(6): 865-872.

Matysiak-Budnik, T, Heyman, M, Megraud, F (2004) Gastric permeability and Helicobacter pylori. Gastroenterol Clin Biol 28(5): 444-454.

Mazzuca, M, Lesage, F (2007) Potassium channels, genetic and acquired diseases.

67

Menon, RM, Barr, WH (2003) Comparison of ceftibuten transport across Caco-2 cells and rat jejunum mounted on modified Ussing chambers. Biopharm Drug Dispos 24(7): 299-308.

Moazed, B, Hiebert, LM (2007) An in vitro study with an ussing chamber showing that unfractionated heparin crosses rat gastric mucosa. J Pharmacol Exp Ther 322(1): 299-305.

Muscher-Banse, AS, Piechotta, M, Schroder, B, Breves, G (2012) Modulation of intestinal glucose transport in response to reduced nitrogen supply in young goats. J

Anim Sci 90(13): 4995-5004.

Navabi, N, McGuckin, MA, Linden, SK (2013) Gastrointestinal cell lines form polarized epithelia with an adherent mucus layer when cultured in semi-wet interfaces with mechanical stimulation. PLoS One 8(7): e68761.

Navarro-Garcia, F, Eslava, C, Villaseca, JM, Lopez-Revilla, R, Czeczulin, JR, Srinivas, S, Nataro, JP, Cravioto, A (1998) In vitro effects of a high-molecular-weight heat-labile enterotoxin from enteroaggregative Escherichia coli. Infect Immun 66(7): 3149-3154. Neirinckx, E, Vervaet, C, Michiels, J, De Smet, S, Van den Broeck, W, Remon, JP, De Backer, P, Croubels, S (2011) Feasibility of the Ussing chamber technique for the determination of in vitro jejunal permeability of passively absorbed compounds in different animal species. J Vet Pharmacol Ther 34(3): 290-297.

Nejdfors, P, Ekelund, M, Jeppsson, B, Westrom, BR (2000) Mucosal in vitro permeability in the intestinal tract of the pig, the rat, and man: species- and region-related differences. Scand J Gastroenterol 35(5): 501-507.

Nusrat, A, von Eichel-Streiber, C, Turner, JR, Verkade, P, Madara, JL, Parkos, CA (2001) Clostridium difficile toxins disrupt epithelial barrier function by altering membrane microdomain localization of tight junction proteins. Infect Immun 69(3): 1329-1336.

Osth, K, Grasjo, J, Bjork, E (2002a) A new method for drug transport studies on pig nasal mucosa using a horizontal Ussing chamber. J Pharm Sci 91(5): 1259-1273. Osth, K, Paulsson, M, Bjork, E, Edsman, K (2002b) Evaluation of drug release from gels on pig nasal mucosa in a horizontal Ussing chamber. J Control Release 83(3): 377-388.

Otte, JM, Podolsky, DK (2004) Functional modulation of enterocytes by gram-positive and gram-negative microorganisms. Am J Physiol Gastrointest Liver Physiol 286(4): G613-626.

Oxley, A, Jutfelt, F, Sundell, K, Olsen, RE (2007) Sn-2-monoacylglycerol, not glycerol, is preferentially utilised for triacylglycerol and phosphatidylcholine biosynthesis in

68

Atlantic salmon (Salmo salar L.) intestine. Comp Biochem Physiol B Biochem Mol Biol

146(1): 115-123.

Pershing, LK, Lambert, LD, Knutson, K (1990) Mechanism of ethanol-enhanced estradiol permeation across human skin in vivo. Pharm Res 7(2): 170-175.

Polentarutti, BI, Peterson, AL, Sjoberg, AK, Anderberg, EK, Utter, LM, Ungell, AL (1999) Evaluation of viability of excised rat intestinal segments in the Ussing chamber: investigation of morphology, electrical parameters, and permeability characteristics.

Pharm Res 16(3): 446-454.

Ralay-Ranaivo, B Developpement d'une forme orale du fondaparinux. Doctorat Doctorat, Paris Sud -Paris XI, Châtenay Malabry, 2012.

Resta-Lenert, S, Barrett, KE (2003) Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC). Gut 52(7): 988-997.

Resta-Lenert, S, Barrett, KE (2006) Probiotics and commensals reverse TNF-alpha- and IFN-gamma-induced dysfunction in human intestinal epithelial cells. Gastroenterol

130(3): 731-746.

Rosenthal, R, Gunzel, D, Finger, C, Krug, SM, Richter, JF, Schulzke, JD, Fromm, M, Amasheh, S (2012) The effect of chitosan on transcellular and paracellular mechanisms in the intestinal epithelial barrier. Biomaterials 33(9): 2791-2800.

Sakloetsakun, D, Iqbal, J, Millotti, G, Vetter, A, Bernkop-Schnurch, A (2011) Thiolated chitosans: influence of various sulfhydryl ligands on permeation-enhancing and P-gp inhibitory properties. Drug Dev Ind Pharm 37(6): 648-655.

Sjoberg, A, Lutz, M, Tannergren, C, Wingolf, C, Borde, A, Ungell, AL (2013) Comprehensive study on regional human intestinal permeability and prediction of fraction absorbed of drugs using the Ussing chamber technique. Eur J Pharm Sci 48(1-2): 166-180.

Stephens, RH, O'Neill, CA, Bennett, J, Humphrey, M, Henry, B, Rowland, M, Warhurst, G (2002) Resolution of P-glycoprotein and non-P-glycoprotein effects on drug permeability using intestinal tissues from mdr1a (-/-) mice. Br J Pharmacol 135(8): 2038-2046.

Tran, L, Greenwood-Van Meerveld, B (2013) Age-associated remodeling of the intestinal epithelial barrier. J Gerontol A Biol Sci Med Sci 68(9): 1045-1056.

Ungell, AL, Nylander, S, Bergstrand, S, Sjoberg, A, Lennernas, H (1998) Membrane transport of drugs in different regions of the intestinal tract of the rat. J Pharm Sci 87(3): 360-366.

van de Kerkhof, EG, Ungell, AL, Sjoberg, AK, de Jager, MH, Hilgendorf, C, de Graaf, IA, Groothuis, GM (2006) Innovative methods to study human intestinal drug

69

metabolism in vitro: precision-cut slices compared with ussing chamber preparations.

Drug Metab Dispos 34(11): 1893-1902.

Wallon, C, Braaf, Y, Wolving, M, Olaison, G, Soderholm, JD (2005) Endoscopic biopsies in Ussing chambers evaluated for studies of macromolecular permeability in the human côlon. Scand J Gastroenterol 40(5): 586-595.

Watanabe, E, Takahashi, M, Hayashi, M (2004) A possibility to predict the absorbability of poorly water-soluble drugs in humans based on rat intestinal permeability assessed by an in vitro chamber method. Eur J Pharm Biopharm 58(3): 659-665.

Yamashita, S, Tanaka, Y, Endoh, Y, Taki, Y, Sakane, T, Nadai, T, & Sezaki, H (1997) Analysis of drug permeation across Caco-2 monolayer: implication for predicting in vivo drug absorption. Pharm Res 14: 486-491.

Zayas-Santiago, A, Marmorstein, AD, Marmorstein, LY (2011) Relationship of stokes radius to the rate of diffusion across Bruch's membrane. Invest Ophthalmol Vis Sci

52(7): 4907-4913.

Zhang, Z, Tan, S, Feng, SS (2012) Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials 33(19): 4889-4906.

70

Travail expérimental 1

Influence des solutions physiologiques sur la perméabilité

in vitro de molécules actives

71

Travail expérimental 1

Nous avons montré dans la première partie du manuscrit le potentiel de la chambre de perméation d’Ussing dans les études de transport des molécules actives ou à partir d’une formulation à travers les tissus épithéliaux et monocouches de cellules polarisées.

Dans nos travaux expérimentaux, nous exploiterons le potentiel de cette technique in

vitro pour évaluer l’influence des milieux et solutions physiologiques utilisés dans les études de perméabilité membranaire ainsi que leurs influences sur la viabilité, l’intégrité et la perméabilité de la membrane épithéliale.

Dans cet objectif ; et pour déterminer l’influence que peuvent avoir les solutions sur la cinétique de passage membranaire in vitro, nous avons fait le choix d’évaluer la perméation de deux molécules hydrophiles, la vitamine C (VitC) et le paracétamol en chambre de perméation d’Ussing.

La vitamine C est choisie car son absorption intestinale est sodium-dépendante et selon les cas est passive pour des doses élevées et active pour des faibles doses Le paracétamol est choisi car son absorption intestinale est passive et paracellulaire Il serait donc intéressant d’observer le profil de passage intestinal de ces deux molécules dans des solutions de compositions ioniques différentes.

Enfin, la deuxième partie des travaux sera consacrée au resvératrol, molécule hydrophobe, avec une stratégie de formulation dont l’objectif principal est d’améliorer sa dissolution aqueuse et sa perméation intestinale en vue d’une meilleure biodisponibilité.

72

Travail expérimental 1

L’influence des solutions physiologiques sur la biodisponibilité intestinale de médicaments in vitro.

L’objectif principal de ce travail était d’évaluer l’impact de la composition des différentes solutions physiologiques standards utilisées communément pour les études en chambre d’Ussing sur le passage des principes actifs et sur l’intégrité fonctionnelle de la membrane intestinale.

2. La chambre d’Ussing et passage des molécules actives

Les conditions d’utilisation des chambres de perméation d’Ussing et des équations qui régissent sont: 1) la température doit être constante et identique dans les deux compartiments (lumière intestinale comme côté séreux), 2) la pression qui s’exerce sur les deux côtés de la membrane doit être identique et constante, 3) le système doit être en état stationnaire des flux (J), c’est-à-dire que J doit être constant en fonction du temps, 4) pas d’interaction entre le flux de la molécule à mesurer et les autres constituants du système. Pour cette dernière condition est qui également la plus importante, pour avoir un système adéquate, il faut que l’activité spécifique de chacun des composants de la solution physiologique utilisé soit identique de part et d’autre de la membrane ainsi que le potentiel électrique des ions qui la compose.

Lorsqu’on modifie la quatrième condition d’utilisation des chambres d’Ussing, en modifiant la composition du milieu physiologique séreux et muqueux on constate une modification des paramètres électriques de la membrane, notamment le courant de court-circuit (Isc) de base et surtout la conductance (G), (voir figure1)

De plus, lorsque la membrane intestinale est placée en chambre d’Ussing pendant deux heures, on remarque une modification de la structure des villosités intestinales par rapport au témoin (Ringer seul). Le prétraitement du tissu avec une solution contenant du KCl à 2% provoque une altération des villosités intestinales.

73

Intestinal drug absorption kinetics determined in vitro in Ussing

chambers is affected by the nature of the physiological media

Godefroy Mamadou 1,2, Bruno Eto2, Nicolas Limas-Nzouzi2, Nathalie Ialy-Radio3, Gilles Ponchel1

1Institut Galien Paris Sud, Faculté de Pharmacie, University of Paris 11, Châtenay- Malabry France

2 TransCell-Lab Laboratory, Faculty of Medicine Xavier Bichat, University of Paris Diderot - Paris7, Paris, France.

3Inserm U1149, Faculty of Medicine Xavier Bichat, University of Paris Diderot - Paris7, Paris, France.

ABSTRACT

After oral delivery, the intestinal absorption of the released drugs depends on many physico-chemical characteristics, including aqueous solubility, lipophilicity, the concentration of the drug dissolved in the intestinal medium, as well as the physiological characteristics of the mucosal membrane. Absorption kinetics through intestinal tissues can be very conveniently determined with Ussing chambers, enabling to simultaneously evaluate the tissue viability by the means of electrical parameters measurements and the determination of transepithelial fluxes (Jms) of the considered drug.

The objective of this in vitro study is to determine whether the nature of physiological medium affects the experimentally determined permeability values through the jejunum of rat. Acetaminophen and vitamin C were used because their absorption pathways are well characterized. Moreover, these substances are easily absorbed in vivo, making them ideal models for the present study.

The study showed that: (i) the composition of the physiologic solutions affected the conductance of mucosal intestinal membrane when they were added to the mucosal side only or to on both sides; (ii) the intestinal permeations of acetaminophen and vitamin C were affected by different media. After 2h, the trans intestinal fluxes of vitamin C were Jms = 31.4 ± 1.44 µg.hr-1.cm-2 with Ringer solution whereas with

74

Sorensen solution it was: Jms= 51.1 ± 7.09 µg.hr-1.cm-2 and Jms = 15.8 ± 1.92 µg.hr1.cm -2 with Ringer Na+-free. The flux of acetaminophen was Jms = 17.9 ± 1.39 µg.hr1.cm-2

with Ringer solution whereas with Sorensen solution was Jms= 12.6 ± 1.99 µg.hr-1.cm -2 (iii) A correlation (r² = 0.979) was found between conductance and fluxes of vitamin C while using different solutions including Ringer, Sorensen, and Na+-free Ringer. With acetaminophen, we found a correlation only with Ringer solution (R² = 0.976).; (iv) The composition of the physiological solutions also affected the response of the tissue to different pharmacological effectors such as glucose and carbacholine; (v) This study confirmed that proximal jejunum, when incubated in Ussing chambers, exhibited less morphological deterioration of the villi of the epithelial cells, although the crypt structure remained intact.

In conclusion, this study showed that frequently used media could affect the functional viability of the intestinal tissue and could affect the experimental permeability data, suggesting that composition of physiological medium must be carefully taken into account during intestinal absorption studies of drugs in vitro.

Keywords: Intestinal absorption, physiological buffers composition, rat intestine, jejunum, physiological media, Ussing chambers, vitamin C, acetaminophen.

75

1. INTRODUCTION

After oral delivery of solid dosage forms, the bioavailability of drugs depends on many physico-chemical characteristics of the drug, including aqueous solubility, drug ionizability, possible adsorption to mucus glycoproteins, variations in local dissolved drug concentrations along the gastrointestinal tract and simultaneously on the resistance of the mucosal intestinal membrane to the passage of the drug from the luminal side to the serosal side of the mucosa, this is often described by the apparent permeability coefficient of the drug. Although the main barrier against diffusion of many drugs is constituted by the tightly bound epithelial cells, the mucus gel layer which coats the luminal epithelial layer reinforces the barrier even further. As shown recently, it forms an unstirred aqueous layer which can significantly limit the intestinal permeability (Dossou-Yovo et al., 2014; Fairstein et al., 2013; Pappenheimer, 2001; Pelissier et al., 2010).In vitro, the condition of experimentation and tissue additional factors that might be taken into account in the evaluation of intestinal permeability of drugs. The transport of drugs, nutrients, xenobiotics and electrolytes can be different in jejunum, ileum or côlon (Swaan et al., 1994; Ungell et al., 1998).

From the experimental point of view, the intestinal permeability of the active ingredients can be estimated in humans by using different models: monolayers obtained through cell cultures, intestinal tissue put together in the Ussing chamber, the method of the turned around intestine, in vivo intestinal perfusion ... Among these techniques, Ussing chambers allow to study and evaluate realistic in vitro conditions, enough for the passage of molecules through the intestinal epithelium, from the physiological media. It also tracks the electrical parameters membrane characteristics and sustainability by monitoring certain physiological functions.

To the extent where many active substances require a suitable formulation due to their low aqueous solubility, instability or other factors, it would be very interesting to use the Ussing model, in order to study the effect of these formulations on the intestinal passage. This requires checking the sturdiness of the Ussing model in the conditions which are slightly diverted from the physiological conditions and of Ussing.

Indeed, in the Ussing model, the biological preparation (epithelial tissue, epithelial cells monolayer ...) are put together between two semi-chambers, defining a mucous compartment and a serosal compartment with the application conditions, temperature

76

and maintenance pressure that needs to remain constant on either sides of the membrane and with the same ionic composition.

Therefore, experimentally speaking, it would be interesting to study the influence of the composition of some buffers which could be used for permeability and for studying the pharmaceutical formulations or the essential molecules and this way maintaining the electrical resistance of the tissue.

Theoretically, in permeability case studies with a complex physiological media might constitute the primary source for cellular toxicity, inducing a data error and leading to misinterpret the results.

Made up of one or more salts which can be added as additives such as albumin or ethanol ... these survival physiological solutions are an complete formulation, directly or indirectly influencing intestinal permeability or because they are in contact with the molecule model (instability of the molecule in the middle) or due to a toxic effect on the

Documents relatifs